Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Med Microbiol Immunol ; 213(1): 9, 2024 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-38900248

RESUMO

Endogenous antimicrobial peptides (AMPs) play a key role in the host defense against pathogens. AMPs attack pathogens preferentially at the site of entry to prevent invasive infection. Mycobacterium tuberculosis (Mtb) enters its host via the airways. AMPs released into the airways are therefore likely candidates to contribute to the clearance of Mtb immediately after infection. Since lysozyme is detectable in airway secretions, we evaluated its antimicrobial activity against Mtb. We demonstrate that lysozyme inhibits the growth of extracellular Mtb, including isoniazid-resistant strains. Lysozyme also inhibited the growth of non-tuberculous mycobacteria. Even though lysozyme entered Mtb-infected human macrophages and co-localized with the pathogen we did not observe antimicrobial activity. This observation was unlikely related to the large size of lysozyme (14.74 kDa) because a smaller lysozyme-derived peptide also co-localized with Mtb without affecting the viability. To evaluate whether the activity of lysozyme against extracellular Mtb could be relevant in vivo, we incubated Mtb with fractions of human serum and screened for antimicrobial activity. After several rounds of sub-fractionation, we identified a highly active fraction-component as lysozyme by mass spectrometry. In summary, our results identify lysozyme as an antimycobacterial protein that is detectable as an active compound in human serum. Our results demonstrate that the activity of AMPs against extracellular bacilli does not predict efficacy against intracellular pathogens despite co-localization within the macrophage. Ongoing experiments are designed to unravel peptide modifications that occur in the intracellular space and interfere with the deleterious activity of lysozyme in the extracellular environment.


Assuntos
Macrófagos , Muramidase , Mycobacterium tuberculosis , Muramidase/farmacologia , Muramidase/metabolismo , Humanos , Macrófagos/metabolismo , Macrófagos/microbiologia , Peptídeos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos/metabolismo , Testes de Sensibilidade Microbiana , Viabilidade Microbiana/efeitos dos fármacos
2.
Cell Mol Life Sci ; 80(6): 151, 2023 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-37198527

RESUMO

Antimicrobial peptides (AMPs) are major components of the innate immune defense. Accumulating evidence suggests that the antibacterial activity of many AMPs is dependent on the formation of amyloid-like fibrils. To identify novel fibril forming AMPs, we generated a spleen-derived peptide library and screened it for the presence of amyloidogenic peptides. This approach led to the identification of a C-terminal 32-mer fragment of alpha-hemoglobin, termed HBA(111-142). The non-fibrillar peptide has membranolytic activity against various bacterial species, while the HBA(111-142) fibrils aggregated bacteria to promote their phagocytotic clearance. Further, HBA(111-142) fibrils selectively inhibited measles and herpes viruses (HSV-1, HSV-2, HCMV), but not SARS-CoV-2, ZIKV and IAV. HBA(111-142) is released from its precursor by ubiquitous aspartic proteases under acidic conditions characteristic at sites of infection and inflammation. Thus, HBA(111-142) is an amyloidogenic AMP that may specifically be generated from a highly abundant precursor during bacterial or viral infection and may play an important role in innate antimicrobial immune responses.


Assuntos
COVID-19 , Infecção por Zika virus , Zika virus , Humanos , Peptídeos , Amiloide/química , Antibacterianos/farmacologia , Hemoglobinas
3.
Int J Mol Sci ; 25(6)2024 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-38542416

RESUMO

Infections caused by yeasts of the genus Candida are likely to occur not only in immunocompromised patients but also in healthy individuals, leading to infections of the gastrointestinal tract, urinary tract, and respiratory tract. Due to the rapid increase in the frequency of reported Candidiasis cases in recent years, diagnostic research has become the subject of many studies, and therefore, we developed a polyclonal aptamer library-based fluorometric assay with high specificity and affinity towards Candida spec. to quantify the pathogens in clinical samples with high sensitivity. We recently obtained the specific aptamer library R10, which explicitly recognized Candida and evolved it by mimicking an early skin infection model caused by Candida using the FluCell-SELEX system. In the follow-up study presented here, we demonstrate that the aptamer library R10-based bioassay specifically recognizes invasive clinical Candida isolates, including not only C. albicans but also strains like C. tropcialis, C. krusei, or C. glabrata. The next-generation fluorometric bioassay presented here can reliably and easily detect an early Candida infection and could be used for further clinical research or could even be developed into a full in vitro diagnostic tool.


Assuntos
Candida , Candidíase , Humanos , Seguimentos , Candidíase/diagnóstico , Candidíase/tratamento farmacológico , Candida glabrata , Antifúngicos/uso terapêutico
4.
J Med Virol ; 95(1): e28124, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36056630

RESUMO

Host cell proteases such as TMPRSS2 are critical determinants of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) tropism and pathogenesis. Here, we show that antithrombin (AT), an endogenous serine protease inhibitor regulating coagulation, is a broad-spectrum inhibitor of coronavirus infection. Molecular docking and enzyme activity assays demonstrate that AT binds and inhibits TMPRSS2, a serine protease that primes the Spike proteins of coronaviruses for subsequent fusion. Consequently, AT blocks entry driven by the Spikes of SARS-CoV, MERS-CoV, hCoV-229E, SARS-CoV-2 and its variants of concern including Omicron, and suppresses lung cell infection with genuine SARS-CoV-2. Thus, AT is an endogenous inhibitor of SARS-CoV-2 that may be involved in COVID-19 pathogenesis. We further demonstrate that activation of AT by anticoagulants, such as heparin or fondaparinux, increases the anti-TMPRSS2 and anti-SARS-CoV-2 activity of AT, suggesting that repurposing of native and activated AT for COVID-19 treatment should be explored.


Assuntos
COVID-19 , Humanos , Antitrombinas/farmacologia , Linhagem Celular , Tratamento Farmacológico da COVID-19 , Simulação de Acoplamento Molecular , SARS-CoV-2/metabolismo , Internalização do Vírus , Anticoagulantes/farmacologia , Anticoagulantes/uso terapêutico , Glicoproteína da Espícula de Coronavírus/metabolismo , Serina Endopeptidases/genética
5.
Int J Mol Sci ; 24(4)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36835264

RESUMO

Mollusks have been widely investigated for antimicrobial peptides because their humoral defense against pathogens is mainly based on these small biomolecules. In this report, we describe the identification of three novel antimicrobial peptides from the marine mollusk Nerita versicolor. A pool of N. versicolor peptides was analyzed with nanoLC-ESI-MS-MS technology, and three potential antimicrobial peptides (Nv-p1, Nv-p2 and Nv-p3) were identified with bioinformatical predictions and selected for chemical synthesis and evaluation of their biological activity. Database searches showed that two of them show partial identity to histone H4 peptide fragments from other invertebrate species. Structural predictions revealed that they all adopt a random coil structure even when placed near a lipid bilayer patch. Nv-p1, Nv-p2 and Nv-p3 exhibited activity against Pseudomonas aeruginosa. The most active peptide was Nv-p3 with an inhibitory activity starting at 1.5 µg/mL in the radial diffusion assays. The peptides were ineffective against Klebsiella pneumoniae, Listeria monocytogenes and Mycobacterium tuberculosis. On the other hand, these peptides demonstrated effective antibiofilm action against Candida albicans, Candida parapsilosis and Candida auris but not against the planktonic cells. None of the peptides had significant toxicity on primary human macrophages and fetal lung fibroblasts at effective antimicrobial concentrations. Our results indicate that N. versicolor-derived peptides represent new AMP sequences and have the potential to be optimized and developed into antibiotic alternatives against bacterial and fungal infections.


Assuntos
Anti-Infecciosos , Gastrópodes , Animais , Humanos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Peptídeos Antimicrobianos , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Moluscos , Testes de Sensibilidade Microbiana
6.
Int J Mol Sci ; 24(5)2023 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-36902270

RESUMO

Here we present for the first time a potential wound dressing material implementing aptamers as binding entities to remove pathogenic cells from newly contaminated surfaces of wound matrix-mimicking collagen gels. The model pathogen in this study was the Gram-negative opportunistic bacterium Pseudomonas aeruginosa, which represents a considerable health threat in hospital environments as a cause of severe infections of burn or post-surgery wounds. A two-layered hydrogel composite material was constructed based on an established eight-membered focused anti-P. aeruginosa polyclonal aptamer library, which was chemically crosslinked to the material surface to form a trapping zone for efficient binding of the pathogen. A drug-loaded zone of the composite released the C14R antimicrobial peptide to deliver it directly to the bound pathogenic cells. We demonstrate that this material combining aptamer-mediated affinity and peptide-dependent pathogen eradication can quantitatively remove bacterial cells from the "wound" surface, and we show that the surface-trapped bacteria are completely killed. The drug delivery function of the composite thus represents an extra safeguarding property and thus probably one of the most important additional advances of a next-generation or smart wound dressing ensuring the complete removal and/or eradication of the pathogen of a freshly infected wound.


Assuntos
Hidrogéis , Infecção dos Ferimentos , Humanos , Pseudomonas aeruginosa , Peptídeos Antimicrobianos , Infecção dos Ferimentos/microbiologia , Bandagens , Antibacterianos
7.
Int J Mol Sci ; 24(12)2023 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-37372935

RESUMO

Antimicrobial peptides (AMPs) represent a promising class of therapeutic biomolecules that show antimicrobial activity against a broad range of microorganisms, including life-threatening pathogens. In contrast to classic AMPs with membrane-disrupting activities, new peptides with a specific anti-biofilm effect are gaining in importance since biofilms could be the most important way of life, especially for pathogens, as the interaction with host tissues is crucial for the full development of their virulence in the event of infection. Therefore, in a previous study, two synthetic dimeric derivatives (parallel Dimer 1 and antiparallel Dimer 2) of the AMP Cm-p5 showed specific inhibition of the formation of Candida auris biofilms. Here we show that these derivatives are also dose-dependently effective against de novo biofilms that are formed by the widespread pathogenic yeasts C. albicans and C. parapsilosis. Moreover, the activity of the peptides was demonstrated even against two fluconazole-resistant strains of C. auris.


Assuntos
Candida albicans , Fluconazol , Fluconazol/farmacologia , Candida parapsilosis , Antifúngicos/farmacologia , Candida , Biofilmes , Peptídeos/farmacologia , Testes de Sensibilidade Microbiana
8.
Am J Physiol Cell Physiol ; 322(4): C591-C604, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-35196166

RESUMO

Primary airway epithelial cells (pAECs) cultivated at air-liquid interface (ALI) conditions are widely used as surrogates for human in vivo epithelia. To extend the proliferative capacity and to enable serially passaging of pAECs, conditional reprogramming (cr) has been employed in recent years. However, ALI epithelia derived from cr cells often display functional changes with increasing passages. This highlights the need for thorough validation of the ALI cultures for the respective application. In our study, we evaluated the use of serially passaged cr nasal epithelial cells (crNECs) as a model to study SARS-CoV-2 infection and effects on ion and water transport. NECs were obtained from healthy individuals and cultivated as ALI epithelia derived from passages 1, 2, 3, and 5. We compared epithelial differentiation, ion and water transport, and infection with SARS-CoV-2 between passages. Our results show that epithelia maintained major differentiation characteristics and physiological ion and water transport properties through all passages. However, the frequency of ciliated cells, short circuit currents reflecting epithelial Na+ channel (ENaC) and cystic fibrosis transmembrane conductance regulator (CFTR) activity and expression of aquaporin 3 and 5 decreased gradually over passages. crNECs also expressed SARS-CoV-2 receptors angiotensin converting enzyme 2 (ACE2) and transmembrane serin2 protease 2 (TMPRSS2) across all passages and allowed SARS-CoV-2 replication in all passages. In summary, we provide evidence that passaged crNECs provide an appropriate model to study SARS-CoV-2 infection and also epithelial transport function when considering some limitations that we defined herein.


Assuntos
COVID-19 , Diferenciação Celular , Regulador de Condutância Transmembrana em Fibrose Cística/genética , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Células Epiteliais/metabolismo , Humanos , Recém-Nascido , SARS-CoV-2
9.
Am J Physiol Lung Cell Mol Physiol ; 320(5): L750-L756, 2021 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-33561380

RESUMO

Pharmaceutical interventions are urgently needed to prevent severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection and transmission. As SARS-CoV-2 infects and spreads via the nasopharyngeal airways, we analyzed the antiviral effect of selected nasal and oral sprays on virus infection in vitro. Two nose sprays showed virucidal activity but were cytotoxic precluding further analysis in cell culture. One nasal and one mouth spray suppressed SARS-CoV-2 infection of TMPRSS2-expressing Vero E6 cells and primary differentiated human airway epithelial cultures. The antiviral activity in both sprays could be attributed to polyanionic ι- and κ-carrageenans. Thus, application of carrageenan-containing nasal and mouth sprays may reduce the risk of acquiring SARS-CoV-2 infection and may limit viral spread, warranting further clinical evaluation.


Assuntos
Antivirais/farmacologia , Tratamento Farmacológico da COVID-19 , COVID-19/prevenção & controle , Carragenina/farmacologia , SARS-CoV-2/efeitos dos fármacos , Adulto , Animais , Linhagem Celular , Chlorocebus aethiops , Células Epiteliais/efeitos dos fármacos , Células Epiteliais/virologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Sprays Nasais , Sprays Orais , Serina Endopeptidases/metabolismo , Células Vero
10.
Int J Mol Sci ; 22(16)2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34445098

RESUMO

Granulysin is an antimicrobial peptide (AMP) expressed by human T-lymphocytes and natural killer cells. Despite a remarkably broad antimicrobial spectrum, its implementation into clinical practice has been hampered by its large size and off-target effects. To circumvent these limitations, we synthesized a 29 amino acid fragment within the putative cytolytic site of Granulysin (termed "Gran1"). We evaluated the antimicrobial activity of Gran1 against the major human pathogen Mycobacterium tuberculosis (Mtb) and a panel of clinically relevant non-tuberculous mycobacteria which are notoriously difficult to treat. Gran1 efficiently inhibited the mycobacterial proliferation in the low micro molar range. Super-resolution fluorescence microscopy and scanning electron microscopy indicated that Gran1 interacts with the surface of Mtb, causing lethal distortions of the cell wall. Importantly, Gran1 showed no off-target effects (cytokine release, chemotaxis, cell death) in primary human cells or zebrafish embryos (cytotoxicity, developmental toxicity, neurotoxicity, cardiotoxicity). Gran1 was selectively internalized by macrophages, the major host cell of Mtb, and restricted the proliferation of the pathogen. Our results demonstrate that the hypothesis-driven design of AMPs is a powerful approach for the identification of small bioactive compounds with specific antimicrobial activity. Gran1 is a promising component for the design of AMP-containing nanoparticles with selective activity and favorable pharmacokinetics to be pushed forward into experimental in vivo models of infectious diseases, most notably tuberculosis.


Assuntos
Antígenos de Diferenciação de Linfócitos T/imunologia , Macrófagos/imunologia , Mycobacterium tuberculosis/imunologia , Tuberculose/imunologia , Animais , Antígenos de Diferenciação de Linfócitos T/química , Células Cultivadas , Interações Hospedeiro-Patógeno , Humanos , Macrófagos/microbiologia , Mycobacterium tuberculosis/fisiologia , Peptídeos/química , Peptídeos/imunologia , Tuberculose/microbiologia , Peixe-Zebra
11.
Chemistry ; 26(64): 14536-14545, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-32515842

RESUMO

Textbook procedures require the use of individual aptamers enriched in SELEX libraries which are subsequently chemically synthesized after their biochemical characterization. Here we show that this reduction of the available sequence space of large libraries and thus the diversity of binding molecules reduces the labelling efficiency and fidelity of selected single aptamers towards different strains of the human pathogen Pseudomonas aeruginosa compared to a polyclonal aptamer library enriched by a whole-cell-SELEX involving fluorescent aptamers. The library outperformed single aptamers in reliable and specific targeting of different clinically relevant strains, allowed to inhibit virulence associated cellular functions and identification of bound cell surface targets by aptamer based affinity purification and mass spectrometry. The stunning ease of this FluCell-SELEX and the convincing performance of the P. aeruginosa specific library may pave the way towards generally new and efficient diagnostic techniques based on polyclonal aptamer libraries not only in clinical microbiology.


Assuntos
Aptâmeros de Nucleotídeos , Carbapenêmicos/química , Pseudomonas aeruginosa/química , Técnica de Seleção de Aptâmeros , Biblioteca Gênica , Humanos
12.
Med Microbiol Immunol ; 209(2): 163-176, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32020284

RESUMO

A major roadblock in the development of novel vaccines is the formulation and delivery of the antigen. Liposomes composed of a dimethyldioctadecylammonium (DDA) backbone and the adjuvant trehalose-6-6-dibehenate (TDB, termed "cationic adjuvant formulation (CAF01)", promote immunogenicity and protective efficacy of vaccines, most notably against infection with Mycobacterium tuberculosis. Specifically, the multicomponent antigen H56 delivered by CAF01 protects against tuberculosis in mice. Here we investigated whether the inclusion of immune-modulatory adjuvants into CAF01 modulates the immunogenicity of H56/CAF01 in vitro and in vivo. Based on our recent findings we selected the active sequence of the mycobacterial 19 kDa lipoprotein, Pam3Cys, which interacts with Toll like receptor 2 to induce an antimicrobial pathway. H56/CAF01-Pam3Cys liposomes were characterized for Pam3Cys incorporation, size, toxicity and activation of primary human macrophages. Macrophages efficiently take up H56/CAF01-Pam3Cys and trigger the release of significantly higher levels of TNF, IL-12 and IL-10 than H56/CAF01 alone. To evaluate the immunogenicity in vivo, we immunized mice with H56/CAF01-Pam3Cys and measured the release of IFN-γ and IL-17A by lymph node cells and spleen cells. While the antigen-specific production of IFN-γ was reduced by inclusion of Pam3Cys into H56/CAF01, the levels of IL-17A remained unchanged. In agreement with this finding, the concentration of the IFN-γ-associated IgG2a antibodies in the serum was lower than in H56/CAF01 immunized animals. These results provide proof of concept that Toll like-receptor agonist can be included into liposomes to modulate immune responses. The discordant results between the in vitro studies with human macrophages and in vivo studies in mice highlight the relevance and complexity of comparing immune responses in different species.


Assuntos
Adjuvantes Imunológicos/farmacologia , Antígenos de Bactérias/imunologia , Lipoproteínas/imunologia , Receptores Toll-Like/agonistas , Vacinas contra a Tuberculose/imunologia , Adjuvantes Imunológicos/administração & dosagem , Animais , Antígenos de Bactérias/administração & dosagem , Células Cultivadas , Citocinas/metabolismo , Feminino , Humanos , Imunomodulação , Lipossomos/administração & dosagem , Lipossomos/química , Lipossomos/imunologia , Lipossomos/toxicidade , Macrófagos/imunologia , Camundongos , Mycobacterium tuberculosis/imunologia , Células Th1/imunologia , Células Th17/imunologia , Vacinas contra a Tuberculose/administração & dosagem , Vacinas contra a Tuberculose/química , Vacinas de Subunidades Antigênicas/administração & dosagem , Vacinas de Subunidades Antigênicas/química , Vacinas de Subunidades Antigênicas/imunologia
13.
Int J Mol Sci ; 21(18)2020 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-32937921

RESUMO

The antimicrobial peptide LL-37 inhibits the growth of the major human pathogen Mycobacterium tuberculosis (Mtb), but the mechanism of the peptide-pathogen interaction inside human macrophages remains unclear. Super-resolution imaging techniques provide a novel opportunity to visualize these interactions on a molecular level. Here, we adapt the super-resolution technique of stimulated emission depletion (STED) microscopy to study the uptake, intracellular localization and interaction of LL-37 with macrophages and virulent Mtb. We demonstrate that LL-37 is internalized by both uninfected and Mtb infected primary human macrophages. The peptide localizes in the membrane of early endosomes and lysosomes, the compartment in which mycobacteria reside. Functionally, LL-37 disrupts the cell wall of intra- and extracellular Mtb, resulting in the killing of the pathogen. In conclusion, we introduce STED microscopy as an innovative and informative tool for studying host-pathogen-peptide interactions, clearly extending the possibilities of conventional confocal microscopy.


Assuntos
Catelicidinas/metabolismo , Catelicidinas/farmacologia , Interações Hospedeiro-Patógeno/efeitos dos fármacos , Mycobacterium tuberculosis/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos , Parede Celular/microbiologia , Células Cultivadas , Endossomos/microbiologia , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Leucócitos Mononucleares/microbiologia , Lisossomos/microbiologia , Macrófagos/microbiologia , Microscopia
14.
Eur J Immunol ; 48(11): 1892-1903, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30242834

RESUMO

Tyrosine kinases are checkpoints for multiple cellular pathways and dysregulation induces malignancies, most notably chronic myeloid leukemia (CML). Inhibition of Abl-tyrosine kinases has evolved as a new concept for the treatment of CML and other malignant diseases. Due to the multiple immune-modulatory pathways controlled by tyrosine kinases, treatment with tyrosine kinase inhibitors (TKIs) will not only affect the biology of malignant cells but also modulate physiological immune functions. To understand the effects of TKIs on host defense against intracellular bacteria, we investigated the immunological impact of the dual Abl/Src TKI dasatinib on the cellular immune response to Mycobacterium tuberculosis (Mtb). Our results demonstrate that dasatinib impaired proliferation, cytokine release (IFN-γ, TNF-α, GM-CSF), expression of granulysin and degranulation of cytotoxic effector molecules of human Mtb-specific T-lymphocytes by inhibition of lymphocyte-specific protein tyrosine kinase (Lck) phosphorylation. Despite this profound inhibition of T-cell function, dasatinib suppressed growth of virulent Mtb in human macrophages co-cultured with autologous Mtb-specific T-cells (49±15%). Functional analysis suggested that growth inhibition is due to dasatinib-triggered lysosomal acidification in Mtb-infected macrophages. These results highlight the significance of innate immune responses, i.e. acidification of lysosomes, which control the multiplication of intracellular bacteria despite the lack of efficient T-cell support.


Assuntos
Proliferação de Células/efeitos dos fármacos , Dasatinibe/farmacologia , Mycobacterium tuberculosis/efeitos dos fármacos , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Linfócitos T/efeitos dos fármacos , Células Cultivadas , Citocinas/metabolismo , Humanos , Imunidade Inata/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/microbiologia
15.
Langmuir ; 34(23): 6874-6886, 2018 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-29776311

RESUMO

The success of nanoparticulate formulations in drug delivery depends on various aspects including their toxicity, internalization, and intracellular location. Vesicular assemblies consisting of phospholipids and amphiphilic block copolymers are an emerging platform, which combines the benefits from liposomes and polymersomes while overcoming their challenges. We report the synthesis of poly(cholesteryl methacrylate)- block-poly(2-(dimethylamino) ethyl methacrylate) (pCMA- b-pDMAEMA) block copolymers and their assembly with phospholipids into hybrid vesicles. Their geometry, their ζ-potential, and their ability to adsorb onto polymer-coated surfaces were assessed. Giant unilamellar vesicles were employed to confirm the presence of both the phospholipids and the block copolymer in the same membrane. Furthermore, the cytotoxicity of selected hybrid vesicles was determined in RAW 264.7 mouse macrophages, primary rat Kupffer cells, and human macrophages. The internalization and lysosomal escape ability of the hybrid vesicles were confirmed using RAW 264.7 mouse macrophages. Taken together, our findings illustrate that the reported hybrid vesicles are a promising complementary drug delivery platform for existing liposomes and polymersomes.


Assuntos
Sistemas de Liberação de Medicamentos , Polímeros/administração & dosagem , Lipossomas Unilamelares/administração & dosagem , Animais , Linhagem Celular , Sobrevivência Celular/efeitos dos fármacos , Humanos , Camundongos , Fosfolipídeos/química , Polímeros/química , Polímeros/metabolismo , Ratos , Lipossomas Unilamelares/química , Lipossomas Unilamelares/metabolismo , Lipossomas Unilamelares/toxicidade
16.
Biomacromolecules ; 19(7): 2472-2482, 2018 07 09.
Artigo em Inglês | MEDLINE | ID: mdl-29665678

RESUMO

Infections with multiresistant pathogens are a leading cause for mortality worldwide. Just recently, the World Health Organization (WHO) increased the threat rating for multiresistant Pseudomonas aeruginosa to the highest possible level. With this background, it is crucial to develop novel materials and procedures in the fight against multiresistant pathogens. In this study, we present a novel antimicrobial material, which could find applications as a wound dressing or antimicrobial coating. Lectins are multivalent sugar-binding proteins, which can be found in a variety of plants and bacteria, where they are associated with biofilm formation. By immobilizing lectin B on a protein-based hydrogel surface, we provided the hydrogel with the ability to immobilize ("catch") pathogens upon contact. Furthermore, another hydrogel layer was added which inhibits biofilm formation and releases a highly potent antimicrobial peptide to eradicate microorganisms ("kill"). The composite hydrogel showed a high antimicrobial activity against the reference strain Pseudomonas aeruginosa PAO1 as well as against a carbapenem-resistant clinical isolate (multiresistant Gram-negative class 4) and may thus represent a novel material to develop a new type of antimicrobial wound dressings to prevent infections with this problematic pathogen of burn or other large wounds.


Assuntos
Peptídeos Catiônicos Antimicrobianos/química , Hidrogéis/química , Mitógenos de Phytolacca americana/química , Pseudomonas aeruginosa/efeitos dos fármacos , Peptídeos Catiônicos Antimicrobianos/farmacologia , Carbapenêmicos/toxicidade , Farmacorresistência Bacteriana , Hidrogéis/farmacologia
17.
J Immunol ; 197(1): 222-32, 2016 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-27233968

RESUMO

Glucocorticoids are extensively used to treat inflammatory diseases; however, their chronic intake increases the risk for mycobacterial infections. Meanwhile, the effects of glucocorticoids on innate host responses are incompletely understood. In this study, we investigated the direct effects of glucocorticoids on antimycobacterial host defense in primary human macrophages. We found that glucocorticoids triggered the expression of cathelicidin, an antimicrobial critical for antimycobacterial responses, independent of the intracellular vitamin D metabolism. Despite upregulating cathelicidin, glucocorticoids failed to promote macrophage antimycobacterial activity. Gene expression profiles of human macrophages treated with glucocorticoids and/or IFN-γ, which promotes induction of cathelicidin, as well as antimycobacterial activity, were investigated. Using weighted gene coexpression network analysis, we identified a module of highly connected genes that was strongly inversely correlated with glucocorticoid treatment and associated with IFN-γ stimulation. This module was linked to the biological functions autophagy, phagosome maturation, and lytic vacuole/lysosome, and contained the vacuolar H(+)-ATPase subunit a3, alias TCIRG1, a known antimycobacterial host defense gene, as a top hub gene. We next found that glucocorticoids, in contrast with IFN-γ, failed to trigger expression and phagolysosome recruitment of TCIRG1, as well as to promote lysosome acidification. Finally, we demonstrated that the tyrosine kinase inhibitor imatinib induces lysosome acidification and antimicrobial activity in glucocorticoid-treated macrophages without reversing the anti-inflammatory effects of glucocorticoids. Taken together, we provide evidence that the induction of cathelicidin by glucocorticoids is not sufficient for macrophage antimicrobial activity, and identify the vacuolar H(+)-ATPase as a potential target for host-directed therapy in the context of glucocorticoid therapy.


Assuntos
Antituberculosos/farmacologia , Mesilato de Imatinib/farmacologia , Macrófagos/efeitos dos fármacos , Mycobacterium bovis/imunologia , Fagossomos/efeitos dos fármacos , Tuberculose/tratamento farmacológico , Anti-Inflamatórios/farmacologia , Peptídeos Catiônicos Antimicrobianos/genética , Peptídeos Catiônicos Antimicrobianos/metabolismo , Autofagia , Células Cultivadas , Regulação da Expressão Gênica , Glucocorticoides/farmacologia , Humanos , Concentração de Íons de Hidrogênio , Imunidade Inata , Interferon gama/metabolismo , Macrófagos/fisiologia , Tuberculose/imunologia , ATPases Vacuolares Próton-Translocadoras/genética , ATPases Vacuolares Próton-Translocadoras/metabolismo , Catelicidinas
18.
Am J Respir Crit Care Med ; 194(3): 345-55, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-26882070

RESUMO

RATIONALE: The development of host-targeted, prophylactic, and therapeutic interventions against tuberculosis requires a better understanding of the immune mechanisms that determine the outcome of infection with Mycobacterium tuberculosis. OBJECTIVES: To identify T-cell-dependent mechanisms that are protective in tuberculosis. METHODS: Multicolor flow cytometry, cell sorting and growth inhibition assays were employed to compare the frequency, phenotype and function of T lymphocytes from bronchoalveolar lavage or the peripheral blood. MEASUREMENTS AND MAIN RESULTS: At two independent study sites, bronchoalveolar lavage cells from donors with latent tuberculosis infection limited the growth of virulent Mycobacterium tuberculosis more efficiently than those in patients who developed disease. Unconventional, glycolipid-responsive T cells contributed to reduced mycobacterial growth because antibodies to CD1b inhibited this effect by 55%. Lipoarabinomannan was the most potent mycobacterial lipid antigen (activation of 1.3% T lymphocytes) and activated CD1b-restricted T cells that limited bacterial growth. A subset of IFN-γ-producing lipoarabinomannan-responsive T cells coexpressed the cytotoxic molecules perforin, granulysin, and granzyme B, which we termed polycytotoxic T cells. Taking advantage of two well-defined cohorts of subjects latently infected with Mycobacterium tuberculosis or patients who developed active disease after infection, we found a correlation between the frequency of polycytotoxic T cells and the ability to control infection (latent tuberculosis infection, 62%; posttuberculosis patients, 26%). CONCLUSIONS: Our data define an unconventional CD8(+) T-cell subset (polycytotoxic T cells) that is based on antigen recognition and function. The results link clinical and mechanistic evidence that glycolipid-responsive, polycytotoxic T cells contribute to protection against tuberculosis.


Assuntos
Lipopolissacarídeos/imunologia , Mycobacterium tuberculosis/imunologia , Subpopulações de Linfócitos T/imunologia , Tuberculose/imunologia , Citometria de Fluxo , Humanos , Tuberculose/prevenção & controle
20.
Med Microbiol Immunol ; 205(3): 219-29, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26613797

RESUMO

Oxygen tension affects local immune responses in inflammation and infection. In tuberculosis mycobacteria avoid hypoxic areas and preferentially persist and reactivate in the oxygen-rich apex of the lung. Oxygen restriction activates antimicrobial effector mechanisms in macrophages and restricts growth of intracellular Mycobacterium tuberculosis (M.Tb). The effect of oxygen restriction on T cell-mediated antimicrobial effector mechanisms is unknown. Therefore we determined the influence of hypoxia on the expression of granulysin, an antimicrobial peptide of lymphocytes. Hypoxia increased the antigen-specific up-regulation of granulysin mRNA and protein in human CD4(+) and CD8(+) T lymphocytes. This observation was functionally relevant, because oxygen restriction supported the growth-limiting effect of antigen-specific T cells against virulent M.Tb residing in primary human macrophages. Our results provide evidence that oxygen restriction promotes the expression of granulysin and suggest that this effect-in conjunction with additional T cell-mediated immune responses-supports protection against mycobacteria. The therapeutic modulation of oxygen availability may offer a new strategy for the host-directed therapy of infectious diseases with intracellular pathogens.


Assuntos
Antígenos de Diferenciação de Linfócitos T/biossíntese , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Interações Hospedeiro-Patógeno , Hipóxia , Mycobacterium tuberculosis/imunologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/microbiologia , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/microbiologia , Células Cultivadas , Humanos , Macrófagos/imunologia , Macrófagos/microbiologia , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA