Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 59
Filtrar
1.
Nat Rev Mol Cell Biol ; 21(6): 341-352, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32300252

RESUMO

Epithelial-mesenchymal transition (EMT) encompasses dynamic changes in cellular organization from epithelial to mesenchymal phenotypes, which leads to functional changes in cell migration and invasion. EMT occurs in a diverse range of physiological and pathological conditions and is driven by a conserved set of inducing signals, transcriptional regulators and downstream effectors. With over 5,700 publications indexed by Web of Science in 2019 alone, research on EMT is expanding rapidly. This growing interest warrants the need for a consensus among researchers when referring to and undertaking research on EMT. This Consensus Statement, mediated by 'the EMT International Association' (TEMTIA), is the outcome of a 2-year-long discussion among EMT researchers and aims to both clarify the nomenclature and provide definitions and guidelines for EMT research in future publications. We trust that these guidelines will help to reduce misunderstanding and misinterpretation of research data generated in various experimental models and to promote cross-disciplinary collaboration to identify and address key open questions in this research field. While recognizing the importance of maintaining diversity in experimental approaches and conceptual frameworks, we emphasize that lasting contributions of EMT research to increasing our understanding of developmental processes and combatting cancer and other diseases depend on the adoption of a unified terminology to describe EMT.


Assuntos
Pesquisa Biomédica/normas , Transição Epitelial-Mesenquimal , Animais , Movimento Celular , Plasticidade Celular , Consenso , Biologia do Desenvolvimento/normas , Humanos , Neoplasias/patologia , Terminologia como Assunto
3.
EMBO J ; 42(7): e111148, 2023 04 03.
Artigo em Inglês | MEDLINE | ID: mdl-36843552

RESUMO

Osteoclasts are bone-resorbing polykaryons responsible for skeletal remodeling during health and disease. Coincident with their differentiation from myeloid precursors, osteoclasts undergo extensive transcriptional and metabolic reprogramming in order to acquire the cellular machinery necessary to demineralize bone and digest its interwoven extracellular matrix. While attempting to identify new regulatory molecules critical to bone resorption, we discovered that murine and human osteoclast differentiation is accompanied by the expression of Zeb1, a zinc-finger transcriptional repressor whose role in normal development is most frequently linked to the control of epithelial-mesenchymal programs. However, following targeting, we find that Zeb1 serves as an unexpected regulator of osteoclast energy metabolism. In vivo, Zeb1-null osteoclasts assume a hyperactivated state, markedly decreasing bone density due to excessive resorptive activity. Mechanistically, Zeb1 acts in a rheostat-like fashion to modulate murine and human osteoclast activity by transcriptionally repressing an ATP-buffering enzyme, mitochondrial creatine kinase 1 (MtCK1), thereby controlling the phosphocreatine energy shuttle and mitochondrial respiration. Together, these studies identify a novel Zeb1/MtCK1 axis that exerts metabolic control over bone resorption in vitro and in vivo.


Assuntos
Reabsorção Óssea , Osteoclastos , Camundongos , Animais , Humanos , Osteoclastos/metabolismo , Creatina Quinase Mitocondrial/metabolismo , Reabsorção Óssea/genética , Reabsorção Óssea/metabolismo , Osso e Ossos , Diferenciação Celular , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
4.
EMBO Rep ; 25(8): 3406-3431, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38937629

RESUMO

The EMT-transcription factor ZEB1 is heterogeneously expressed in tumor cells and in cancer-associated fibroblasts (CAFs) in colorectal cancer (CRC). While ZEB1 in tumor cells regulates metastasis and therapy resistance, its role in CAFs is largely unknown. Combining fibroblast-specific Zeb1 deletion with immunocompetent mouse models of CRC, we observe that inflammation-driven tumorigenesis is accelerated, whereas invasion and metastasis in sporadic cancers are reduced. Single-cell transcriptomics, histological characterization, and in vitro modeling reveal a crucial role of ZEB1 in CAF polarization, promoting myofibroblastic features by restricting inflammatory activation. Zeb1 deficiency impairs collagen deposition and CAF barrier function but increases NFκB-mediated cytokine production, jointly promoting lymphocyte recruitment and immune checkpoint activation. Strikingly, the Zeb1-deficient CAF repertoire sensitizes to immune checkpoint inhibition, offering a therapeutic opportunity of targeting ZEB1 in CAFs and its usage as a prognostic biomarker. Collectively, we demonstrate that ZEB1-dependent plasticity of CAFs suppresses anti-tumor immunity and promotes metastasis.


Assuntos
Fibroblastos Associados a Câncer , Neoplasias Colorretais , Imunoterapia , Inflamação , Homeobox 1 de Ligação a E-box em Dedo de Zinco , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Neoplasias Colorretais/patologia , Neoplasias Colorretais/genética , Neoplasias Colorretais/metabolismo , Neoplasias Colorretais/terapia , Neoplasias Colorretais/imunologia , Animais , Camundongos , Fibroblastos Associados a Câncer/metabolismo , Fibroblastos Associados a Câncer/patologia , Humanos , Inflamação/metabolismo , Inflamação/genética , Inflamação/patologia , Imunoterapia/métodos , Regulação Neoplásica da Expressão Gênica , Fibroblastos/metabolismo , Linhagem Celular Tumoral , Inibidores de Checkpoint Imunológico/farmacologia , Inibidores de Checkpoint Imunológico/uso terapêutico , Transição Epitelial-Mesenquimal/genética
5.
EMBO J ; 40(18): e108647, 2021 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-34459003

RESUMO

The process of epithelial-mesenchymal transition (EMT) is fundamental for embryonic morphogenesis. Cells undergoing it lose epithelial characteristics and integrity, acquire mesenchymal features, and become motile. In cancer, this program is hijacked to confer essential changes in morphology and motility that fuel invasion. In addition, EMT is increasingly understood to orchestrate a large variety of complementary cancer features, such as tumor cell stemness, tumorigenicity, resistance to therapy and adaptation to changes in the microenvironment. In this review, we summarize recent findings related to these various classical and non-classical functions, and introduce EMT as a true tumorigenic multi-tool, involved in many aspects of cancer. We suggest that therapeutic targeting of the EMT process will-if acknowledging these complexities-be a possibility to concurrently interfere with tumor progression on many levels.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias/etiologia , Neoplasias/patologia , Microambiente Tumoral , Animais , Biomarcadores , Transformação Celular Neoplásica , Progressão da Doença , Transição Epitelial-Mesenquimal/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Neoplasias/metabolismo , Transdução de Sinais , Microambiente Tumoral/genética
6.
EMBO J ; 39(17): e103209, 2020 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-32692442

RESUMO

Invasion, metastasis and therapy resistance are the major cause of cancer-associated deaths, and the EMT-inducing transcription factor ZEB1 is a crucial stimulator of these processes. While work on ZEB1 has mainly focused on its role as a transcriptional repressor, it can also act as a transcriptional activator. To further understand these two modes of action, we performed a genome-wide ZEB1 binding study in triple-negative breast cancer cells. We identified ZEB1 as a novel interactor of the AP-1 factors FOSL1 and JUN and show that, together with the Hippo pathway effector YAP, they form a transactivation complex, predominantly activating tumour-promoting genes, thereby synergising with its function as a repressor of epithelial genes. High expression of ZEB1, YAP, FOSL1 and JUN marks the aggressive claudin-low subtype of breast cancer, indicating the translational relevance of our findings. Thus, our results link critical tumour-promoting transcription factors: ZEB1, AP-1 and Hippo pathway factors. Disturbing their molecular interaction may provide a promising treatment option for aggressive cancer types.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Neoplasias da Mama/metabolismo , Transição Epitelial-Mesenquimal , Genoma Humano , Fator de Transcrição AP-1/metabolismo , Fatores de Transcrição/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Proteínas Adaptadoras de Transdução de Sinal/genética , Neoplasias da Mama/genética , Linhagem Celular Tumoral , Feminino , Humanos , Proteínas Proto-Oncogênicas c-fos/genética , Proteínas Proto-Oncogênicas c-fos/metabolismo , Proteínas Proto-Oncogênicas c-jun/genética , Proteínas Proto-Oncogênicas c-jun/metabolismo , Fator de Transcrição AP-1/genética , Fatores de Transcrição/genética , Proteínas de Sinalização YAP , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
7.
Cells Tissues Organs ; 213(4): 297-303, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38194935

RESUMO

This report summarizes the 10th biennial meeting of The Epithelial Mesenchymal Transition International Association (TEMTIA), that took place in Paris on November 7-10, 2022. It provides a short but comprehensive introduction to the presentations and discussions that took place during the 3-day meeting. Similarly to previous TEMTIA meetings, TEMTIA X reviewed the most recent aspects of the epithelial-mesenchymal transition (EMT), a cellular process involved during distinct stages of development but also during wound healing and fibrosis to some degree. EMT has also been associated at various levels during tumor cell progression and metastasis. The meeting emphasized the intermediate stages of EMT (partial EMT or EM hybrid cells) involved in the malignant process and their potential physiological or pathological importance, taking advantage of advancements in molecular methods at the single-cell level. It also introduced novel descriptions of EMT occurrences during early embryogenesis. Sessions explored relationships between EMT and cell metabolism and how EMT can affect immune responses, particularly during tumor progression, providing new targets for cancer therapy. Finally, it introduced a new perception of EMT biological meaning based on an evolutionary perspective. The meeting integrated the TEMTIA general assembly, allowing general discussion about the future of the association and the site of the next meeting, now decided to take place in Seattle, USA, in November 2024. This report provides a comprehensive introduction to the presentations and discussions that took place during the 10th biennial meeting of TEMTIA, that occurred in Paris on November 7-10, 2022. It includes all the sessions and follows the chronological order during the 3-day meeting. A general purpose of the meeting was to explore the boundaries of the EMT process, including new concepts and developments, as illustrated by our leitmotiv for the meeting, inspired by the proximity of the Cluny Museum in Paris.


Assuntos
Transição Epitelial-Mesenquimal , Humanos , Animais , Neoplasias/patologia
8.
PLoS Biol ; 19(9): e3001394, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34550965

RESUMO

The ZEB2 transcription factor has been demonstrated to play important roles in hematopoiesis and leukemic transformation. ZEB1 is a close family member of ZEB2 but has remained more enigmatic concerning its roles in hematopoiesis. Here, we show using conditional loss-of-function approaches and bone marrow (BM) reconstitution experiments that ZEB1 plays a cell-autonomous role in hematopoietic lineage differentiation, particularly as a positive regulator of monocyte development in addition to its previously reported important role in T-cell differentiation. Analysis of existing single-cell (sc) RNA sequencing (RNA-seq) data of early hematopoiesis has revealed distinctive expression differences between Zeb1 and Zeb2 in hematopoietic stem and progenitor cell (HSPC) differentiation, with Zeb2 being more highly and broadly expressed than Zeb1 except at a key transition point (short-term HSC [ST-HSC]➔MPP1), whereby Zeb1 appears to be the dominantly expressed family member. Inducible genetic inactivation of both Zeb1 and Zeb2 using a tamoxifen-inducible Cre-mediated approach leads to acute BM failure at this transition point with increased long-term and short-term hematopoietic stem cell numbers and an accompanying decrease in all hematopoietic lineage differentiation. Bioinformatics analysis of RNA-seq data has revealed that ZEB2 acts predominantly as a transcriptional repressor involved in restraining mature hematopoietic lineage gene expression programs from being expressed too early in HSPCs. ZEB1 appears to fine-tune this repressive role during hematopoiesis to ensure hematopoietic lineage fidelity. Analysis of Rosa26 locus-based transgenic models has revealed that Zeb1 as well as Zeb2 cDNA-based overexpression within the hematopoietic system can drive extramedullary hematopoiesis/splenomegaly and enhance monocyte development. Finally, inactivation of Zeb2 alone or Zeb1/2 together was found to enhance survival in secondary MLL-AF9 acute myeloid leukemia (AML) models attesting to the oncogenic role of ZEB1/2 in AML.


Assuntos
Linhagem da Célula , Células-Tronco Hematopoéticas/metabolismo , Leucemia Mieloide Aguda/metabolismo , Homeobox 2 de Ligação a E-box com Dedos de Zinco/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Animais , Células da Medula Óssea/patologia , Diferenciação Celular , Regulação Neoplásica da Expressão Gênica , Hematopoese , Células-Tronco Hematopoéticas/patologia , Leucemia Mieloide Aguda/patologia , Camundongos , Camundongos Transgênicos , RNA-Seq , Homeobox 2 de Ligação a E-box com Dedos de Zinco/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
9.
J Pathol ; 256(4): 455-467, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34939675

RESUMO

Neutrophil extracellular traps (NETs) are extracellular structures, composed of nuclear DNA and various proteins released from neutrophils. Evidence is growing that NETs exert manifold functions in infection, immunity and cancer. Recently, NETs have been detected in colorectal cancer (CRC) tissues, but their association with disease progression and putative functional impact on tumourigenesis remained elusive. Using high-resolution stimulated emission depletion (STED) microscopy, we showed that citrullinated histone H3 (H3cit) is sufficient to specifically detect citrullinated NETs in colon cancer tissues. Among other evidence, this was supported by the close association of H3cit with de-condensed extracellular DNA, the hallmark of NETs. Extracellular DNA was reliably differentiated from nuclear condensed DNA by staining with an anti-DNA antibody, providing a novel and valuable tool to detect NETs in formalin-fixed paraffin-embedded tissues. Using these markers, the clinical association of NETs was investigated in a cohort of 85 patients with colon cancer. NETs were frequently detected (37/85, 44%) in colon cancer tissue sections and preferentially localised either only in the tumour centre or both in the tumour centre and the invasive front. Of note, citrullinated NETs were significantly associated with high histopathological tumour grades and lymph node metastasis. In vitro, purified NETs induced filopodia formation and cell motility in CRC cell lines. This was associated with increased expression of mesenchymal marker mRNAs (vimentin [VIM], fibronectin [FN1]) and epithelial-mesenchymal transition promoting transcription factors (ZEB1, Slug [SNAI2]), as well as decreased expression of the epithelial markers E-cadherin (CDH1) and epithelial cell adhesion molecule (EPCAM). These findings indicated that NETs activate an epithelial-mesenchymal transition-like process in CRC cells and may contribute to the metastatic progression of CRC. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons Ltd on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias do Colo , Armadilhas Extracelulares , Biomarcadores/metabolismo , Neoplasias do Colo/metabolismo , DNA , Transição Epitelial-Mesenquimal , Armadilhas Extracelulares/metabolismo , Humanos , Neutrófilos
10.
Development ; 146(21)2019 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-31601548

RESUMO

A switch from E- to N-cadherin regulates the transition from pluripotency to neural identity, but the mechanism by which cadherins regulate differentiation was previously unknown. Here, we show that the acquisition of N-cadherin stabilises neural identity by dampening anti-neural signals. We use quantitative image analysis to show that N-cadherin promotes neural differentiation independently of its effects on cell cohesiveness. We reveal that cadherin switching diminishes the level of nuclear ß-catenin, and that N-cadherin also dampens FGF activity and consequently stabilises neural fate. Finally, we compare the timing of cadherin switching and differentiation in vivo and in vitro, and find that this process becomes dysregulated during in vitro differentiation. We propose that N-cadherin helps to propagate a stable neural identity throughout the emerging neuroepithelium, and that dysregulation of this process contributes to asynchronous differentiation in culture.


Assuntos
Caderinas/fisiologia , Células-Tronco Embrionárias/citologia , Neurônios/citologia , beta Catenina/fisiologia , Animais , Diferenciação Celular , Linhagem da Célula , Núcleo Celular/fisiologia , Células Cultivadas , Fatores de Crescimento de Fibroblastos/fisiologia , Camadas Germinativas/fisiologia , Camundongos , Camundongos Transgênicos , Células-Tronco Pluripotentes/citologia
11.
EMBO Rep ; 21(2): e49766, 2020 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-31908099

RESUMO

Tumor progression and malignancy are frequently associated with aberrant activation of epithelial-mesenchymal transition (EMT), which orchestrates dramatic changes in gene expression, involving genetic and epigenetic regulation. External stimuli generated by tumor-stroma interactions need to be adequately processed to specifically alter expression of key EMT transcription factors and associated genes. In this issue of EMBO Reports, Wang and colleagues demonstrate how epigenetic modifiers are utilized to induce EMT and metastasis [1]. Acetylation of intestine-specific homeobox (ISX) by p300/CBP-associated factor (PCAF) induces a cascade that results in Snail and Twist activation through histone modifications by a novel complex of PCAF, ISX, and bromodomain-containing protein 4 (BRD4). These findings open novel possibilities of therapeutic intervention to inhibit EMT and metastasis in lung cancer.


Assuntos
Neoplasias Pulmonares , Fatores de Transcrição , Proteínas de Ciclo Celular , Epigênese Genética , Transição Epitelial-Mesenquimal , Genes Homeobox , Proteínas de Homeodomínio , Humanos , Proteínas Nucleares , Fatores de Transcrição de p300-CBP/genética , Proteínas rho de Ligação ao GTP
12.
J Pathol ; 254(2): 199-211, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33675037

RESUMO

Osteosarcoma is an often-fatal mesenchyme-derived malignancy in children and young adults. Overexpression of EMT-transcription factors (EMT-TFs) has been associated with poor clinical outcome. Here, we demonstrated that the EMT-TF ZEB1 is able to block osteoblastic differentiation in normal bone development as well as in osteosarcoma cells. Consequently, overexpression of ZEB1 in osteosarcoma characterizes poorly differentiated, highly metastatic subgroups and its depletion induces differentiation of osteosarcoma cells. Overexpression of ZEB1 in osteosarcoma is frequently associated with silencing of the imprinted DLK-DIO3 locus, which encodes for microRNAs targeting ZEB1. Epigenetic reactivation of this locus in osteosarcoma cells reduces ZEB1 expression, induces differentiation, and sensitizes to standard treatment, thus indicating therapeutic options for ZEB1-driven osteosarcomas. © 2021 The Authors. The Journal of Pathology published by John Wiley & Sons, Ltd. on behalf of The Pathological Society of Great Britain and Ireland.


Assuntos
Neoplasias Ósseas/patologia , Regulação Neoplásica da Expressão Gênica , MicroRNAs/genética , Osteossarcoma/patologia , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo , Animais , Desenvolvimento Ósseo , Neoplasias Ósseas/tratamento farmacológico , Diferenciação Celular , Linhagem Celular , Proliferação de Células , Epigenômica , Expressão Gênica , Humanos , Células-Tronco Mesenquimais/patologia , Camundongos , Osteoblastos/patologia , Osteossarcoma/tratamento farmacológico , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética
13.
Gastroenterology ; 158(3): 679-692.e1, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31711924

RESUMO

BACKGROUND & AIMS: Pancreatic tumors undergo rapid growth and progression, become resistant to chemotherapy, and recur after surgery. We studied the functions of the solute carrier family 39 member 4 (SLC39A4, also called ZIP4), which regulates concentrations of intracellular zinc and is increased in pancreatic cancer cells, in cell lines and mice. METHODS: We obtained 93 pancreatic cancer specimens (tumor and adjacent nontumor tissues) from patients who underwent surgery and gemcitabine chemotherapy and analyzed them by immunohistochemistry. ZIP4 and/or ITGA3 or ITGB1 were overexpressed or knocked down with short hairpin RNAs in AsPC-1 and MIA PaCa-2 pancreatic cancer cells lines, and in pancreatic cells from KPC and KPC-ZEB1-knockout mice, and pancreatic spheroids were established; cells and spheroids were analyzed by immunoblots, reverse transcription polymerase chain reaction, and liquid chromatography tandem mass spectrometry. We studied transcriptional regulation of ZEB1, ITGA3, ITGB1, JNK, and ENT1 by ZIP4 using chromatin precipitation and luciferase reporter assays. Nude mice were given injections of genetically manipulated AsPC-1 and MIA PaCa-2 cells, and growth of xenograft tumors and metastases was measured. RESULTS: In pancreatic cancer specimens from patients, increased levels of ZIP4 were associated with shorter survival times. MIA PaCa-2 cells that overexpressed ZIP4 had increased resistance to gemcitabine, 5-fluorouracil, and cisplatin, whereas AsPC-1 cells with ZIP4 knockdown had increased sensitivity to these drugs. In mice, xenograft tumors grown from AsPC-1 cells with ZIP4 knockdown were smaller and more sensitive to gemcitabine. ZIP4 overexpression significantly reduced accumulation of gemcitabine in pancreatic cancer cells, increased growth of xenograft tumors in mice, and increased expression of the integrin subunits ITGA3 and ITGB1; expression levels of ITGA3 and ITGB1 were reduced in cells with ZIP4 knockdown. Pancreatic cancer cells with ITGA3 or ITGB1 knockdown had reduced proliferation and formed smaller tumors in mice, despite overexpression of ZIP4; spheroids established from these cells had increased sensitivity to gemcitabine. We found ZIP4 to activate STAT3 to induce expression of ZEB1, which induced expression of ITGA3 and ITGB1 in KPC cells. Increased ITGA3 and ITGB1 expression and subsequent integrin α3ß1 signaling, via c-Jun-N-terminal kinase (JNK), inhibited expression of the gemcitabine transporter ENT1, which reduced gemcitabine uptake by pancreatic cancer cells. ZEB1-knockdown cells had increased sensitivity to gemcitabine. CONCLUSIONS: In studies of pancreatic cancer cell lines and mice, we found that ZIP4 increases expression of the transcription factor ZEB1, which activates expression of ITGA3 and ITGB1. The subsequent increase in integrin α3ß1 signaling, via JNK, inhibits expression of the gemcitabine transporter ENT1, so that cells take up smaller amounts of the drug. Activation of this pathway might help mediate resistance of pancreatic tumors to chemotherapeutic agents.


Assuntos
Adenocarcinoma/metabolismo , Antimetabólitos Antineoplásicos/uso terapêutico , Proteínas de Transporte de Cátions/metabolismo , Desoxicitidina/análogos & derivados , Resistencia a Medicamentos Antineoplásicos/genética , Integrina alfa3/metabolismo , Integrina beta1/metabolismo , Neoplasias Pancreáticas/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Adenocarcinoma/genética , Adenocarcinoma/secundário , Adenocarcinoma/terapia , Animais , Antimetabólitos Antineoplásicos/metabolismo , Proteínas de Transporte de Cátions/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Cisplatino/farmacologia , Desoxicitidina/metabolismo , Desoxicitidina/farmacologia , Desoxicitidina/uso terapêutico , Transportador Equilibrativo 1 de Nucleosídeo/metabolismo , Fluoruracila/farmacologia , Técnicas de Silenciamento de Genes , Humanos , Integrina alfa3/genética , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Camundongos , Camundongos Nus , Metástase Neoplásica , Transplante de Neoplasias , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/patologia , Neoplasias Pancreáticas/terapia , Fosforilação , Fator de Transcrição STAT3/genética , Fator de Transcrição STAT3/metabolismo , Transdução de Sinais/genética , Esferoides Celulares/efeitos dos fármacos , Taxa de Sobrevida , Gencitabina
14.
EMBO Rep ; 20(1)2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30413481

RESUMO

Directional migration is inherently important for epithelial tissue regeneration and repair, but how it is precisely controlled and coordinated with cell proliferation is unclear. Here, we report that Ovol2, a transcriptional repressor that inhibits epithelial-to-mesenchymal transition (EMT), plays a crucial role in adult skin epithelial regeneration and repair. Ovol2-deficient mice show compromised wound healing characterized by aberrant epidermal cell migration and proliferation, as well as delayed anagen progression characterized by defects in hair follicle matrix cell proliferation and subsequent differentiation. Epidermal keratinocytes and bulge hair follicle stem cells (Bu-HFSCs) lacking Ovol2 fail to expand in culture and display molecular alterations consistent with enhanced EMT and reduced proliferation. Live imaging of wound explants and Bu-HFSCs reveals increased migration speed but reduced directionality, and post-mitotic cell cycle arrest. Remarkably, simultaneous deletion of Zeb1 encoding an EMT-promoting factor restores directional migration to Ovol2-deficient Bu-HFSCs. Taken together, our findings highlight the important function of an Ovol2-Zeb1 EMT-regulatory circuit in controlling the directional migration of epithelial stem and progenitor cells to facilitate adult skin epithelial regeneration and repair.


Assuntos
Movimento Celular/genética , Proliferação de Células/genética , Fatores de Transcrição/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Animais , Diferenciação Celular , Células Epidérmicas/metabolismo , Transição Epitelial-Mesenquimal/genética , Regulação da Expressão Gênica no Desenvolvimento , Folículo Piloso/crescimento & desenvolvimento , Folículo Piloso/metabolismo , Queratinócitos/metabolismo , Camundongos , Pele/crescimento & desenvolvimento , Pele/metabolismo , Células-Tronco/citologia , Células-Tronco/metabolismo , Cicatrização/genética
15.
Mol Ther ; 26(1): 17-30, 2018 01 03.
Artigo em Inglês | MEDLINE | ID: mdl-29055623

RESUMO

Squamous cell carcinoma (SCC) is one of the most common skin cancers and causes significant morbidity. Although the expression of the epithelial adhesion molecule collagen XVII (ColXVII) has been linked to SCC invasion, only little is known about its mechanistic contribution. Here, we demonstrate that ColXVII expression is essential for SCC cell proliferation and motility. Moreover, it revealed that particularly the post-translational modification of ColXVII by ectodomain shedding is the major driver of SCC progression, because ectodomain-selective immunostaining was mainly localized at the invasive front of human cutaneous SCCs, and exclusive expression of a non-sheddable ColXVII mutant in SCC-25 cells inhibits their matrix-independent growth and invasiveness. This cell surface proteolysis, which is strongly elevated during SCC invasion and metastasis, releases soluble ectodomains and membrane-anchored endodomains. Both released ColXVII domains play distinct roles in tumor progression: the endodomain induces proliferation and survival, whereas the ectodomain accelerates invasiveness. Furthermore, specific blockage of shedding by monoclonal ColXVII antibodies repressed matrix-independent growth and invasion of SCC cells in organotypic co-cultures. Thus, selective inhibition of ColXVII shedding may offer a promising therapeutic strategy to prevent SCC progression.


Assuntos
Autoantígenos/metabolismo , Carcinoma de Células Escamosas/metabolismo , Carcinoma de Células Escamosas/patologia , Membrana Celular/metabolismo , Colágenos não Fibrilares/metabolismo , Animais , Autoantígenos/química , Autoantígenos/genética , Biomarcadores , Carcinoma de Células Escamosas/genética , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Progressão da Doença , Ectoderma/metabolismo , Expressão Gênica , Xenoenxertos , Humanos , Camundongos , Invasividade Neoplásica , Metástase Neoplásica , Estadiamento de Neoplasias , Colágenos não Fibrilares/química , Colágenos não Fibrilares/genética , Ligação Proteica , Proteólise , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Colágeno Tipo XVII
16.
PLoS Genet ; 12(8): e1006243, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27556156

RESUMO

E-cadherin-mediated cell-cell adhesion is critical for naive pluripotency of cultured mouse embryonic stem cells (mESCs). E-cadherin-depleted mESC fail to downregulate their pluripotency program and are unable to initiate lineage commitment. To further explore the roles of cell adhesion molecules during mESC differentiation, we focused on p120 catenin (p120ctn). Although one key function of p120ctn is to stabilize and regulate cadherin-mediated cell-cell adhesion, it has many additional functions, including regulation of transcription and Rho GTPase activity. Here, we investigated the role of mouse p120ctn in early embryogenesis, mESC pluripotency and early fate determination. In contrast to the E-cadherin-null phenotype, p120ctn-null mESCs remained pluripotent, but their in vitro differentiation was incomplete. In particular, they failed to form cystic embryoid bodies and showed defects in primitive endoderm formation. To pinpoint the underlying mechanism, we undertook a structure-function approach. Rescue of p120ctn-null mESCs with different p120ctn wild-type and mutant expression constructs revealed that the long N-terminal domain of p120ctn and its regulatory domain for RhoA were dispensable, whereas its armadillo domain and interaction with E-cadherin were crucial for primitive endoderm formation. We conclude that p120ctn is not only an adaptor and regulator of E-cadherin, but is also indispensable for proper lineage commitment.


Assuntos
Caderinas/genética , Cateninas/genética , Diferenciação Celular/genética , Endoderma/crescimento & desenvolvimento , Células-Tronco Embrionárias Murinas , Animais , Blastocisto/metabolismo , Caderinas/biossíntese , Cateninas/biossíntese , Adesão Celular/genética , Linhagem da Célula/genética , Polaridade Celular/genética , Corpos Embrioides/metabolismo , Desenvolvimento Embrionário/genética , Endoderma/metabolismo , Humanos , Camundongos , Imagem Óptica , Células-Tronco Pluripotentes/metabolismo , Proteína rhoA de Ligação ao GTP/biossíntese , Proteína rhoA de Ligação ao GTP/genética , delta Catenina
17.
J Pathol ; 242(2): 221-233, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28337746

RESUMO

Thymidylate synthase (TS) is a fundamental enzyme of nucleotide metabolism and one of the oldest anti-cancer targets. Beginning from the analysis of gene array data from the NCI-60 panel of cancer cell lines, we identified a significant correlation at both gene and protein level between TS and the markers of epithelial-to-mesenchymal transition (EMT), a developmental process that allows cancer cells to acquire features of aggressiveness, like motility and chemoresistance. TS levels were found to be significantly augmented in mesenchymal-like compared to epithelial-like cancer cells, to be regulated by EMT induction, and to negatively correlate with micro-RNAs (miRNAs) usually expressed in epithelial-like cells and known to actively suppress EMT. Transfection of EMT-suppressing miRNAs reduced TS levels, and a specific role for miR-375 in targeting the TS 3'-untranslated region was identified. A particularly relevant association was found between TS and the powerful EMT driver ZEB1, the shRNA-mediated knockdown of which up-regulated miR-375 and reduced TS cellular levels. The TS-ZEB1 association was confirmed in clinical specimens from lung tumours and in a genetic mouse model of pancreatic cancer with ZEB1 deletion. Interestingly, TS itself appeared to have a regulatory role in EMT in cancer cells, as TS knockdown could directly reduce the EMT phenotype, the migratory ability of cells, the expression of stem-like markers, and chemoresistance. Taken together, these data indicate that the TS enzyme is functionally linked with EMT and cancer differentiation, with several potential translational implications. Copyright © 2017 Pathological Society of Great Britain and Ireland. Published by John Wiley & Sons, Ltd.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/genética , Transição Epitelial-Mesenquimal , MicroRNAs/genética , Neoplasias Pancreáticas/genética , Timidilato Sintase/genética , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Adulto , Idoso , Idoso de 80 Anos ou mais , Animais , Sequência de Bases , Carcinoma Pulmonar de Células não Pequenas/enzimologia , Carcinoma Pulmonar de Células não Pequenas/patologia , Linhagem Celular Tumoral , Proliferação de Células , Modelos Animais de Doenças , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Feminino , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Camundongos , Pessoa de Meia-Idade , Neoplasias Pancreáticas/enzimologia , Neoplasias Pancreáticas/patologia , RNA Interferente Pequeno/genética , Timidilato Sintase/metabolismo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
18.
Genesis ; 55(4)2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28176446

RESUMO

The multizinc finger containing transcription factor ZEB1 plays crucial roles during various aspects of mammalian development and tumorigenesis. Best studied in human tumors, ZEB1 is activating the embryo-derived program of epithelial-mesenchymal transition (EMT). The aberrant activation of EMT confers an invasive metastasizing phenotype with acquisition of stem cell properties and resistance to radio- and chemotherapy. Although ZEB1 has very important functions in tumor progression, not much is known about its role in physiological contexts and during development and homeostasis. We describe the generation of Zeb1flox/flox mice carrying a targeted mutation for conditional Zeb1 gene inactivation and show that homozygous Zeb1-depletion in the germline results in a phenotype similar to the conventional Zeb1 knockout.


Assuntos
Técnicas de Inativação de Genes/métodos , Inativação Gênica , Homeobox 1 de Ligação a E-box em Dedo de Zinco/genética , Animais , Células Cultivadas , Regulação para Baixo , Fibroblastos/metabolismo , Mutação em Linhagem Germinativa , Homozigoto , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Fenótipo , Homeobox 1 de Ligação a E-box em Dedo de Zinco/metabolismo
19.
Immunology ; 152(1): 74-88, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28437001

RESUMO

CD4+ Foxp3+ regulatory T (Treg) cells include differentiated populations of effector Treg cells characterized by the expression of specific transcription factors. Tumours, including intestinal malignancies, often present with local accumulation of Treg cells that can prevent tumour clearance, but how tumour progression leads to Treg cell accumulation is incompletely understood. Here using genetically modified mouse models we show that ablation of E-cadherin, a process associated with epithelial to mesenchymal transition and tumour progression, promotes the accumulation of intestinal Treg cells by the specific accumulation of the KLRG1+ GATA3+ Treg subset. Epithelial E-cadherin ablation activates the ß-catenin pathway, and we find that increasing ß-catenin signals in intestinal epithelial cells also boosts Treg cell frequencies through local accumulation of KLRG1+ GATA3+ Treg cells. Both E-cadherin ablation and increased ß-catenin signals resulted in epithelial cells with higher levels of interleukin-33, a cytokine that preferentially expands KLRG1+ GATA3+ Treg cells. Tumours often present reduced E-cadherin expression and increased ß-catenin signalling and interleukin-33 production. Accordingly, Treg cell accumulation in intestinal tumours from APCmin/+ mice was exclusively due to the increase in KLRG1+ GATA3+ Treg cells. Our data identify a novel axis through which epithelial cells control local Treg cell subsets, which may be activated during intestinal tumorigenesis.


Assuntos
Células Epiteliais/imunologia , Fator de Transcrição GATA3/imunologia , Mucosa Intestinal/imunologia , Neoplasias Intestinais/imunologia , Linfócitos do Interstício Tumoral/imunologia , Receptores Imunológicos/imunologia , Linfócitos T Reguladores/imunologia , Animais , Caderinas/imunologia , Caderinas/metabolismo , Proteínas Cdh1/genética , Proteínas Cdh1/imunologia , Proteínas Cdh1/metabolismo , Células Cultivadas , Quimiotaxia de Leucócito , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Fatores de Transcrição Forkhead/imunologia , Fatores de Transcrição Forkhead/metabolismo , Fator de Transcrição GATA3/metabolismo , Genes APC , Predisposição Genética para Doença , Interleucina-33/imunologia , Interleucina-33/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , Neoplasias Intestinais/genética , Neoplasias Intestinais/metabolismo , Neoplasias Intestinais/patologia , Lectinas Tipo C , Linfócitos do Interstício Tumoral/metabolismo , Linfócitos do Interstício Tumoral/patologia , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo , Receptores Imunológicos/metabolismo , Transdução de Sinais , Linfócitos T Reguladores/metabolismo , Linfócitos T Reguladores/patologia , beta Catenina/genética , beta Catenina/imunologia , beta Catenina/metabolismo
20.
Biochim Biophys Acta ; 1849(6): 731-42, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25652130

RESUMO

Epithelial-mesenchymal transition (EMT) and mesenchymal-epithelial transition (MET) highlight crucial steps during embryogenesis and tumorigenesis. Induction of dramatic changes in gene expression and cell features is reflected by modulation of Cdh1 (E-cadherin) expression. We show that Cdh1 activity during MET is governed by two enhancers at +7.8 kb and at +11.5 kb within intron 2 that are activated by binding of Grhl3 and Hnf4α, respectively. Recruitment of Grhl3 and Hnf4α to the enhancers is crucial for activating Cdh1 and accomplishing MET in non-tumorigenic mouse mammary gland cells (NMuMG). Moreover, the two enhancers cooperate via Grhl3 and Hnf4α binding, induction of DNA-looping and clustering at the promoter to orchestrate E-cadherin re-expression. Our results provide novel insights into the cellular mechanisms whereby cells respond to MET signals and re-establish an epithelial phenotype by enhancer cooperativity. A general importance of our findings including MET-mediated colonization of metastasizing tumor cells is suggested.


Assuntos
Caderinas/biossíntese , Transformação Celular Neoplásica/genética , Elementos Facilitadores Genéticos , Transição Epitelial-Mesenquimal/genética , Transcrição Gênica , Animais , Caderinas/genética , Proteínas de Ligação a DNA/genética , Regulação Neoplásica da Expressão Gênica , Fator 4 Nuclear de Hepatócito/genética , Humanos , Camundongos , Regiões Promotoras Genéticas , Fatores de Transcrição/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA