Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
1.
J Virol ; 92(10)2018 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-29514905

RESUMO

Several viruses induce intestinal epithelial cell death during enteric infection. However, it is unclear whether proapoptotic capacity promotes or inhibits replication in this tissue. We infected mice with two reovirus strains that infect the intestine but differ in the capacity to alter immunological tolerance to new food antigen. Infection with reovirus strain T1L, which induces an inflammatory immune response to fed antigen, is prolonged in the intestine, whereas T3D-RV, which does not induce this response, is rapidly cleared from the intestine. Compared with T1L, T3D-RV infection triggered apoptosis of intestinal epithelial cells and subsequent sloughing of dead cells into the intestinal lumen. We conclude that the infection advantage of T1L derives from its capacity to subvert host restriction by epithelial cell apoptosis, providing a possible mechanism by which T1L enhances inflammatory signals during antigen feeding. Using a panel of T1L × T3D-RV reassortant viruses, we identified the viral M1 and M2 gene segments as determinants of reovirus-induced apoptosis in the intestine. Expression of the T1L M1 and M2 genes in a T3D-RV background was sufficient to limit epithelial cell apoptosis and enhance viral infection to levels displayed by T1L. These findings define additional reovirus gene segments required for enteric infection of mice and illuminate the antiviral effect of intestinal epithelial cell apoptosis in limiting enteric viral infection. Viral strain-specific differences in the capacity to infect the intestine may be useful in identifying viruses capable of ameliorating tolerance to fed antigen in autoimmune conditions like celiac disease.IMPORTANCE Acute viral infections are thought to be cleared by the host with few lasting consequences. However, there may be much broader and long-lasting effects of viruses on immune homeostasis. Infection with reovirus, a common, nonpathogenic virus, triggers inflammation against innocuous food antigens, implicating this virus in the development of celiac disease, an autoimmune intestinal disorder triggered by exposure to dietary gluten. Using two reovirus strains that differ in the capacity to abrogate oral tolerance, we found that strain-specific differences in the capacity to replicate in the intestine inversely correlate with the capacity to induce apoptotic death of intestinal epithelial cells, providing a host-mediated process to restrict intestinal infection. This work contributes new knowledge about virus-host interactions in the intestine and establishes a foundation for future studies to define mechanisms by which viruses break oral tolerance in celiac disease.


Assuntos
Apoptose/imunologia , Células Epiteliais/imunologia , Mucosa Intestinal/imunologia , Orthoreovirus Mamífero 3/imunologia , Orthoreovirus de Mamíferos/imunologia , Infecções por Reoviridae/imunologia , Animais , Antígenos Virais/imunologia , Linhagem Celular , Cricetinae , Células Epiteliais/patologia , Células Epiteliais/virologia , Mucosa Intestinal/patologia , Mucosa Intestinal/virologia , Camundongos , Infecções por Reoviridae/patologia
2.
Am J Obstet Gynecol ; 218(4): 438.e1-438.e16, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-29475580

RESUMO

BACKGROUND: Most early preterm births are associated with intraamniotic infection and inflammation, which can lead to systemic inflammation in the fetus. The fetal inflammatory response syndrome describes elevations in the fetal interleukin-6 level, which is a marker for inflammation and fetal organ injury. An understanding of the effects of inflammation on fetal cardiac development may lead to insight into the fetal origins of adult cardiovascular disease. OBJECTIVE: The purpose of this study was to determine whether the fetal inflammatory response syndrome is associated with disruptions in gene networks that program fetal cardiac development. STUDY DESIGN: We obtained fetal cardiac tissue after necropsy from a well-described pregnant nonhuman primate model (pigtail macaque, Macaca nemestrina) of intrauterine infection (n=5) and controls (n=5). Cases with the fetal inflammatory response syndrome (fetal plasma interleukin-6 >11 pg/mL) were induced by either choriodecidual inoculation of a hypervirulent group B streptococcus strain (n=4) or intraamniotic inoculation of Escherichia coli (n=1). RNA and protein were extracted from fetal hearts and profiled by microarray and Luminex (Millipore, Billerica, MA) for cytokine analysis, respectively. Results were validated by quantitative reverse transcriptase polymerase chain reaction. Statistical and bioinformatics analyses included single gene analysis, gene set analysis, Ingenuity Pathway Analysis (Qiagen, Valencia, CA), and Wilcoxon rank sum. RESULTS: Severe fetal inflammation developed in the context of intraamniotic infection and a disseminated bacterial infection in the fetus. Interleukin-6 and -8 in fetal cardiac tissues were elevated significantly in fetal inflammatory response syndrome cases vs controls (P<.05). A total of 609 probe sets were expressed differentially (>1.5-fold change, P<.05) in the fetal heart (analysis of variance). Altered expression of select genes was validated by quantitative reverse transcriptase polymerase chain reaction that included several with known functions in cardiac injury, morphogenesis, angiogenesis, and tissue remodeling (eg, angiotensin I converting enzyme 2, STEAP family member 4, natriuretic peptide A, and secreted frizzled-related protein 4; all P<.05). Multiple gene sets and pathways that are involved in cardiac morphogenesis and vasculogenesis were downregulated significantly by gene set and Ingenuity Pathway Analysis (hallmark transforming growth factor beta signaling, cellular morphogenesis during differentiation, morphology of cardiovascular system; all P<.05). CONCLUSION: Disruption of gene networks for cardiac morphogenesis and vasculogenesis occurred in the preterm fetal heart of nonhuman primates with preterm labor, intraamniotic infection, and severe fetal inflammation. Inflammatory injury to the fetal heart in utero may contribute to the development of heart disease later in life. Development of preterm labor therapeutics must also target fetal inflammation to lessen organ injury and potential long-term effects on cardiac function.


Assuntos
Doenças Fetais/metabolismo , Miocárdio/metabolismo , Síndrome de Resposta Inflamatória Sistêmica/metabolismo , Enzima de Conversão de Angiotensina 2 , Animais , Fator Natriurético Atrial/genética , Biomarcadores/metabolismo , Corioamnionite/metabolismo , Regulação para Baixo , Feminino , Coração/microbiologia , Interleucina-6/metabolismo , Interleucina-8/metabolismo , Macaca nemestrina , Proteínas de Membrana/genética , Análise em Microsséries , Modelos Animais , Trabalho de Parto Prematuro , Oxirredutases/genética , Peptidil Dipeptidase A/genética , Gravidez , Proteínas Proto-Oncogênicas/genética , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Regulação para Cima
3.
Pediatr Res ; 83(5): 1057-1066, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29364865

RESUMO

BackgroundInfants and young children are particularly susceptible to viral encephalitis; however, the mechanisms are unknown. We determined the age-dependent contribution of innate and adaptive immune functions to reovirus-induced encephalitis in mice.MethodsNewborn wild-type mice, 2-20 days of age, were inoculated with reovirus or diluent and monitored for mortality, weight gain, and viral load. Four- and fifteen-day-old IFNAR-/- and RAG2-/- mice were inoculated with reovirus and similarly monitored.ResultsWeight gain was impaired in mice inoculated with reovirus at 8 days of age or less. Clinical signs of encephalitis were detected in mice inoculated at 10 days of age or less. Mortality decreased when mice were inoculated after 6 days of age. Survival was ≤15% in wild type (WT), RAG2-/-, and IFNAR-/- mice inoculated at 4 days of age. All WT mice, 92% of RAG2-/- mice, and only 48% of IFNAR-/- mice survived following inoculation at 15 days of age.ConclusionsSusceptibility of mice to reovirus-induced disease decreases between 6 and 8 days of age. Enhanced reovirus virulence in IFNAR-/- mice relative to WT and RAG2-/- mice inoculated at 15 days of age suggests that maturation of the type-I interferon response contributes to age-related mortality following reovirus infection.


Assuntos
Fatores Etários , Proteínas de Ligação a DNA/genética , Encefalite Viral/imunologia , Receptor de Interferon alfa e beta/genética , Infecções por Reoviridae/imunologia , Imunidade Adaptativa , Animais , Apoptose , Encéfalo/metabolismo , Linhagem Celular , Proteínas de Ligação a DNA/imunologia , Regulação Viral da Expressão Gênica , Imunidade Inata , Interferon Tipo I/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Orthoreovirus de Mamíferos/genética , Orthoreovirus de Mamíferos/fisiologia , Receptor de Interferon alfa e beta/imunologia , Baço/metabolismo , Carga Viral , Replicação Viral
4.
PLoS Pathog ; 11(3): e1004693, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25738608

RESUMO

Reovirus is a nonenveloped mammalian virus that provides a useful model system for studies of viral infections in the young. Following internalization into host cells, the outermost capsid of reovirus virions is removed by endosomal cathepsin proteases. Determinants of capsid disassembly kinetics reside in the viral σ3 protein. However, the contribution of capsid stability to reovirus-induced disease is unknown. In this study, we found that mice inoculated intramuscularly with a serotype 3 reovirus containing σ3-Y354H, a mutation that reduces viral capsid stability, succumbed at a higher rate than those infected with wild-type virus. At early times after inoculation, σ3-Y354H virus reached higher titers than wild-type virus at several sites within the host. Animals inoculated perorally with a serotype 1 reassortant reovirus containing σ3-Y354H developed exaggerated myocarditis accompanied by elaboration of pro-inflammatory cytokines. Surprisingly, unchallenged littermates of mice infected with σ3-Y354H virus displayed higher titers in the intestine, heart, and brain than littermates of mice inoculated with wild-type virus. Together, these findings suggest that diminished capsid stability enhances reovirus replication, dissemination, lethality, and host-to-host spread, establishing a new virulence determinant for nonenveloped viruses.


Assuntos
Proteínas do Capsídeo/metabolismo , Capsídeo/metabolismo , Orthoreovirus de Mamíferos/genética , Orthoreovirus de Mamíferos/metabolismo , Animais , Camundongos , Mutação/genética , Vírion/metabolismo , Montagem de Vírus/genética
5.
J Virol ; 88(12): 6934-43, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24696493

RESUMO

UNLABELLED: Microfold (M) cells are specialized intestinal epithelial cells that internalize particulate antigens and aid in the establishment of immune responses to enteric pathogens. M cells have also been suggested as a portal for pathogen entry into the host. While virus particles have been observed in M cells, it is not known whether viruses use M cells to initiate a productive infection. Noroviruses (NoVs) are single-stranded RNA viruses that infect host organisms via the fecal-oral route. Murine NoV (MNV) infects intestinal macrophages and dendritic cells and provides a tractable experimental system for understanding how an enteric virus overcomes the intestinal epithelial barrier to infect underlying target cells. We found that replication of two divergent MNV strains was reduced in mice depleted of M cells. Reoviruses are double-stranded RNA viruses that infect hosts via respiratory or enteric routes. In contrast to MNV, reovirus infects enterocytes in the intestine. Despite differences in cell tropism, reovirus infection was also reduced in M cell-depleted mice. These data demonstrate that M cells are required for the pathogenesis of two unrelated enteric viruses that replicate in different cell types within the intestine. IMPORTANCE: To successfully infect their hosts, pathogens that infect via the gastrointestinal tract must overcome the multilayered system of host defenses. Microfold (M) cells are specialized intestinal epithelial cells that internalize particulate antigens and aid in the establishment of immune responses to enteric pathogens. Virus particles have been observed within M cells. However, it is not known whether viruses use M cells to initiate a productive infection. To address this question, we use MNV and reovirus, two enteric viruses that replicate in different cell types in the intestine, intestinal epithelial cells for reovirus and intestinal mononuclear phagocytes for MNV. Interestingly, MNV- and reovirus-infected mice depleted of M cells showed reduced viral loads in the intestine. Thus, our work demonstrates the importance of M cells in the pathogenesis of enteric viruses irrespective of the target cell type in which the virus replicates.


Assuntos
Infecções por Caliciviridae/virologia , Células Epiteliais/virologia , Intestinos/virologia , Norovirus/fisiologia , Infecções por Reoviridae/virologia , Reoviridae/fisiologia , Replicação Viral , Animais , Linhagem Celular , Humanos , Intestinos/citologia , Camundongos , Camundongos Endogâmicos BALB C
6.
Nat Commun ; 15(1): 5173, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890352

RESUMO

Zika virus (ZikV) infection during pregnancy can cause congenital Zika syndrome (CZS) and neurodevelopmental delay in infants, of which the pathogenesis remains poorly understood. We utilize an established female pigtail macaque maternal-to-fetal ZikV infection/exposure model to study fetal brain pathophysiology of CZS manifesting from ZikV exposure in utero. We find prenatal ZikV exposure leads to profound disruption of fetal myelin, with extensive downregulation in gene expression for key components of oligodendrocyte maturation and myelin production. Immunohistochemical analyses reveal marked decreases in myelin basic protein intensity and myelinated fiber density in ZikV-exposed animals. At the ultrastructural level, the myelin sheath in ZikV-exposed animals shows multi-focal decompaction, occurring concomitant with dysregulation of oligodendrocyte gene expression and maturation. These findings define fetal neuropathological profiles of ZikV-linked brain injury underlying CZS resulting from ZikV exposure in utero. Because myelin is critical for cortical development, ZikV-related perturbations in oligodendrocyte function may have long-term consequences on childhood neurodevelopment, even in the absence of overt microcephaly.


Assuntos
Modelos Animais de Doenças , Bainha de Mielina , Oligodendroglia , Infecção por Zika virus , Zika virus , Animais , Infecção por Zika virus/virologia , Infecção por Zika virus/patologia , Oligodendroglia/virologia , Oligodendroglia/metabolismo , Oligodendroglia/patologia , Feminino , Bainha de Mielina/metabolismo , Gravidez , Zika virus/patogenicidade , Complicações Infecciosas na Gravidez/virologia , Complicações Infecciosas na Gravidez/patologia , Macaca nemestrina , Encéfalo/virologia , Encéfalo/patologia , Encéfalo/metabolismo , Humanos , Proteína Básica da Mielina/metabolismo , Proteína Básica da Mielina/genética
7.
bioRxiv ; 2023 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-37873381

RESUMO

Zika virus (ZikV) infection during pregnancy can cause congenital Zika syndrome (CZS) and neurodevelopmental delay in non-microcephalic infants, of which the pathogenesis remains poorly understood. We utilized an established pigtail macaque maternal-to-fetal ZikV infection/exposure model to study fetal brain pathophysiology of CZS manifesting from ZikV exposure in utero. We found prenatal ZikV exposure led to profound disruption of fetal myelin, with extensive downregulation in gene expression for key components of oligodendrocyte maturation and myelin production. Immunohistochemical analyses revealed marked decreases in myelin basic protein intensity and myelinated fiber density in ZikV-exposed animals. At the ultrastructural level, the myelin sheath in ZikV-exposed animals showed multi-focal decompaction consistent with perturbation or remodeling of previously formed myelin, occurring concomitant with dysregulation of oligodendrocyte gene expression and maturation. These findings define fetal neuropathological profiles of ZikV-linked brain injury underlying CZS resulting from ZikV exposure in utero. Because myelin is critical for cortical development, ZikV-related perturbations in oligodendrocyte function may have long-term consequences on childhood neurodevelopment, even in the absence of overt microcephaly.

8.
Cells ; 9(4)2020 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-32272626

RESUMO

Pathogenic flaviviruses antagonize host cell Janus kinase/signal transducer and activator of transcription (JAK/STAT) signaling downstream of interferons α/ß. Here, we show that flaviviruses inhibit JAK/STAT signaling induced by a wide range of cytokines beyond interferon, including interleukins. This broad inhibition was mapped to viral nonstructural protein 5 (NS5) binding to cellular heat shock protein 90 (HSP90), resulting in reduced Janus kinase-HSP90 interaction and thus destabilization of unchaperoned JAKs (and other kinase clients) of HSP90 during infection by Zika virus, West Nile virus, and Japanese encephalitis virus. Our studies implicate viral dysregulation of HSP90 and the JAK/STAT pathway as a critical determinant of cytokine signaling control during flavivirus infection.


Assuntos
Flavivirus/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Proteínas não Estruturais Virais/metabolismo , Infecção por Zika virus/virologia , Animais , Linhagem Celular , Humanos , Transdução de Sinais , Transfecção , Zika virus/metabolismo , Infecção por Zika virus/metabolismo
9.
Nat Med ; 24(3): 368-374, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29400709

RESUMO

Zika virus (ZIKV) is a flavivirus with teratogenic effects on fetal brain, but the spectrum of ZIKV-induced brain injury is unknown, particularly when ultrasound imaging is normal. In a pregnant pigtail macaque (Macaca nemestrina) model of ZIKV infection, we demonstrate that ZIKV-induced injury to fetal brain is substantial, even in the absence of microcephaly, and may be challenging to detect in a clinical setting. A common and subtle injury pattern was identified, including (i) periventricular T2-hyperintense foci and loss of fetal noncortical brain volume, (ii) injury to the ependymal epithelium with underlying gliosis and (iii) loss of late fetal neuronal progenitor cells in the subventricular zone (temporal cortex) and subgranular zone (dentate gyrus, hippocampus) with dysmorphic granule neuron patterning. Attenuation of fetal neurogenic output demonstrates potentially considerable teratogenic effects of congenital ZIKV infection even without microcephaly. Our findings suggest that all children exposed to ZIKV in utero should receive long-term monitoring for neurocognitive deficits, regardless of head size at birth.


Assuntos
Feto/virologia , Complicações Infecciosas na Gravidez/fisiopatologia , Infecção por Zika virus/virologia , Zika virus/patogenicidade , Animais , Modelos Animais de Doenças , Feminino , Feto/fisiopatologia , Humanos , Macaca nemestrina/virologia , Microcefalia/diagnóstico por imagem , Microcefalia/fisiopatologia , Microcefalia/virologia , Neurogênese/genética , Gravidez , Complicações Infecciosas na Gravidez/diagnóstico por imagem , Complicações Infecciosas na Gravidez/virologia , Zika virus/genética , Infecção por Zika virus/genética , Infecção por Zika virus/fisiopatologia
10.
Placenta ; 60 Suppl 1: S15-S19, 2017 12.
Artigo em Inglês | MEDLINE | ID: mdl-28456431

RESUMO

Workshops are an important part of the IFPA annual meeting as they allow for discussion of specialised topics. At IFPA meeting 2016 there were twelve themed workshops, four of which are summarized in this report. These workshops related to various aspects of placental biology but collectively covered areas of decidual-trophoblast interaction, regulation of trophoblast invasion, immune cells at the maternal-fetal interface, and placental inflammation.


Assuntos
Pesquisa Biomédica/métodos , Congressos como Assunto , Decídua/fisiologia , Implantação do Embrião , Placentação , Trofoblastos/fisiologia , Animais , Pesquisa Biomédica/tendências , Comunicação Celular , Decídua/citologia , Decídua/imunologia , Decídua/fisiopatologia , Feminino , Humanos , Imunidade Celular , Agências Internacionais , Troca Materno-Fetal , Doenças Placentárias/imunologia , Doenças Placentárias/patologia , Doenças Placentárias/fisiopatologia , Gravidez , Sociedades Científicas , Trofoblastos/citologia , Trofoblastos/imunologia , Trofoblastos/patologia
11.
Science ; 356(6333): 44-50, 2017 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-28386004

RESUMO

Viral infections have been proposed to elicit pathological processes leading to the initiation of T helper 1 (TH1) immunity against dietary gluten and celiac disease (CeD). To test this hypothesis and gain insights into mechanisms underlying virus-induced loss of tolerance to dietary antigens, we developed a viral infection model that makes use of two reovirus strains that infect the intestine but differ in their immunopathological outcomes. Reovirus is an avirulent pathogen that elicits protective immunity, but we discovered that it can nonetheless disrupt intestinal immune homeostasis at inductive and effector sites of oral tolerance by suppressing peripheral regulatory T cell (pTreg) conversion and promoting TH1 immunity to dietary antigen. Initiation of TH1 immunity to dietary antigen was dependent on interferon regulatory factor 1 and dissociated from suppression of pTreg conversion, which was mediated by type-1 interferon. Last, our study in humans supports a role for infection with reovirus, a seemingly innocuous virus, in triggering the development of CeD.


Assuntos
Antígenos/imunologia , Doença Celíaca/imunologia , Doença Celíaca/virologia , Glutens/imunologia , Inflamação/virologia , Infecções por Reoviridae/complicações , Infecções por Reoviridae/imunologia , Células Th1/imunologia , Animais , Dieta/efeitos adversos , Modelos Animais de Doenças , Engenharia Genética , Humanos , Tolerância Imunológica , Inflamação/imunologia , Fator Regulador 1 de Interferon/genética , Fator Regulador 1 de Interferon/imunologia , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Intestinos/imunologia , Intestinos/patologia , Intestinos/virologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Receptor de Interferon alfa e beta/genética , Reoviridae/genética
12.
Nat Med ; 22(11): 1256-1259, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27618651

RESUMO

We describe the development of fetal brain lesions after Zika virus (ZIKV) inoculation in a pregnant pigtail macaque. Periventricular lesions developed within 10 d and evolved asymmetrically in the occipital-parietal lobes. Fetal autopsy revealed ZIKV in the brain and significant cerebral white matter hypoplasia, periventricular white matter gliosis, and axonal and ependymal injury. Our observation of ZIKV-associated fetal brain lesions in a nonhuman primate provides a model for therapeutic evaluation.


Assuntos
Encéfalo/diagnóstico por imagem , Feto/diagnóstico por imagem , Complicações Infecciosas na Gravidez/diagnóstico por imagem , Infecção por Zika virus/diagnóstico por imagem , Animais , Ácido Aspártico/análogos & derivados , Ácido Aspártico/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Encéfalo/virologia , Colina/metabolismo , Creatina/metabolismo , Ecoencefalografia , Feminino , Feto/metabolismo , Feto/patologia , Feto/virologia , Ácido Glutâmico/metabolismo , Glutamina/metabolismo , Inositol/metabolismo , Macaca nemestrina , Imageamento por Ressonância Magnética , Espectroscopia de Ressonância Magnética , Gravidez , Complicações Infecciosas na Gravidez/metabolismo , Complicações Infecciosas na Gravidez/patologia , RNA Viral/metabolismo , Ultrassonografia Pré-Natal , Zika virus/genética , Infecção por Zika virus/metabolismo , Infecção por Zika virus/patologia
13.
mBio ; 6(2): e02356, 2015 Mar 03.
Artigo em Inglês | MEDLINE | ID: mdl-25736887

RESUMO

UNLABELLED: Receptors expressed on the host cell surface adhere viruses to target cells and serve as determinants of viral tropism. Several viruses bind cell surface glycans to facilitate entry, but the contribution of specific glycan moieties to viral disease is incompletely understood. Reovirus provides a tractable experimental model for studies of viral neuropathogenesis. In newborn mice, serotype 1 (T1) reovirus causes hydrocephalus, whereas serotype 3 (T3) reovirus causes encephalitis. T1 and T3 reoviruses engage distinct glycans, suggesting that glycan-binding capacity contributes to these differences in pathogenesis. Using structure-guided mutagenesis, we engineered a mutant T1 reovirus incapable of binding the T1 reovirus-specific glycan receptor, GM2. The mutant virus induced substantially less hydrocephalus than wild-type virus, an effect phenocopied by wild-type virus infection of GM2-deficient mice. In comparison to wild-type virus, yields of mutant virus were diminished in cultured ependymal cells, the cell type that lines the brain ventricles. These findings suggest that GM2 engagement targets reovirus to ependymal cells in mice and illuminate the function of glycan engagement in reovirus serotype-dependent disease. IMPORTANCE: Receptor utilization strongly influences viral disease, often dictating host range and target cell selection. Different reovirus serotypes bind to different glycans, but a precise function for these molecules in pathogenesis is unknown. We used type 1 (T1) reovirus deficient in binding the GM2 glycan and mice lacking GM2 to pinpoint a role for glycan engagement in hydrocephalus caused by T1 reovirus. This work indicates that engagement of a specific glycan can lead to infection of specific cells in the host and consequent disease at that site. Since reovirus is being developed as a vaccine vector and oncolytic agent, understanding reovirus-glycan interactions may allow manipulation of reovirus glycan-binding properties for therapeutic applications.


Assuntos
Gangliosídeo G(M2)/metabolismo , Hidrocefalia/patologia , Hidrocefalia/virologia , Infecções por Reoviridae/complicações , Infecções por Reoviridae/patologia , Reoviridae/fisiologia , Ligação Viral , Animais , Animais Recém-Nascidos , Células Cultivadas , Modelos Animais de Doenças , Camundongos , Receptores Virais/metabolismo , Reoviridae/classificação , Sorogrupo
14.
Nat Rev Microbiol ; 12(11): 739-49, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25263223

RESUMO

Viral infections are initiated by attachment of the virus to host cell surface receptors, including sialic acid-containing glycans. It is now possible to rapidly identify specific glycan receptors using glycan array screening, to define atomic-level structures of virus-glycan complexes and to alter the glycan-binding site to determine the function of glycan engagement in viral disease. This Review highlights general principles of virus-glycan interactions and provides specific examples of sialic acid binding by viruses with stalk-like attachment proteins, including influenza virus, reovirus, adenovirus and rotavirus. Understanding virus-glycan interactions is essential to combating viral infections and designing improved viral vectors for therapeutic applications.


Assuntos
Ácido N-Acetilneuramínico/metabolismo , Polissacarídeos/metabolismo , Receptores de Superfície Celular/metabolismo , Viroses/virologia , Vírus/metabolismo , Animais , Sítios de Ligação , Interações Hospedeiro-Patógeno , Humanos , Receptores Virais/metabolismo , Especificidade da Espécie , Ligação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA