Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Nat Rev Mol Cell Biol ; 19(11): 679-696, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30194414

RESUMO

Newly endocytosed integral cell surface proteins are typically either directed for degradation or subjected to recycling back to the plasma membrane. The sorting of integral cell surface proteins, including signalling receptors, nutrient transporters, ion channels, adhesion molecules and polarity markers, within the endolysosomal network for recycling is increasingly recognized as an essential feature in regulating the complexities of physiology at the cell, tissue and organism levels. Historically, endocytic recycling has been regarded as a relatively passive process, where the majority of internalized integral proteins are recycled via a nonspecific sequence-independent 'bulk membrane flow' pathway. Recent work has increasingly challenged this view. The discovery of sequence-specific sorting motifs and the identification of cargo adaptors and associated coat complexes have begun to uncover the highly orchestrated nature of endosomal cargo recycling, thereby providing new insight into the function and (patho)physiology of this process.


Assuntos
Endocitose/fisiologia , Transporte Proteico/fisiologia , Animais , Membrana Celular/metabolismo , Membrana Celular/fisiologia , Endossomos/metabolismo , Endossomos/fisiologia , Humanos , Proteínas de Membrana/metabolismo
2.
EMBO J ; 37(2): 235-254, 2018 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-29158324

RESUMO

Retromer is an endosomal multi-protein complex that organizes the endocytic recycling of a vast range of integral membrane proteins. Here, we establish an additional retromer function in controlling the activity and localization of the late endosomal small GTPase RAB7. Surprisingly, we found that RAB7 not only decorates late endosomes or lysosomes, but is also present on the endoplasmic reticulum, trans-Golgi network, and mitochondrial membranes, a localization that is maintained by retromer and the retromer-associated RAB7-specific GAP TBC1D5. In the absence of either TBC1D5 or retromer, RAB7 activity state and localization are no longer controlled and hyperactivated RAB7 expands over the entire lysosomal domain. This lysosomal accumulation of hyperactivated RAB7 results in a striking loss of RAB7 mobility and overall depletion of the inactive RAB7 pool on endomembranes. Functionally, we establish that this control of RAB7 activity is not required for the recycling of retromer-dependent cargoes, but instead enables the correct sorting of the autophagy related transmembrane protein ATG9a and autophagosome formation around damaged mitochondria during Parkin-mediated mitophagy.


Assuntos
Autofagossomos/metabolismo , Proteínas Ativadoras de GTPase/metabolismo , Mitocôndrias/metabolismo , Mitofagia/fisiologia , Proteínas rab de Ligação ao GTP/metabolismo , Proteínas Relacionadas à Autofagia/metabolismo , Proteínas Ativadoras de GTPase/genética , Células HeLa , Humanos , Lisossomos/genética , Lisossomos/metabolismo , Proteínas de Membrana/metabolismo , Mitocôndrias/genética , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Proteínas rab de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
3.
EMBO Rep ; 20(2)2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30610016

RESUMO

RAB GTPases are central modulators of membrane trafficking. They are under the dynamic regulation of activating guanine exchange factors (GEFs) and inactivating GTPase-activating proteins (GAPs). Once activated, RABs recruit a large spectrum of effectors to control trafficking functions of eukaryotic cells. Multiple proteomic studies, using pull-down or yeast two-hybrid approaches, have identified a number of RAB interactors. However, due to the in vitro nature of these approaches and inherent limitations of each technique, a comprehensive definition of RAB interactors is still lacking. By comparing quantitative affinity purifications of GFP:RAB21 with APEX2-mediated proximity labeling of RAB4a, RAB5a, RAB7a, and RAB21, we find that APEX2 proximity labeling allows for the comprehensive identification of RAB regulators and interactors. Importantly, through biochemical and genetic approaches, we establish a novel link between RAB21 and the WASH and retromer complexes, with functional consequences on cargo sorting. Hence, APEX2-mediated proximity labeling of RAB neighboring proteins represents a new and efficient tool to define RAB functions.


Assuntos
Clatrina/metabolismo , DNA Liase (Sítios Apurínicos ou Apirimidínicos)/metabolismo , Endonucleases/metabolismo , Enzimas Multifuncionais/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo , Endossomos/metabolismo , Humanos , Espectrometria de Massas , Ligação Proteica , Mapeamento de Interação de Proteínas , Mapas de Interação de Proteínas , Transporte Proteico , RNA Guia de Cinetoplastídeos
4.
J Cell Sci ; 130(2): 382-395, 2017 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-27909246

RESUMO

Retromer and the associated actin-polymerizing WASH complex are essential for the endocytic recycling of a wide range of integral membrane proteins. A hereditary Parkinson's-disease-causing point mutation (D620N) in the retromer subunit VPS35 perturbs retromer's association with the WASH complex and also with the uncharacterized protein ankyrin-repeat-domain-containing protein 50 (ANKRD50). Here, we firmly establish ANKRD50 as a new and essential component of the SNX27-retromer-WASH super complex. Depletion of ANKRD50 in HeLa or U2OS cells phenocopied the loss of endosome-to-cell-surface recycling of multiple transmembrane proteins seen upon suppression of SNX27, retromer or WASH-complex components. Mass-spectrometry-based quantification of the cell surface proteome of ANKRD50-depleted cells identified amino acid transporters of the SLC1A family, among them SLC1A4, as additional cargo molecules that depend on ANKRD50 and retromer for their endocytic recycling. Mechanistically, we show that ANKRD50 simultaneously engages multiple parts of the SNX27-retromer-WASH complex machinery in a direct and co-operative interaction network that is needed to efficiently recycle the nutrient transporters GLUT1 (also known as SLC2A1) and SLC1A4, and potentially many other surface proteins.


Assuntos
Sistema ASC de Transporte de Aminoácidos/metabolismo , Transportador de Glucose Tipo 1/metabolismo , Proteínas dos Microfilamentos/metabolismo , Fosfoproteínas Fosfatases/metabolismo , Mapas de Interação de Proteínas , Proteínas de Transporte Vesicular/metabolismo , Motivos de Aminoácidos , Transporte Biológico , Membrana Celular/metabolismo , Endocitose , Endossomos/metabolismo , Receptores ErbB/metabolismo , Técnicas de Silenciamento de Genes , Células HEK293 , Células HeLa , Humanos , Integrinas/metabolismo , Espectrometria de Massas , Fosfoproteínas Fosfatases/química , Ligação Proteica , Proteólise , Proteômica , Nexinas de Classificação/metabolismo , Transferrina/metabolismo , Proteínas de Transporte Vesicular/química
5.
Proc Natl Acad Sci U S A ; 111(35): E3604-13, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25136126

RESUMO

The sorting nexin 27 (SNX27)-retromer complex is a major regulator of endosome-to-plasma membrane recycling of transmembrane cargos that contain a PSD95, Dlg1, zo-1 (PDZ)-binding motif. Here we describe the core interaction in SNX27-retromer assembly and its functional relevance for cargo sorting. Crystal structures and NMR experiments reveal that an exposed ß-hairpin in the SNX27 PDZ domain engages a groove in the arrestin-like structure of the vacuolar protein sorting 26A (VPS26A) retromer subunit. The structure establishes how the SNX27 PDZ domain simultaneously binds PDZ-binding motifs and retromer-associated VPS26. Importantly, VPS26A binding increases the affinity of the SNX27 PDZ domain for PDZ- binding motifs by an order of magnitude, revealing cooperativity in cargo selection. With disruption of SNX27 and retromer function linked to synaptic dysfunction and neurodegenerative disease, our work provides the first step, to our knowledge, in the molecular description of this important sorting complex, and more broadly describes a unique interaction between a PDZ domain and an arrestin-like fold.


Assuntos
Endocitose/fisiologia , Domínios PDZ/genética , Nexinas de Classificação/química , Proteínas de Transporte Vesicular/química , Sequência de Aminoácidos , Animais , Arrestina/química , Arrestina/genética , Encefalopatias/genética , Encefalopatias/metabolismo , Encefalopatias/patologia , Cristalografia por Raios X , Endossomos/metabolismo , Células HEK293 , Humanos , Camundongos , Dados de Sequência Molecular , Mutagênese , Proteínas do Tecido Nervoso/química , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Dobramento de Proteína , Sinais Direcionadores de Proteínas/genética , RNA Interferente Pequeno/genética , Ratos , Homologia de Sequência de Aminoácidos , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo , Proteínas de Transporte Vesicular/genética , Proteínas de Transporte Vesicular/metabolismo
6.
J Cell Sci ; 127(Pt 22): 4940-53, 2014 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-25278552

RESUMO

Retromer is a protein assembly that orchestrates the sorting of transmembrane cargo proteins into endosome-to-Golgi and endosome-to-plasma-membrane transport pathways. Here, we have employed quantitative proteomics to define the interactome of human VPS35, the core retromer component. This has identified a number of new interacting proteins, including ankyrin-repeat domain 50 (ANKRD50), seriologically defined colon cancer antigen 3 (SDCCAG3) and VPS9-ankyrin-repeat protein (VARP, also known as ANKRD27). Depletion of these proteins resulted in trafficking defects of retromer-dependent cargo, but differential and cargo-specific effects suggested a surprising degree of functional heterogeneity in retromer-mediated endosome-to-plasma-membrane sorting. Extending this, suppression of the retromer-associated WASH complex did not uniformly affect retromer cargo, thereby confirming cargo-specific functions for retromer-interacting proteins. Further analysis of the retromer-VARP interaction identified a role for retromer in endosome-to-melanosome transport. Suppression of VPS35 led to mistrafficking of the melanogenic enzymes, tyrosinase and tryrosine-related protein 1 (Tyrp1), establishing that retromer acts in concert with VARP in this trafficking pathway. Overall, these data reveal hidden complexities in retromer-mediated sorting and open up new directions in our molecular understanding of this essential sorting complex.


Assuntos
Endossomos/metabolismo , Nexinas de Classificação/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Membrana Celular/metabolismo , Células HeLa , Humanos , Transporte Proteico , Transfecção , Transferrina/metabolismo , Proteínas rab de Ligação ao GTP/metabolismo
7.
Cell Rep ; 41(10): 111653, 2022 12 06.
Artigo em Inglês | MEDLINE | ID: mdl-36476874

RESUMO

The endosomal-lysosomal system is a series of organelles in the endocytic pathway that executes trafficking and degradation of proteins and lipids and mediates the internalization of nutrients and growth factors to ensure cell survival, growth, and differentiation. Here, we reveal regulatory, non-proteolytic ubiquitin signals in this complex system that are controlled by the enigmatic deubiquitinase USP32. Knockout (KO) of USP32 in primary hTERT-RPE1 cells results among others in hyperubiquitination of the Ragulator complex subunit LAMTOR1. Accumulation of LAMTOR1 ubiquitination impairs its interaction with the vacuolar H+-ATPase, reduces Ragulator function, and ultimately limits mTORC1 recruitment. Consistently, in USP32 KO cells, less mTOR kinase localizes to lysosomes, mTORC1 activity is decreased, and autophagy is induced. Furthermore, we demonstrate that depletion of USP32 homolog CYK-3 in Caenorhabditis elegans results in mTOR inhibition and autophagy induction. In summary, we identify a control mechanism of the mTORC1 activation cascade at lysosomes via USP32-regulated LAMTOR1 ubiquitination.


Assuntos
Autofagia , Alvo Mecanístico do Complexo 1 de Rapamicina
8.
Nat Commun ; 13(1): 4685, 2022 08 10.
Artigo em Inglês | MEDLINE | ID: mdl-35948564

RESUMO

The protein kinase mechanistic target of rapamycin complex 1 (mTORC1) is a master regulator of cell growth and proliferation, supporting anabolic reactions and inhibiting catabolic pathways like autophagy. Its hyperactivation is a frequent event in cancer promoting tumor cell proliferation. Several intracellular membrane-associated mTORC1 pools have been identified, linking its function to distinct subcellular localizations. Here, we characterize the N-terminal kinase-like protein SCYL1 as a Golgi-localized target through which mTORC1 controls organelle distribution and extracellular vesicle secretion in breast cancer cells. Under growth conditions, SCYL1 is phosphorylated by mTORC1 on Ser754, supporting Golgi localization. Upon mTORC1 inhibition, Ser754 dephosphorylation leads to SCYL1 displacement to endosomes. Peripheral, dephosphorylated SCYL1 causes Golgi enlargement, redistribution of early and late endosomes and increased extracellular vesicle release. Thus, the mTORC1-controlled phosphorylation status of SCYL1 is an important determinant regulating subcellular distribution and function of endolysosomal compartments. It may also explain the pathophysiology underlying human genetic diseases such as CALFAN syndrome, which is caused by loss-of-function of SCYL1.


Assuntos
Complexo de Golgi , Lisossomos , Proteínas Adaptadoras de Transporte Vesicular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Complexo de Golgi/metabolismo , Humanos , Membranas Intracelulares/metabolismo , Lisossomos/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Fosforilação
9.
Nat Commun ; 13(1): 6459, 2022 10 29.
Artigo em Inglês | MEDLINE | ID: mdl-36309492

RESUMO

Intercellular communication is crucial for collective regulation of cellular behaviors. While clustering T cells have been shown to mutually control the production of key communication signals, it is unclear whether they also jointly regulate their availability and degradation. Here we use newly developed reporter systems, bioinformatic analyses, protein structure modeling and genetic perturbations to assess this. We find that T cells utilize trogocytosis by competing antagonistic receptors to differentially control the abundance of immunoregulatory ligands. Specifically, ligands trogocytosed via CD28 are shuttled to the T cell surface, enabling them to co-stimulate neighboring T cells. In contrast, CTLA4-mediated trogocytosis targets ligands for degradation. Mechanistically, this fate separation is controlled by different acid-sensitivities of receptor-ligand interactions and by the receptor intracellular domains. The ability of CD28 and CTLA4 to confer different fates to trogocytosed ligands reveals an additional layer of collective regulation of cellular behaviors and promotes the robustness of population dynamics.


Assuntos
Antígenos CD28 , Imunoconjugados , Antígenos CD28/genética , Antígenos CD28/metabolismo , Antígeno CTLA-4/genética , Ligantes , Abatacepte , Antígenos CD
10.
J Biol Chem ; 285(48): 37704-15, 2010 Nov 26.
Artigo em Inglês | MEDLINE | ID: mdl-20851884

RESUMO

The fusion of mammalian cells into syncytia is a developmental process that is tightly restricted to a limited subset of cells. Besides gamete and placental trophoblast fusion, only macrophages and myogenic stem cells fuse into multinucleated syncytia. In contrast to viral cell fusion, which is mediated by fusogenic glycoproteins that actively merge membranes, mammalian cell fusion is poorly understood at the molecular level. A variety of mammalian transmembrane proteins, among them many of the immunoglobulin superfamily, have been implicated in cell-cell fusion, but none has been shown to actively fuse cells in vitro. Here we report that the FGFRL1 receptor, which is up-regulated during the differentiation of myoblasts into myotubes, fuses cultured cells into large, multinucleated syncytia. We used luciferase and GFP-based reporter assays to confirm cytoplasmic mixing and to identify the fusion inducing domain of FGFRL1. These assays revealed that Ig-like domain III and the transmembrane domain are both necessary and sufficient to rapidly fuse CHO cells into multinucleated syncytia comprising several hundred nuclei. Moreover, FGFRL1 also fused HEK293 and HeLa cells with untransfected CHO cells. Our data show that FGFRL1 is the first mammalian protein that is capable of inducing syncytium formation of heterologous cells in vitro.


Assuntos
Diferenciação Celular , Expressão Gênica , Células Gigantes/citologia , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Células CHO , Fusão Celular , Cricetinae , Cricetulus , Células Gigantes/metabolismo , Células HEK293 , Células HeLa , Humanos , Mioblastos/citologia , Mioblastos/metabolismo , Estrutura Terciária de Proteína , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/química
11.
J Biol Chem ; 285(3): 2193-202, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-19920134

RESUMO

FGFRL1 (fibroblast growth factor receptor like 1) is the fifth and most recently discovered member of the fibroblast growth factor receptor (FGFR) family. With up to 50% amino acid similarity, its extracellular domain closely resembles that of the four conventional FGFRs. Its intracellular domain, however, lacks the split tyrosine kinase domain needed for FGF-mediated signal transduction. During embryogenesis of the mouse, FGFRL1 is essential for the development of parts of the skeleton, the diaphragm muscle, the heart, and the metanephric kidney. Since its discovery, it has been hypothesized that FGFRL1 might act as a decoy receptor for FGF ligands. Here we present several lines of evidence that support this notion. We demonstrate that the FGFRL1 ectodomain is shed from the cell membrane of differentiating C2C12 myoblasts and from HEK293 cells by an as yet unidentified protease, which cuts the receptor in the membrane-proximal region. As determined by ligand dot blot analysis, cell-based binding assays, and surface plasmon resonance analysis, the soluble FGFRL1 ectodomain as well as the membrane-bound receptor are capable of binding to some FGF ligands with high affinity, including FGF2, FGF3, FGF4, FGF8, FGF10, and FGF22. We furthermore show that ectopic expression of FGFRL1 in Xenopus embryos antagonizes FGFR signaling during early development. Taken together, our data provide strong evidence that FGFRL1 is indeed a decoy receptor for FGFs.


Assuntos
Membrana Celular/metabolismo , Fatores de Crescimento de Fibroblastos/metabolismo , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/metabolismo , Transdução de Sinais , Xenopus/embriologia , Sequência de Aminoácidos , Animais , Sequência de Bases , Diferenciação Celular , Linhagem Celular , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Larva/crescimento & desenvolvimento , Ligantes , Camundongos , Dados de Sequência Molecular , Mioblastos/citologia , Peptídeo Hidrolases/metabolismo , Polimorfismo de Nucleotídeo Único , Estrutura Terciária de Proteína , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/química , Receptor Tipo 5 de Fator de Crescimento de Fibroblastos/genética , Solubilidade , Ressonância de Plasmônio de Superfície
12.
Dev Biol ; 335(1): 106-19, 2009 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-19715689

RESUMO

Fgfrl1 is a novel member of the fibroblast growth factor receptor family. Its extracellular domain resembles the four conventional Fgfrs, while its intracellular domain lacks the tyrosine kinase domain necessary for Fgf mediated signal transduction. During embryonic development Fgfrl1 is expressed in the musculoskeletal system, in the lung, the pancreas and the metanephric kidney. Targeted disruption of the Fgfrl1 gene leads to the perinatal death of the mice due to a hypoplastic diaphragm, which is unable to inflate the lungs. Here we show that Fgfrl1-/- embryos also fail to develop the metanephric kidney. While the rest of the urogenital system, including bladder, ureter and sexual organs, develops normally, a dramatic reduction of ureteric branching morphogenesis and a lack of mesenchymal-to-epithelial transition in the nephrogenic mesenchyme result in severe renal dysgenesis. The failure of nephron induction might be explained by the absence of the tubulogenic markers Wnt4, Fgf8, Pax8 and Lim1 at E12.5 of the mutant animals. We also observed a loss of Pax2 positive nephron precursor cells and an increase of apoptosis in the cortical zone of the remnant kidney. Fgfrl1 is therefore essential for mesenchymal differentiation in the early steps of nephrogenesis.


Assuntos
Rim , Néfrons , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/metabolismo , Animais , Apoptose/fisiologia , Biomarcadores/metabolismo , Diferenciação Celular/fisiologia , Proliferação de Células , Embrião de Mamíferos/anatomia & histologia , Embrião de Mamíferos/fisiologia , Feminino , Expressão Gênica , Rim/anormalidades , Rim/embriologia , Rim/metabolismo , Mesoderma/fisiologia , Camundongos , Camundongos Transgênicos , Néfrons/anormalidades , Néfrons/embriologia , Néfrons/metabolismo , Gravidez , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Técnicas de Cultura de Tecidos
13.
Nat Commun ; 11(1): 5133, 2020 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-33046706

RESUMO

Cathepsin D (CTSD) is a lysosomal protease and a marker of poor prognosis in breast cancer. However, the cells responsible for this association and the function of CTSD in cancer are still incompletely understood. By using a conditional CTSD knockout mouse crossed to the transgenic MMTV-PyMT breast cancer model we demonstrate that CTSD deficiency in the mammary epithelium, but not in myeloid cells, blocked tumor development in a cell-autonomous manner. We show that lack of CTSD impaired mechanistic Target of Rapamycin Complex 1 (mTORC1) signaling and induced reversible cellular quiescence. In line, CTSD-deficient tumors started to grow with a two-month delay and quiescent Ctsd-/- tumor cells re-started proliferation upon long-term culture. This was accompanied by rewiring of oncogenic gene expression and signaling pathways, while mTORC1 signaling remained permanently disabled in CTSD-deficient cells. Together, these studies reveal a tumor cell-autonomous effect of CTSD deficiency, and establish a pivotal role of this protease in the cellular response to oncogenic stimuli.


Assuntos
Neoplasias da Mama/metabolismo , Catepsina D/genética , Epitélio/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Animais , Neoplasias da Mama/genética , Catepsina D/deficiência , Feminino , Humanos , Glândulas Mamárias Animais/metabolismo , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Knockout , Transdução de Sinais
14.
Nat Cell Biol ; 21(10): 1219-1233, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31576058

RESUMO

Protein trafficking requires coat complexes that couple recognition of sorting motifs in transmembrane cargoes with biogenesis of transport carriers. The mechanisms of cargo transport through the endosomal network are poorly understood. Here, we identify a sorting motif for endosomal recycling of cargoes, including the cation-independent mannose-6-phosphate receptor and semaphorin 4C, by the membrane tubulating BAR domain-containing sorting nexins SNX5 and SNX6. Crystal structures establish that this motif folds into a ß-hairpin, which binds a site in the SNX5/SNX6 phox homology domains. Over sixty cargoes share this motif and require SNX5/SNX6 for their recycling. These include cargoes involved in neuronal migration and a Drosophila snx6 mutant displays defects in axonal guidance. These studies identify a sorting motif and provide molecular insight into an evolutionary conserved coat complex, the 'Endosomal SNX-BAR sorting complex for promoting exit 1' (ESCPE-1), which couples sorting motif recognition to the BAR-domain-mediated biogenesis of cargo-enriched tubulo-vesicular transport carriers.


Assuntos
Endossomos/metabolismo , Proteínas de Membrana/metabolismo , Nexinas de Classificação/química , Nexinas de Classificação/metabolismo , Motivos de Aminoácidos/genética , Animais , Drosophila melanogaster , Células HEK293 , Células HeLa , Humanos , Domínios Proteicos/genética , Transporte Proteico/fisiologia , Receptor IGF Tipo 2/química , Receptor IGF Tipo 2/metabolismo , Semaforinas/genética , Semaforinas/metabolismo , Nexinas de Classificação/genética
15.
J Cell Biol ; 218(9): 3019-3038, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31431476

RESUMO

Retromer is an evolutionarily conserved multiprotein complex that orchestrates the endocytic recycling of integral membrane proteins. Here, we demonstrate that retromer is also required to maintain lysosomal amino acid signaling through mTORC1 across species. Without retromer, amino acids no longer stimulate mTORC1 translocation to the lysosomal membrane, which leads to a loss of mTORC1 activity and increased induction of autophagy. Mechanistically, we show that its effect on mTORC1 activity is not linked to retromer's role in the recycling of transmembrane proteins. Instead, retromer cooperates with the RAB7-GAP TBC1D5 to restrict late endosomal RAB7 into microdomains that are spatially separated from the amino acid-sensing domains. Upon loss of retromer, RAB7 expands into the ragulator-decorated amino acid-sensing domains and interferes with RAG-GTPase and mTORC1 recruitment. Depletion of retromer in Caenorhabditis elegans reduces mTORC1 signaling and extends the lifespan of the worms, confirming an evolutionarily conserved and unexpected role for retromer in the regulation of mTORC1 activity and longevity.


Assuntos
Proteínas de Caenorhabditis elegans/metabolismo , Caenorhabditis elegans/metabolismo , Longevidade , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Microdomínios da Membrana/metabolismo , Transdução de Sinais , Animais , Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Microdomínios da Membrana/genética , Proteínas rab de Ligação ao GTP/genética , proteínas de unión al GTP Rab7
16.
Apoptosis ; 13(6): 782-9, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18437576

RESUMO

Besides its preventive action on bone resorption the third generation bisphosphonate zoledronic acid (ZOL) has been shown to display potent inhibitory action on the formation of bone metastases of various human cancers. Recent research also indicates an antitumoral effect on primary tumors and visceral metastases. Here we investigate for the first time the effect of ZOL on the human colon carcinoma cell line HCT-116. ZOL strongly inhibited the proliferation and soft agar colony formation of HCT-116 cells and caused a G1 cell cycle arrest in a population of ZOL treated cells. This cell cycle arrest was accompanied by an induction of apoptosis via a caspase dependent mechanism. Activation of Caspases 3, 7, 8 and 9, cleavage of PARP as well as the release of cytochrome C into the cytosol were detected in HCT-116 cells treated with low micromolar concentrations of ZOL. The induction of the mitochondrial pathway of apoptosis was accompanied by a translocation of Bax into the mitochondria, Bid activation and a decrease of overall Bcl-2 expression. We also detected a cytosolic increase of apoptosis inducing factor (AIF), a trigger of caspase-independent apoptosis. Taken together, our data indicate a potent antitumoral and apoptosis inducing effect of ZOL on HCT-116 colon carcinoma cells.


Assuntos
Apoptose/efeitos dos fármacos , Difosfonatos/farmacologia , Imidazóis/farmacologia , Caspases/metabolismo , Ciclo Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias do Colo/tratamento farmacológico , Difosfonatos/uso terapêutico , Ativação Enzimática , Células HCT116 , Humanos , Imidazóis/uso terapêutico , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Ácido Zoledrônico
17.
Elife ; 72018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29897333

RESUMO

The apical inflammatory cytokine TNF regulates numerous important biological processes including inflammation and cell death, and drives inflammatory diseases. TNF secretion requires TACE (also called ADAM17), which cleaves TNF from its transmembrane tether. The trafficking of TACE to the cell surface, and stimulation of its proteolytic activity, depends on membrane proteins, called iRhoms. To delineate how the TNF/TACE/iRhom axis is regulated, we performed an immunoprecipitation/mass spectrometry screen to identify iRhom-binding proteins. This identified a novel protein, that we name iTAP (iRhom Tail-Associated Protein) that binds to iRhoms, enhancing the cell surface stability of iRhoms and TACE, preventing their degradation in lysosomes. Depleting iTAP in primary human macrophages profoundly impaired TNF production and tissues from iTAP KO mice exhibit a pronounced depletion in active TACE levels. Our work identifies iTAP as a physiological regulator of TNF signalling and a novel target for the control of inflammation.


Assuntos
Proteína ADAM17/metabolismo , Proteínas de Transporte/metabolismo , Proteínas do Citoesqueleto/metabolismo , Macrófagos/metabolismo , Proteínas de Membrana/metabolismo , Fator de Necrose Tumoral alfa/genética , Proteína ADAM17/genética , Sequência de Aminoácidos , Animais , Proteínas de Transporte/genética , Linhagem Celular , Proteínas do Citoesqueleto/genética , Endossomos/metabolismo , Fibroblastos/citologia , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Macrófagos/citologia , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Cultura Primária de Células , Ligação Proteica , Proteólise , Células RAW 264.7 , Alinhamento de Sequência , Homologia de Sequência de Aminoácidos , Transdução de Sinais , Fator de Necrose Tumoral alfa/metabolismo
18.
J Cell Biol ; 216(11): 3677-3693, 2017 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-28935632

RESUMO

The retromer complex, which recycles the cation-independent mannose 6-phosphate receptor (CI-MPR) from endosomes to the trans-Golgi network (TGN), is thought to consist of a cargo-selective VPS26-VPS29-VPS35 trimer and a membrane-deforming subunit of sorting nexin (SNX)-Bin, Amphyphysin, and Rvs (BAR; SNX-BAR) proteins. In this study, we demonstrate that heterodimers of the SNX-BAR proteins, SNX1, SNX2, SNX5, and SNX6, are the cargo-selective elements that mediate the retrograde transport of CI-MPR from endosomes to the TGN independently of the core retromer trimer. Using quantitative proteomics, we also identify the IGF1R, among more potential cargo, as another SNX5 and SNX6 binding receptor that recycles through SNX-BAR heterodimers, but not via the retromer trimer, in a ligand- and activation-dependent manner. Overall, our data redefine the mechanics of retromer-based sorting and call into question whether retromer indeed functions as a complex of SNX-BAR proteins and the VPS26-VPS29-VPS35 trimer.


Assuntos
Receptor IGF Tipo 2/metabolismo , Nexinas de Classificação/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Sistemas CRISPR-Cas , Endossomos/metabolismo , Células HEK293 , Células HeLa , Humanos , Células MCF-7 , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/metabolismo , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Transporte Proteico , Interferência de RNA , Receptor IGF Tipo 2/química , Receptor IGF Tipo 2/genética , Nexinas de Classificação/química , Nexinas de Classificação/genética , Fatores de Tempo , Transfecção , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética , Rede trans-Golgi/metabolismo
19.
Nat Cell Biol ; 19(10): 1214-1225, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28892079

RESUMO

Following endocytosis into the endosomal network, integral membrane proteins undergo sorting for lysosomal degradation or are retrieved and recycled back to the cell surface. Here we describe the discovery of an ancient and conserved multiprotein complex that orchestrates cargo retrieval and recycling and, importantly, is biochemically and functionally distinct from the established retromer pathway. We have called this complex 'retriever'; it is a heterotrimer composed of DSCR3, C16orf62 and VPS29, and bears striking similarity to retromer. We establish that retriever associates with the cargo adaptor sorting nexin 17 (SNX17) and couples to CCC (CCDC93, CCDC22, COMMD) and WASH complexes to prevent lysosomal degradation and promote cell surface recycling of α5ß1 integrin. Through quantitative proteomic analysis, we identify over 120 cell surface proteins, including numerous integrins, signalling receptors and solute transporters, that require SNX17-retriever to maintain their surface levels. Our identification of retriever establishes a major endosomal retrieval and recycling pathway.


Assuntos
Membrana Celular/metabolismo , Endossomos/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas/metabolismo , Proteínas de Transporte Vesicular/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/metabolismo , Células HEK293 , Células HeLa , Humanos , Peptídeos e Proteínas de Sinalização Intracelular , Cinética , Modelos Moleculares , Complexos Multiproteicos , Proteínas de Neoplasias/química , Proteínas de Neoplasias/genética , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas , Estabilidade Proteica , Transporte Proteico , Proteínas/química , Proteínas/genética , Proteólise , Proteômica/métodos , Interferência de RNA , Nexinas de Classificação/genética , Nexinas de Classificação/metabolismo , Relação Estrutura-Atividade , Transfecção , Proteínas de Transporte Vesicular/química , Proteínas de Transporte Vesicular/genética
20.
Oncol Lett ; 12(6): 4524-4530, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28101211

RESUMO

Fibroblast growth factor receptor-like 1 (FGFRL1) is a transmembrane receptor that interacts with heparin and FGF ligands. In contrast to the classical FGF receptors, FGFR1 to FGFR4, it does not appear to affect cell growth and proliferation. In the present study, an inducible gene expression system was utilized in combination with a xenograft tumor model to investigate the effects of FGFRL1 on cell adhesion and tumor formation. It was determined that recombinant FGFRL1 promotes the adhesion of HEK 293 Tet-On® cells in vitro. Moreover, when such cells are induced to express FGFRL1ΔC they aggregate into huge clusters. If injected into nude mice, the cells form large tumors. Notably, this tumor growth is completely inhibited when the expression of FGFRL1 is induced. The forced expression of FGFRL1 in the tumor tissue may restore contact inhibition, thereby preventing growth of the cells in nude mice. The results of the present study demonstrate that FGFRL1 acts as a tumor suppressor similar to numerous other cell adhesion proteins. It is therefore likely that FGFRL1 functions as a regular cell-cell adhesion protein.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA