Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Trends Biochem Sci ; 49(1): 28-37, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37949766

RESUMO

Type III CRISPR-Cas loci encode some of the most abundant, yet complex, immune systems of prokaryotes. They are composed of a Cas10 complex that uses an RNA guide to recognize transcripts from bacteriophage and plasmid invaders. Target recognition triggers three activities within this complex: ssDNA degradation, synthesis of cyclic oligoadenylates (cOA) that act as second messengers to activate CARF-domain effectors, and cleavage of target RNA. This review covers recent research in type III CRISPR-Cas systems that looked beyond the activity of the canonical Cas10 complexes towards: (i) ancillary nucleases and understanding how they provide defense by sensing cOA molecules; (ii) ring nucleases and their role in regulating cOA production; and (iii) CRISPR-associated proteases, including the function of the Craspase complex in a transcriptional response to phage infection.


Assuntos
Proteínas Associadas a CRISPR , Sistemas CRISPR-Cas , Proteínas Associadas a CRISPR/genética , Proteínas Associadas a CRISPR/metabolismo , RNA , DNA de Cadeia Simples , Endonucleases/genética
2.
Chembiochem ; 24(16): e202300104, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37485743

RESUMO

Graduate students face failure on a regular basis. Should they keep these failures hidden away or share them with others? One graduate student contemplates this question and shares her own experiences.

3.
Angew Chem Int Ed Engl ; 61(45): e202211450, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36048138

RESUMO

HNO has broad chemical and biomedical properties. Metal complexes and derivatives are widely used to make excellent HNO sensors. However, their favorable mechanistic origins are largely unknown. Cu cyclam is a useful platform to make excellent HNO sensors including imaging agents. A quantum chemical study of Cu cyclams with various substitutions was performed, which reproduced diverse experimental reactivities. Structural, electronic, and energetic profiles along reaction pathways show the importance of HNO binding and a proton-coupled electron transfer mechanism for HNO reaction. Results reveal that steric effect is primary and electronic factor is secondary (if the redox potential is sufficient), but their interwoven effects can lead to unexpected reactivity, which looks mysterious experimentally but can be explained computationally. This work suggests rational substituent design ideas and recommends a theoretical study of a new design to save time and cost due to its subtle effect.


Assuntos
Complexos de Coordenação , Ciclamos , Compostos Heterocíclicos , Óxidos de Nitrogênio/química , Complexos de Coordenação/química
4.
Biophys J ; 120(14): 2927-2942, 2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-33675766

RESUMO

A mainstay of personal protective equipment during the coronavirus disease 2019 pandemic is the N95 filtering facepiece respirator. N95 respirators are commonly used to protect healthcare workers from respiratory pathogens, including the novel coronavirus severe acute respiratory syndrome coronavirus 2, and are increasingly employed by other frontline workers and the general public. Under routine circumstances, these masks are disposable, single-use items, but extended use and reuse practices have been broadly enacted to alleviate critical supply shortages during the coronavirus disease 2019 pandemic. Although extended-time single use presents a low risk of pathogen transfer, repeated donning and doffing of potentially contaminated masks presents increased risk of pathogen transfer. Therefore, efficient and safe decontamination methods for N95 masks are needed to reduce the risk of reuse and mitigate local supply shortages. Here, we review the available literature concerning use of germicidal ultraviolet-C (UV-C) light to decontaminate N95 masks. We propose a practical method for repeated point-of-use decontamination using commercially available UV-C cross-linker boxes from molecular biology laboratories to expose each side of the mask to 800-1200 mJ/cm2 of UV-C. We measure the dose that penetrated to the interior of the respirators and model the potential germicidal action on coronaviruses. Our experimental results, in combination with modeled data, suggest that such a UV-C treatment cycle should induce a >3-log-order reduction in viral bioburden on the surface of the respirators and a 2-log-order reduction throughout the interior. We find that a dose 50-fold greater does not impair filtration or fit of 3M 8210 N95 masks, indicating that decontamination can be performed repeatedly. As such, UV-C germicidal irradiation is a practical strategy for small-scale point-of-use decontamination of N95s.


Assuntos
COVID-19 , SARS-CoV-2 , Descontaminação , Reutilização de Equipamento , Humanos , Respiradores N95
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA