Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Infect Immun ; 87(7)2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-31010816

RESUMO

E-101 solution is a first-in-class myeloperoxidase-mediated antimicrobial developed for topical application. It is composed of porcine myeloperoxidase (pMPO), glucose oxidase (GO), glucose, sodium chloride, and specific amino acids in an aqueous solution. Once activated, the reactive species hydrogen peroxide (H2O2), hypochlorous acid, and singlet oxygen are generated. We evaluated the treatment effects of E-101 solution and its oxidative products on ultrastructure changes and microbicidal activity against methicillin-resistant Staphylococcus aureus (MRSA) and Escherichia coli Time-kill and transmission electron microscopy studies were also performed using formulations with pMPO or GO omitted. The glutathione membrane protection assay was used to study the neutralization of reactive oxygen species. The potency of E-101 solution was also measured in the presence of serum and whole blood by MIC and minimal bactericidal concentration (MBC) determinations. E-101 solution demonstrated rapid bactericidal activity and ultracellular changes in MRSA and E. coli cells. When pMPO was omitted, high levels of H2O2 generated from GO and glucose demonstrated slow microbicidal activity with minimal cellular damage. When GO was omitted from the formulation, no antimicrobial activity or cellular damage was observed. Protection from exposure to E-101 solution reactive oxygen species in the glutathione protection assay was competitive and temporary. E-101 solution maintained its antimicrobial activity in the presence of inhibitory substances, such as serum and whole blood. E-101 solution is a potent myeloperoxidase enzyme system with multiple oxidative mechanisms of action. Our findings suggest that the primary site where E-101 solution exerts microbicidal action is the cell membrane, by inactivation of essential cell membrane components.


Assuntos
Antibacterianos/química , Antibacterianos/farmacologia , Peroxidase/química , Peroxidase/farmacologia , Animais , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Escherichia coli/efeitos dos fármacos , Escherichia coli/metabolismo , Glucose Oxidase/química , Glucose Oxidase/farmacologia , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Staphylococcus aureus Resistente à Meticilina/metabolismo , Oxirredução , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/farmacologia , Suínos
2.
Antimicrob Agents Chemother ; 58(8): 4911-4, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24841272

RESUMO

This study summarizes the topical E-101 solution susceptibility testing results for 760 Gram-positive and Gram-negative target pathogens collected from 75 U.S. sites between 2008 and 2012 and 103 ESKAPE pathogens. E-101 solution maintained potent activity against all bacterial species studied for each year tested, with MICs ranging from <0.008 to 0.25 µg porcine myeloperoxidase (pMPO)/ml. These results confirm that E-101 solution retains its potent broad-spectrum activity against U.S. clinical isolates and organisms with challenging resistance phenotypes.


Assuntos
Anti-Infecciosos/farmacologia , Farmacorresistência Bacteriana Múltipla/efeitos dos fármacos , Infecções por Bactérias Gram-Negativas/prevenção & controle , Infecções por Bactérias Gram-Positivas/prevenção & controle , Soluções Farmacêuticas/farmacologia , Anti-Infecciosos/química , Glucose Oxidase/química , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Humanos , Peróxido de Hidrogênio/química , Ácido Hipocloroso/química , Estudos Longitudinais , Testes de Sensibilidade Microbiana , Oxirredução , Peroxidase/química , Soluções Farmacêuticas/química , Oxigênio Singlete/química
3.
Infect Immun ; 79(1): 474-85, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20974824

RESUMO

Myeloperoxidase (MPO) is reported to selectively bind to bacteria. The present study provides direct evidence of MPO binding selectivity and tests the relationship of selective binding to selective killing. The microbicidal effectiveness of H(2)O(2) and of OCl(-) was compared to that of MPO plus H(2)O(2). Synergistic microbicidal action was investigated by combining Streptococcus sanguinis, a H(2)O(2)-producing microbe showing low MPO binding, with high-MPO-binding Escherichia coli, Staphylococcus aureus, or Pseudomonas aeruginosa without exogenous H(2)O(2), with and without MPO, and with and without erythrocytes (red blood cells [RBCs]). Selectivity of MPO microbicidal action was conventionally measured as the MPO MIC and minimal bactericidal concentration (MBC) for 82 bacteria including E. coli, P. aeruginosa, S. aureus, Enterococcus faecalis, Streptococcus pyogenes, Streptococcus agalactiae, and viridans streptococci. Both H(2)O(2) and OCl(-) destroyed RBCs at submicrobicidal concentrations. Nanomolar concentrations of MPO increased H(2)O(2) microbicidal action 1,000-fold. Streptococci plus MPO produced potent synergistic microbicidal action against all microbes tested, and RBCs caused only a small decrease in potency without erythrocyte damage. MPO directly killed H(2)O(2)-producing S. pyogenes but was ineffective against non-H(2)O(2)-producing E. faecalis. The MPO MICs and MBCs for E. coli, P. aeruginosa, and S. aureus were significantly lower than those for E. faecalis. The streptococcal studies showed much higher MIC/MBC results, but such testing required lysed horse blood-supplemented medium, thus preventing valid comparison of these results to those for the other microbes. E. faecalis MPO binding is reportedly weak compared to binding of E. coli, P. aeruginosa, and S. aureus but strong compared to binding of streptococci. Selective MPO binding results in selective killing.


Assuntos
Bactérias/efeitos dos fármacos , Peroxidase/metabolismo , Peroxidase/farmacologia , Animais , Eritrócitos , Humanos , Testes de Sensibilidade Microbiana , Ligação Proteica , Suínos , Fatores de Tempo
4.
J Antimicrob Chemother ; 66(2): 335-42, 2011 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21118915

RESUMO

OBJECTIVES: E-101 Solution (E-101) is a novel myeloperoxidase-mediated antimicrobial. It is composed of porcine myeloperoxidase (pMPO), glucose oxidase, glucose as the substrate and specific amino acids in an aqueous vehicle. E-101 is being developed for topical application directly into surgical wounds to prevent surgical site infections (SSIs). The in vitro activity of E-101 was investigated. METHODS: MIC, MBC, time-kill and antimicrobial combination experiments were performed according to CLSI guidelines with modifications. Resistance selection studies were performed using a serial passage method. RESULTS: E-101 showed MIC(90) values of 0.03, 0.5 and 0.5 mg pMPO/L for staphylococci (n = 140), streptococci (n = 95) and enterococci (n = 55), respectively. MIC(90) values ranged between 0.03-0.5 and ≤ 0.004-0.12 mg pMPO/L for Enterobacteriaceae (n = 148) and Gram-negative non-Enterobacteriaceae (n = 92) strains, respectively. There was no antimicrobial tolerance to E-101 for Staphylococcus aureus, Streptococcus agalactiae or Streptococcus pyogenes. Time-kill studies demonstrated a rapid (<30 min) bactericidal effect against S. aureus, Enterococcus faecalis, Escherichia coli and Pseudomonas aeruginosa in a concentration-dependent and time-dependent manner. There was no evidence of stable resistance to E-101 among staphylococci, enterococci, E. coli or P. aeruginosa strains and no evidence of E-101 interaction with antibiotics commonly used in clinical medicine. Conclusions E-101 shows potent and broad-spectrum in vitro activity against bacteria that are the causative pathogens of SSIs, thereby providing the impetus to test its clinical utility in the prevention of SSIs.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias Gram-Negativas/efeitos dos fármacos , Bactérias Gram-Positivas/efeitos dos fármacos , Peroxidase/farmacologia , Farmacorresistência Bacteriana , Testes de Sensibilidade Microbiana
5.
Luminescence ; 26(3): 208-13, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-21681911

RESUMO

Myeloperoxidase (MPO), a microbicidal haloperoxidase of neutrophil leukocytes, was observed to selectively bind to bacteria. Binding was quantified by dithionite-reduced minus oxidized (R-O) difference spectral analysis. Escherichia coli and Pseudomonas aeruginosa showed large MPO binding by R-O difference spectral analysis, whereas Streptococcus sanguinis did not. For increased sensitivity, free and microbe-bound MPO and chloroperoxidase (CPO) activities were quantified by acid-optimum haloperoxidase-dependent chemiluminescence (CL) measurements, and these data were used for Scatchard analysis. The MPO bound/free (B/F) CL ratio was 49.5 for P. aeruginosa, 14.6 for Staphylococcus aureus, 2.8 for E. coli, 0.7 for Candida albicans and 0.4 for S. sanguinis. By comparison, the CPO B/F CL ratio was 0.03 for P. aeruginosa, 0.09 for S. aureus, 0.31 for E. coli, 0.18 for C. albicans and 0.16 for S. sanguinis. As a member of the lactic acid family of bacteria and a viridans streptococcus, S. sanguinis does not synthesize cytochromes and is catalase-negative. The metabolic products of S. sanguinis, i.e. lactic acid and hydrogen peroxide, provide optimal acidity and substrate for MPO oxidation of chloride to hypochlorite. Hypochlorite can react with organic substrates to yield dehydrogenated or chlorinated products, but when peroxide is not limiting, hypochlorite reacts with peroxide yielding singlet oxygen. The reactivity of hypochlorite is dependent on substrate availability. The microsecond half-life of electronically excited singlet oxygen restricts reactivity to within a radius of <0.25 µm; i.e. the reactivity of singlet oxygen is both substrate and half-life dependent. Poor MPO binding provides protection and possibly competitive advantage to viridans streptococci.


Assuntos
Medições Luminescentes/métodos , Neutrófilos/enzimologia , Peroxidase/química , Animais , Bactérias/química , Oxirredução , Ligação Proteica , Análise Espectral , Suínos , Leveduras/química
6.
J Immunol Res ; 2019: 4783018, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31663003

RESUMO

Myeloperoxidase (MPO) and eosinophil peroxidase (EPO) are cationic haloperoxidases with potent microbicidal and detoxifying activities. MPO selectively binds to and kills some Gram-positive bacteria (GPB) and all Gram-negative bacteria (GNB) tested. GNB contain endotoxin, i.e., lipopolysaccharide (LPS) comprising a toxic lipid A component. The possibility that MPO and EPO bind and inhibit the endotoxin of GNB was tested by mixing MPO or EPO with LPS or lipid A and measuring for inhibition of endotoxin activity using the chromogenic Limulus amebocyte lysate (LAL) assay. The endotoxin-inhibiting activities of MPO and EPO were also tested in vivo using an LPS 90% lethal dose (LD90) mouse model studied over a five-day period. Mixing MPO or EPO with a fixed quantity of LPS from Escherichia coli O55:B5 or with diphosphoryl lipid A from E. coli F583 inhibited LAL endotoxin activity in proportion to the natural log of the MPO or EPO concentration. MPO and EPO enzymatic activities were not required for inhibition, and MPO haloperoxidase action did not increase endotoxin inhibition. Both MPO and EPO increased mouse survival in the LPS LD90 model. In conclusion, MPO and EPO nonenzymatically inhibited in vitro endotoxin activity using the LAL assay, and MPO and high-dose EPO significantly increased mouse survival in a LPS LD90 model, and such survival was increased in a dose-dependent manner.


Assuntos
Endotoxinas/antagonistas & inibidores , Peroxidase de Eosinófilo/metabolismo , Lipopolissacarídeos/administração & dosagem , Peroxidase/metabolismo , Animais , Bioensaio , Modelos Animais de Doenças , Relação Dose-Resposta a Droga , Estimativa de Kaplan-Meier , Lipopolissacarídeos/toxicidade , Camundongos , Mortalidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA