Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Clin Monit Comput ; 34(5): 1035-1042, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31664660

RESUMO

Patient-ventilator asynchrony is associated with intolerance to noninvasive ventilation (NIV) and worsened outcomes. Our goal was to develop a tool to determine a patient needs for  intervention by a practitioner due to the presence of patient-ventilator asynchrony. We postulated that a clinician can determine when a patient needs corrective intervention due to the perceived severity of patient-ventilator asynchrony. We hypothesized a new measure, patient breathing variability, would indicate when corrective intervention is suggested by a bedside practitioner due to the perceived severity of patient-ventilator asynchrony. With IRB approval data was collected on 78 NIV patients. A panel of experts reviewed retrospective data from a development set of 10 NIV patients to categorize them into one of the three categories. The three categories were; "No to mild asynchrony-no intervention needed", "moderate asynchrony-non-emergent corrective intervention required", and "severe asynchrony-immediate intervention required". A stepwise regression with a F-test forward selection criterion was used to develop a positive linear logic model predicting the expert panel's categorizations of the need for corrective intervention. The model was incorporated into a software tool for clinical implementation. The tool was implemented prospectively on 68 NIV patients simultaneous to a bedside practitioner scoring the need for corrective intervention due to the perceived severity of patient-ventilator asynchrony. The categories from the tool and the practitioner were compared with the rate of agreement, sensitivity, specificity, and receiver operator characteristic analyses. The rate of agreement in categorizing the suggested need for clinical intervention due to the perceived presence of patient-ventilator asynchrony between the tool and experienced bedside practitioners was 95% with a Kappa score of 0.85 (p < 0.001). Further analysis found a specificity of 84% and sensitivity of 99%. The tool appears to accurately match the suggested need for corrective intervention by a bedside practitioner. Application of the tool allows for continuous, real time, and non-invasive monitoring of patients receiving NIV, and may enable early corrective interventions to ameliorate potential patient-ventilator asynchrony.


Assuntos
Ventilação não Invasiva , Humanos , Respiração , Respiração Artificial , Estudos Retrospectivos , Ventiladores Mecânicos
2.
J Clin Monit Comput ; 30(3): 285-94, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26070542

RESUMO

We describe a real time, noninvasive method of estimating work of breathing (esophageal balloon not required) during noninvasive pressure support (PS) that uses an artificial neural network (ANN) combined with a leak correction (LC) algorithm, programmed to ignore asynchronous breaths, that corrects for differences in inhaled and exhaled tidal volume (VT) from facemask leaks (WOBANN,LC/min). Validation studies of WOBANN,LC/min were performed. Using a dedicated and popular noninvasive ventilation ventilator (V60, Philips), in vitro studies using PS (5 and 10 cm H2O) at various inspiratory flow rate demands were simulated with a lung model. WOBANN,LC/min was compared with the actual work of breathing, determined under conditions of no facemask leaks and estimated using an ANN (WOBANN/min). Using the same ventilator, an in vivo study of healthy adults (n = 8) receiving combinations of PS (3-10 cm H2O) and expiratory positive airway pressure was done. WOBANN,LC/min was compared with physiologic work of breathing/min (WOBPHYS/min), determined from changes in esophageal pressure and VT applied to a Campbell diagram. For the in vitro studies, WOBANN,LC/min and WOBANN/min ranged from 2.4 to 11.9 J/min and there was an excellent relationship between WOBANN,LC/breath and WOBANN/breath, r = 0.99, r(2) = 0.98 (p < 0.01). There were essentially no differences between WOBANN,LC/min and WOBANN/min. For the in vivo study, WOBANN,LC/min and WOBPHYS/min ranged from 3 to 12 J/min and there was an excellent relationship between WOBANN,LC/breath and WOBPHYS/breath, r = 0.93, r(2) = 0.86 (p < 0.01). An ANN combined with a facemask LC algorithm provides noninvasive and valid estimates of work of breathing during noninvasive PS. WOBANN,LC/min, automatically and continuously estimated, may be useful for assessing inspiratory muscle loads and guiding noninvasive PS settings as in a decision support system to appropriately unload inspiratory muscles.


Assuntos
Monitorização Fisiológica/estatística & dados numéricos , Volume de Ventilação Pulmonar , Trabalho Respiratório , Lesão Pulmonar Aguda/fisiopatologia , Lesão Pulmonar Aguda/terapia , Algoritmos , Sistemas Computacionais/estatística & dados numéricos , Humanos , Redes Neurais de Computação , Pressão , Respiração Artificial/instrumentação , Respiração Artificial/estatística & dados numéricos , Volume de Ventilação Pulmonar/fisiologia , Trabalho Respiratório/fisiologia
3.
J Crit Care ; 57: 208-213, 2020 06.
Artigo em Inglês | MEDLINE | ID: mdl-32213447

RESUMO

INTRODUCTION: The patient-ventilator relationship is dynamic as the patient's health fluctuates and the ventilator settings are modified. Spontaneously breathing patients respond to mechanical ventilation by changing their patterns of breathing. This study measured the physiologic response when pressure support (PS) settings were modified during mechanical ventilation. METHODS: Subjects were instrumented with a non-invasive pressure, flow, and carbon dioxide airway sensor to estimate tidal volume, respiratory rate, minute ventilation, and end-tidal CO2. Additionally, a catheter was used to measure esophageal pressure and estimate effort exerted during breathing. Respiratory function measurements were obtained while PS settings were adjusted 569 times between 5 and 25 cmH2O. RESULTS: Data was collected on 248 patients. The primary patient response to changes in PS was to adjusting effort (power of breathing) followed by adjusting tidal volume. Changes in respiratory rate were less definite while changes in minute ventilation and end-tidal CO2 appeared unrelated to the change in PS. CONCLUSION: The data indicates that patients maintain a set minute ventilation by adjusting their breathing rate, volume, and power. The data indicates that the subjects regulate their Ve and PetCO2 by adjusting power of breathing and breathing pattern.


Assuntos
Respiração Artificial/métodos , Respiração , Taxa Respiratória , Volume de Ventilação Pulmonar , Adulto , Idoso , Dióxido de Carbono , Cateterismo , Esôfago/fisiologia , Feminino , Hemodinâmica , Humanos , Masculino , Pessoa de Meia-Idade , Ventiladores Mecânicos , Trabalho Respiratório
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA