Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
Hum Mol Genet ; 24(17): 4848-61, 2015 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-26056227

RESUMO

Miles-Carpenter syndrome (MCS) was described in 1991 as an XLID syndrome with fingertip arches and contractures and mapped to proximal Xq. Patients had microcephaly, short stature, mild spasticity, thoracic scoliosis, hyperextendable MCP joints, rocker-bottom feet, hyperextended elbows and knees. A mutation, p.L66H, in ZC4H2, was identified in a XLID re-sequencing project. Additional screening of linked families and next generation sequencing of XLID families identified three ZC4H2 mutations: p.R18K, p.R213W and p.V75in15aa. The families shared some relevant clinical features. In silico modeling of the mutant proteins indicated all alterations would destabilize the protein. Knockout mutations in zc4h2 were created in zebrafish and homozygous mutant larvae exhibited abnormal swimming, increased twitching, defective eye movement and pectoral fin contractures. Because several of the behavioral defects were consistent with hyperactivity, we examined the underlying neuronal defects and found that sensory neurons and motoneurons appeared normal. However, we observed a striking reduction in GABAergic interneurons. Analysis of cell-type-specific markers showed a specific loss of V2 interneurons in the brain and spinal cord, likely arising from mis-specification of neural progenitors. Injected human wt ZC4H2 rescued the mutant phenotype. Mutant zebrafish injected with human p.L66H or p.R213W mRNA failed to be rescued, while the p.R18K mRNA was able to rescue the interneuron defect. Our findings clearly support ZC4H2 as a novel XLID gene with a required function in interneuron development. Loss of function of ZC4H2 thus likely results in altered connectivity of many brain and spinal circuits.


Assuntos
Proteínas de Transporte/genética , Sistema Nervoso Central/citologia , Sistema Nervoso Central/metabolismo , Interneurônios/metabolismo , Animais , Células COS , Linhagem Celular , Chlorocebus aethiops , Biologia Computacional , Feminino , Expressão Gênica , Genes Ligados ao Cromossomo X , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Masculino , Mutação , Proteínas Nucleares , Especificidade de Órgãos/genética , Linhagem , Peixe-Zebra
2.
PLoS One ; 9(11): e111604, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25369028

RESUMO

Chronic Beryllium (Be) Disease (CBD) is a granulomatous disorder that predominantly affects the lung. The CBD is caused by Be exposure of individuals carrying the HLA-DP2 protein of the major histocompatibility complex class II (MHCII). While the involvement of Be in the development of CBD is obvious and the binding site and the sequence of Be and peptide binding were recently experimentally revealed [1], the interplay between induced conformational changes and the changes of the peptide binding affinity in presence of Be were not investigated. Here we carry out in silico modeling and predict the Be binding to be within the acidic pocket (Glu26, Glu68 and Glu69) present on the HLA-DP2 protein in accordance with the experimental work [1]. In addition, the modeling indicates that the Be ion binds to the HLA-DP2 before the corresponding peptide is able to bind to it. Further analysis of the MD generated trajectories reveals that in the presence of the Be ion in the binding pocket of HLA-DP2, all the different types of peptides induce very similar conformational changes, but their binding affinities are quite different. Since these conformational changes are distinctly different from the changes caused by peptides normally found in the cell in the absence of Be, it can be speculated that CBD can be caused by any peptide in presence of Be ion. However, the affinities of peptides for Be loaded HLA-DP2 were found to depend of their amino acid composition and the peptides carrying acidic group at positions 4 and 7 are among the strongest binders. Thus, it is proposed that CBD is caused by the exposure of Be of an individual carrying the HLA-DP2*0201 allele and that the binding of Be to HLA-DP2 protein alters the conformational and ionization properties of HLA-DP2 such that the binding of a peptide triggers a wrong signaling cascade.


Assuntos
Beriliose/metabolismo , Berílio/metabolismo , Cadeias beta de HLA-DP/metabolismo , Peptídeos/metabolismo , Sítios de Ligação , Doença Crônica , Cadeias beta de HLA-DP/química , Humanos , Simulação de Acoplamento Molecular , Peptídeos/química , Ligação Proteica , Conformação Proteica
3.
J Alzheimers Dis ; 39(1): 23-7, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24121961

RESUMO

Whole exome sequencing in a family with suspected dominant Kufs disease identified a novel Presenilin 1 mutation p.Leu(381)Phe in three brothers who, along with their father, developed progressive dementia and motor deficits in their early 30 s. All affected relatives had unusually rapid disease progression (on average 3.6 years from disease onset to death). In silico analysis of mutation p.Leu(381)Phe predicted more detrimental effects when compared to the common Presenilin 1 mutation p.Glu(280)Ala. Electron microscopy study of peripheral fibroblast cells of the proband showed lysosomal inclusions typical for Kufs disease. However, brain autopsy demonstrated typical changes of Alzheimer's disease.


Assuntos
Doença de Alzheimer/genética , Doença de Alzheimer/patologia , Demência/genética , Fibroblastos/ultraestrutura , Lisossomos/ultraestrutura , Mutação , Presenilina-1/genética , Adulto , Sequência de Aminoácidos , Simulação por Computador , Diagnóstico Diferencial , Progressão da Doença , Exoma/genética , Evolução Fatal , Estudo de Associação Genômica Ampla , Humanos , Masculino , Modelos Genéticos , Lipofuscinoses Ceroides Neuronais/patologia , Linhagem
4.
Curr Pharm Des ; 19(23): 4182-90, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23170880

RESUMO

In this review we discuss the role of protonation states in receptor-ligand interactions, providing experimental evidences and computational predictions that complex formation may involve titratable groups with unusual pKa's and that protonation states frequently change from unbound to bound states. These protonation changes result in proton uptake/release, which in turn causes the pH-dependence of the binding. Indeed, experimental data strongly suggest that almost any binding is pH-dependent and to be correctly modeled, the protonation states must be properly assigned prior to and after the binding. One may accurately predict the protonation states when provided with the structures of the unbound proteins and their complex; however, the modeling becomes much more complicated if the bound state has to be predicted in a docking protocol or if the structures of either bound or unbound receptor-ligand are not available. The major challenges that arise in these situations are the coupling between binding and protonation states, and the conformational changes induced by the binding and ionization states of titratable groups. In addition, any assessment of the protonation state, either before or after binding, must refer to the pH of binding, which is frequently unknown. Thus, even if the pKa's of ionizable groups can be correctly assigned for both unbound and bound state, without knowing the experimental pH one cannot assign the corresponding protonation states, and consequently one cannot calculate the resulting proton uptake/release. It is pointed out, that while experimental pH may not be the physiological pH and binding may involve proton uptake/release, there is a tendency that the native receptor-ligand complexes have evolved toward specific either subcellular or tissue characteristic pH at which the proton uptake/release is either minimal or absent.


Assuntos
Prótons , Receptores de Superfície Celular/química , Ligantes , Modelos Moleculares , Ligação Proteica
5.
J Mol Biol ; 425(21): 3919-36, 2013 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-23871686

RESUMO

Genetic variations resulting in a change of amino acid sequence can have a dramatic effect on stability, hydrogen bond network, conformational dynamics, activity and many other physiologically important properties of proteins. The substitutions of only one residue in a protein sequence, so-called missense mutations, can be related to many pathological conditions and may influence susceptibility to disease and drug treatment. The plausible effects of missense mutations range from affecting the macromolecular stability to perturbing macromolecular interactions and cellular localization. Here we review the individual cases and genome-wide studies that illustrate the association between missense mutations and diseases. In addition, we emphasize that the molecular mechanisms of effects of mutations should be revealed in order to understand the disease origin. Finally, we report the current state-of-the-art methodologies that predict the effects of mutations on protein stability, the hydrogen bond network, pH dependence, conformational dynamics and protein function.


Assuntos
Predisposição Genética para Doença , Mutação de Sentido Incorreto , Proteínas/genética , Proteínas/metabolismo , Estudo de Associação Genômica Ampla/métodos , Humanos , Estabilidade Proteica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA