Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Biomech Eng ; 139(7)2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28418526

RESUMO

Cardiovascular disease can alter the mechanical environment of the vascular system, leading to mechano-adaptive growth and remodeling. Predictive models of arterial mechano-adaptation could improve patient treatments and outcomes in cardiovascular disease. Vessel-scale mechano-adaptation includes remodeling of both the cells and extracellular matrix. Here, we aimed to experimentally measure and characterize a phenomenological mechano-adaptation law for vascular smooth muscle cells (VSMCs) within an artery. To do this, we developed a highly controlled and reproducible system for applying a chronic step-change in strain to individual VSMCs with in vivo like architecture and tracked the temporal cellular stress evolution. We found that a simple linear growth law was able to capture the dynamic stress evolution of VSMCs in response to this mechanical perturbation. These results provide an initial framework for development of clinically relevant models of vascular remodeling that include VSMC adaptation.


Assuntos
Adaptação Fisiológica , Fenômenos Mecânicos , Músculo Liso Vascular/citologia , Fenômenos Biomecânicos , Humanos , Modelos Biológicos , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA