Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 58
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(1): e2315930120, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38147558

RESUMO

Red blood cell (RBC) metabolic reprogramming upon exposure to high altitude contributes to physiological human adaptations to hypoxia, a multifaceted process critical to health and disease. To delve into the molecular underpinnings of this phenomenon, first, we performed a multi-omics analysis of RBCs from six lowlanders after exposure to high-altitude hypoxia, with longitudinal sampling at baseline, upon ascent to 5,100 m and descent to sea level. Results highlighted an association between erythrocyte levels of 2,3-bisphosphoglycerate (BPG), an allosteric regulator of hemoglobin that favors oxygen off-loading in the face of hypoxia, and expression levels of the Rhesus blood group RHCE protein. We then expanded on these findings by measuring BPG in RBCs from 13,091 blood donors from the Recipient Epidemiology and Donor Evaluation Study. These data informed a genome-wide association study using BPG levels as a quantitative trait, which identified genetic polymorphisms in the region coding for the Rhesus blood group RHCE as critical determinants of BPG levels in erythrocytes from healthy human volunteers. Mechanistically, we suggest that the Rh group complex, which participates in the exchange of ammonium with the extracellular compartment, may contribute to intracellular alkalinization, thus favoring BPG mutase activity.


Assuntos
Altitude , Antígenos de Grupos Sanguíneos , Hipóxia , Sistema do Grupo Sanguíneo Rh-Hr , Humanos , 2,3-Difosfoglicerato/metabolismo , Eritrócitos/metabolismo , Estudo de Associação Genômica Ampla , Hipóxia/genética , Hipóxia/metabolismo , Polimorfismo Genético , Sistema do Grupo Sanguíneo Rh-Hr/genética , Sistema do Grupo Sanguíneo Rh-Hr/metabolismo
2.
Blood ; 143(5): 456-472, 2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-37976448

RESUMO

ABSTRACT: In the field of transfusion medicine, the clinical relevance of the metabolic markers of the red blood cell (RBC) storage lesion is incompletely understood. Here, we performed metabolomics of RBC units from 643 donors enrolled in the Recipient Epidemiology and Donor Evaluation Study, REDS RBC Omics. These units were tested on storage days 10, 23, and 42 for a total of 1929 samples and also characterized for end-of-storage hemolytic propensity after oxidative and osmotic insults. Our results indicate that the metabolic markers of the storage lesion poorly correlated with hemolytic propensity. In contrast, kynurenine was not affected by storage duration and was identified as the top predictor of osmotic fragility. RBC kynurenine levels were affected by donor age and body mass index and were reproducible within the same donor across multiple donations from 2 to 12 months apart. To delve into the genetic underpinnings of kynurenine levels in stored RBCs, we thus tested kynurenine levels in stored RBCs on day 42 from 13 091 donors from the REDS RBC Omics study, a population that was also genotyped for 879 000 single nucleotide polymorphisms. Through a metabolite quantitative trait loci analysis, we identified polymorphisms in SLC7A5, ATXN2, and a series of rate-limiting enzymes (eg, kynurenine monooxygenase, indoleamine 2,3-dioxygenase, and tryptophan dioxygenase) in the kynurenine pathway as critical factors affecting RBC kynurenine levels. By interrogating a donor-recipient linkage vein-to-vein database, we then report that SLC7A5 polymorphisms are also associated with changes in hemoglobin and bilirubin levels, suggestive of in vivo hemolysis in 4470 individuals who were critically ill and receiving single-unit transfusions.


Assuntos
Doadores de Sangue , Hemólise , Humanos , Cinurenina/metabolismo , Transportador 1 de Aminoácidos Neutros Grandes/metabolismo , Eritrócitos/metabolismo , Metabolômica , Preservação de Sangue/métodos
3.
Blood ; 143(24): 2517-2533, 2024 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-38513237

RESUMO

ABSTRACT: Recent large-scale multiomics studies suggest that genetic factors influence the chemical individuality of donated blood. To examine this concept, we performed metabolomics analyses of 643 blood units from volunteers who donated units of packed red blood cells (RBCs) on 2 separate occasions. These analyses identified carnitine metabolism as the most reproducible pathway across multiple donations from the same donor. We also measured l-carnitine and acyl-carnitines in 13 091 packed RBC units from donors in the Recipient Epidemiology and Donor Evaluation study. Genome-wide association studies against 879 000 polymorphisms identified critical genetic factors contributing to interdonor heterogeneity in end-of-storage carnitine levels, including common nonsynonymous polymorphisms in genes encoding carnitine transporters (SLC22A16, SLC22A5, and SLC16A9); carnitine synthesis (FLVCR1 and MTDH) and metabolism (CPT1A, CPT2, CRAT, and ACSS2), and carnitine-dependent repair of lipids oxidized by ALOX5. Significant associations between genetic polymorphisms on SLC22 transporters and carnitine pools in stored RBCs were validated in 525 Diversity Outbred mice. Donors carrying 2 alleles of the rs12210538 SLC22A16 single-nucleotide polymorphism exhibited the lowest l-carnitine levels, significant elevations of in vitro hemolysis, and the highest degree of vesiculation, accompanied by increases in lipid peroxidation markers. Separation of RBCs by age, via in vivo biotinylation in mice, and Percoll density gradients of human RBCs, showed age-dependent depletions of l-carnitine and acyl-carnitine pools, accompanied by progressive failure of the reacylation process after chemically induced membrane lipid damage. Supplementation of stored murine RBCs with l-carnitine boosted posttransfusion recovery, suggesting this could represent a viable strategy to improve RBC storage quality.


Assuntos
Carnitina , Eritrócitos , Hemólise , Carnitina/metabolismo , Humanos , Animais , Camundongos , Eritrócitos/metabolismo , Polimorfismo de Nucleotídeo Único , Envelhecimento Eritrocítico , Estudo de Associação Genômica Ampla , Masculino , Feminino , Membro 5 da Família 22 de Carreadores de Soluto/genética , Membro 5 da Família 22 de Carreadores de Soluto/metabolismo , Preservação de Sangue/métodos
4.
J Transl Med ; 22(1): 301, 2024 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-38521955

RESUMO

BACKGROUND: Due to their complexity and to the presence of common clinical features, differentiation between asthma and chronic obstructive pulmonary disease (COPD) can be a challenging task, complicated in such cases also by asthma-COPD overlap syndrome. The distinct immune/inflammatory and structural substrates of COPD and asthma are responsible for significant differences in the responses to standard pharmacologic treatments. Therefore, an accurate diagnosis is of central relevance to assure the appropriate therapeutic intervention in order to achieve safe and effective patient care. Induced sputum (IS) accurately mirrors inflammation in the airways, providing a more direct picture of lung cell metabolism in comparison to those specimen that reflect analytes in the systemic circulation. METHODS: An integrated untargeted metabolomics and lipidomics analysis was performed in IS of asthmatic (n = 15) and COPD (n = 22) patients based on Ultra-High-Pressure Liquid Chromatography-Mass Spectrometry (UHPLC-MS) and UHPLC-tandem MS (UHPLC-MS/MS). Partial Least Squares-Discriminant Analysis (PLS-DA) was applied to resulting dataset. The analysis of main enriched metabolic pathways and the association of the preliminary metabolites/lipids pattern identified to clinical parameters of asthma/COPD differentiation were explored. Multivariate ROC analysis was performed in order to determine the discriminatory power and the reliability of the putative biomarkers for diagnosis between COPD and asthma. RESULTS: PLS-DA indicated a clear separation between COPD and asthmatic patients. Among the 15 selected candidate biomarkers based on Variable Importance in Projection scores, putrescine showed the highest score. A differential IS bio-signature of 22 metabolites and lipids was found, which showed statistically significant variations between asthma and COPD. Of these 22 compounds, 18 were decreased and 4 increased in COPD compared to asthmatic patients. The IS levels of Phosphatidylethanolamine (PE) (34:1), Phosphatidylglycerol (PG) (18:1;18:2) and spermine were significantly higher in asthmatic subjects compared to COPD. CONCLUSIONS: This is the first pilot study to analyse the IS metabolomics/lipidomics signatures relevant in discriminating asthma vs COPD. The role of polyamines, of 6-Hydroxykynurenic acid and of D-rhamnose as well as of other important players related to the alteration of glycerophospholipid, aminoacid/biotin and energy metabolism provided the construction of a diagnostic model that, if validated on a larger prospective cohort, might be used to rapidly and accurately discriminate asthma from COPD.


Assuntos
Asma , Doença Pulmonar Obstrutiva Crônica , Humanos , Lipidômica , Espectrometria de Massas em Tandem/métodos , Escarro/metabolismo , Diagnóstico Diferencial , Reprodutibilidade dos Testes , Projetos Piloto , Estudos Prospectivos , Asma/diagnóstico , Asma/metabolismo , Biomarcadores , Metabolômica/métodos , Lipídeos
5.
Haematologica ; 2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38450513

RESUMO

Mitapivat, a pyruvate kinase (PK) activator, shows great potential as a sickle cell disease (SCD)- modifying therapy. Safety and efficacy of mitapivat as a long-term maintenance therapy is currently being evaluated in two open-label studies. Here we apply a comprehensive multi-omics approach to investigate the impact of activating PK on red blood cells (RBCs) from 15 SCD patients. HbSS patients were enrolled in one of the open label, extended studies (NCT04610866). Leuko-depleted RBCs obtained from fresh whole blood at baseline (visit 1, V1), prior to drug initiation and longitudinal time points over the course of the study were processed for multiomics through a stepwise extraction of metabolites, lipids and proteins. Mitapivat therapy had significant effects on the metabolome, lipidome and proteome of SCD RBCs. Mitapivat decreased 2,3-diphosphoglycerate (DPG) levels, increased adenosine triphosphate (ATP) levels, and improved hematologic and sickling parameters in patients with SCD. Agreement between omics measurements and clinical measurements confirmed the specificity of mitapivat on targeting late glycolysis, with glycolytic metabolites ranking as the top correlates to parameters of hemoglobin S (HbS) oxygen affinity (p50) and sickling kinetics (t50) during treatment. Mitapivat markedly reduced levels of proteins of mitochondrial origin within 2 weeks of initiation of drug treatment, with minimal changes in the reticulocyte counts. The first six months of treatment also witnessed transient elevation of lysophosphatidylcholines and oxylipins with depletion in free fatty acids, suggestive of an effect on membrane lipid remodeling. Multi-omics analysis of RBCs identified benefits for glycolysis, as well as activation of the Lands cycle.

6.
Exp Eye Res ; 242: 109852, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38460719

RESUMO

Oxidative stress plays a pivotal role in the pathogenesis of several neurodegenerative diseases. Retinal degeneration causes irreversible death of photoreceptor cells, ultimately leading to vision loss. Under oxidative stress, the synthesis of bioactive sphingolipid ceramide increases, triggering apoptosis in photoreceptor cells and leading to their death. This study investigates the effect of L-Cycloserine, a small molecule inhibitor of ceramide biosynthesis, on sphingolipid metabolism and the protection of photoreceptor-derived 661W cells from oxidative stress. The results demonstrate that treatment with L-Cycloserine, an inhibitor of Serine palmitoyl transferase (SPT), markedly decreases bioactive ceramide and associated sphingolipids in 661W cells. A nontoxic dose of L-Cycloserine can provide substantial protection of 661W cells against H2O2-induced oxidative stress by reversing the increase in ceramide level observed under oxidative stress conditions. Analysis of various antioxidant, apoptotic and sphingolipid pathway genes and proteins also confirms the ability of L-Cycloserine to modulate these pathways. Our findings elucidate the generation of sphingolipid mediators of cell death in retinal cells under oxidative stress and the potential of L-Cycloserine as a therapeutic candidate for targeting ceramide-induced degenerative diseases by inhibiting SPT. The promising therapeutic prospect identified in our findings lays the groundwork for further validation in in-vivo and preclinical models of retinal degeneration.


Assuntos
Apoptose , Ceramidas , Ciclosserina , Estresse Oxidativo , Esfingolipídeos , Estresse Oxidativo/efeitos dos fármacos , Ciclosserina/farmacologia , Animais , Ceramidas/metabolismo , Ceramidas/farmacologia , Camundongos , Esfingolipídeos/metabolismo , Apoptose/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/efeitos dos fármacos , Células Fotorreceptoras de Vertebrados/metabolismo , Células Fotorreceptoras de Vertebrados/patologia , Serina C-Palmitoiltransferase/metabolismo , Serina C-Palmitoiltransferase/antagonistas & inibidores , Peróxido de Hidrogênio/toxicidade , Peróxido de Hidrogênio/farmacologia , Linhagem Celular , Degeneração Retiniana/metabolismo , Degeneração Retiniana/prevenção & controle , Degeneração Retiniana/patologia , Degeneração Retiniana/tratamento farmacológico , Western Blotting , Inibidores Enzimáticos/farmacologia , Sobrevivência Celular/efeitos dos fármacos
7.
Lipids Health Dis ; 23(1): 200, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38937745

RESUMO

BACKGROUND: Traumatic brain injury (TBI) causes neuroinflammation and can lead to long-term neurological dysfunction, even in cases of mild TBI (mTBI). Despite the substantial burden of this disease, the management of TBI is precluded by an incomplete understanding of its cellular mechanisms. Sphingolipids (SPL) and their metabolites have emerged as key orchestrators of biological processes related to tissue injury, neuroinflammation, and inflammation resolution. No study so far has investigated comprehensive sphingolipid profile changes immediately following TBI in animal models or human cases. In this study, sphingolipid metabolite composition was examined during the acute phases in brain tissue and plasma of mice following mTBI. METHODS: Wildtype mice were exposed to air-blast-mediated mTBI, with blast exposure set at 50-psi on the left cranium and 0-psi designated as Sham. Sphingolipid profile was analyzed in brain tissue and plasma during the acute phases of 1, 3, and 7 days post-TBI via liquid-chromatography-mass spectrometry. Simultaneously, gene expression of sphingolipid metabolic markers within brain tissue was analyzed using quantitative reverse transcription-polymerase chain reaction. Significance (P-values) was determined by non-parametric t-test (Mann-Whitney test) and by Tukey's correction for multiple comparisons. RESULTS: In post-TBI brain tissue, there was a significant elevation of 1) acid sphingomyelinase (aSMase) at 1- and 3-days, 2) neutral sphingomyelinase (nSMase) at 7-days, 3) ceramide-1-phosphate levels at 1 day, and 4) monohexosylceramide (MHC) and sphingosine at 7-days. Among individual species, the study found an increase in C18:0 and a decrease in C24:1 ceramides (Cer) at 1 day; an increase in C20:0 MHC at 3 days; decrease in MHC C18:0 and increase in MHC C24:1, sphingomyelins (SM) C18:0, and C24:0 at 7 days. Moreover, many sphingolipid metabolic genes were elevated at 1 day, followed by a reduction at 3 days and an absence at 7-days post-TBI. In post-TBI plasma, there was 1) a significant reduction in Cer and MHC C22:0, and an increase in MHC C16:0 at 1 day; 2) a very significant increase in long-chain Cer C24:1 accompanied by significant decreases in Cer C24:0 and C22:0 in MHC and SM at 3 days; and 3) a significant increase of C22:0 in all classes of SPL (Cer, MHC and SM) as well as a decrease in Cer C24:1, MHC C24:1 and MHC C24:0 at 7 days. CONCLUSIONS: Alterations in sphingolipid metabolite composition, particularly sphingomyelinases and short-chain ceramides, may contribute to the induction and regulation of neuroinflammatory events in the early stages of TBI, suggesting potential targets for novel diagnostic, prognostic, and therapeutic strategies in the future.


Assuntos
Encéfalo , Ceramidas , Esfingolipídeos , Esfingomielina Fosfodiesterase , Esfingosina , Animais , Camundongos , Esfingolipídeos/sangue , Esfingolipídeos/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Ceramidas/sangue , Ceramidas/metabolismo , Esfingomielina Fosfodiesterase/metabolismo , Esfingomielina Fosfodiesterase/sangue , Esfingomielina Fosfodiesterase/genética , Esfingosina/análogos & derivados , Esfingosina/sangue , Esfingosina/metabolismo , Modelos Animais de Doenças , Masculino , Esfingomielinas/sangue , Esfingomielinas/metabolismo , Concussão Encefálica/sangue , Concussão Encefálica/metabolismo , Camundongos Endogâmicos C57BL , Lesões Encefálicas Traumáticas/metabolismo , Lesões Encefálicas Traumáticas/sangue , Lesões Encefálicas Traumáticas/patologia , Lisofosfolipídeos/sangue , Lisofosfolipídeos/metabolismo
8.
Clin Exp Ophthalmol ; 52(5): 516-527, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38146655

RESUMO

BACKGROUND: There is a need to develop biomarkers for diagnosis and prediction of treatment responses in depression and post-traumatic stress disorder (PTSD). METHODS: Cross-sectional study examining correlations between tear inflammatory proteins, meibum and tear sphingolipids, and symptoms of depression and PTSD-associated anxiety. Ninety individuals filled depression (Patient Health Questionnaire 9, PHQ-9) and PTSD-associated anxiety (PTSD Checklist-Military Version, PCL-M) questionnaires. In 40 patients, a multiplex assay system was used to quantify 23 inflammatory proteins in tears. In a separate group of 50 individuals, liquid chromatography-mass spectrometry was performed on meibum and tears to quantify 34 species of sphingolipids, encompassing ceramides, monohexosyl ceramides and sphingomyelins. RESULTS: The mean age of the population was 59.4 ± 11.0 years; 89.0% self-identified as male, 34.4% as White, 64.4% as Black, and 16.7% as Hispanic. The mean PHQ-9 score was 11.1 ± 7.6, and the mean PCL-M score was 44.3 ± 19.1. Symptoms of depression and PTSD-associated anxiety were highly correlated (ρ =0.75, p < 0.001). Both PHQ9 and PCL-M scores negatively correlated with multiple sphingolipid species in meibum and tears. In multivariable models, meibum Monohexosyl Ceramide 26:0 (pmol), tear Ceramide 16:0 (mol%), meibum Monohexosyl Ceramide 16:0 (mol%), and tear Ceramide 26:1 (mol%) remained associated with depression and meibum Monohexosyl Ceramide 16:0 (mol%), meibum Monohexosyl Ceramide 26:0 (pmol), tear Sphingomyelin 20:0 (mol%), and tear Sphingosine-1-Phosphate (mol%) remained associated with PTSD-associated anxiety. CONCLUSIONS: Certain meibum and tear sphingolipid species were related to mental health indices. These interactions present opportunities for innovative diagnostic and therapeutic approaches for mental health disorders.


Assuntos
Biomarcadores , Glândulas Tarsais , Transtornos de Estresse Pós-Traumáticos , Lágrimas , Humanos , Masculino , Estudos Transversais , Feminino , Pessoa de Meia-Idade , Transtornos de Estresse Pós-Traumáticos/metabolismo , Transtornos de Estresse Pós-Traumáticos/diagnóstico , Lágrimas/química , Lágrimas/metabolismo , Biomarcadores/metabolismo , Glândulas Tarsais/metabolismo , Inquéritos e Questionários , Idoso , Cromatografia Líquida , Adulto , Esfingolipídeos/metabolismo , Lipídeos/análise , Depressão/metabolismo , Depressão/diagnóstico
9.
Int J Mol Sci ; 25(2)2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38255815

RESUMO

Vesicating chemicals like sulfur mustard (SM) or nitrogen mustard (NM) can cause devastating damage to the eyes, skin, and lungs. Eyes, being the most sensitive, have complicated pathologies that can manifest immediately after exposure (acute) and last for years (chronic). No FDA-approved drug is available to be used as medical counter measures (MCMs) against such injuries. Understanding the pathological mechanisms in acute and chronic response of the eye is essential for developing effective MCMs. Here, we report the clinical and histopathological characterization of a mouse model of NM-induced ocular surface injury (entire surface) developed by treating the eye with 2% (w/v) NM solution for 5 min. Unlike the existing models of specific injury, our model showed severe ocular inflammation, including the eyelids, structural deformity of the corneal epithelium and stroma, and diminished visual and retinal functions. We also observed alterations of the inflammatory markers and their expression at different phases of the injury, along with an activation of acidic sphingomyelinase (aSMase), causing an increase in bioactive sphingolipid ceramide and a reduction in sphingomyelin levels. This novel ocular surface mouse model recapitulated the injuries reported in human, rabbit, and murine SM or NM injury models. NM exposure of the entire ocular surface in mice, which is similar to accidental or deliberate exposure in humans, showed severe ocular inflammation and caused irreversible alterations to the corneal structure and significant vision loss. It also showed an intricate interplay between inflammatory markers over the injury period and alteration in sphingolipid homeostasis in the early acute phase.


Assuntos
Traumatismos Oculares , Gás de Mostarda , Humanos , Animais , Camundongos , Coelhos , Mecloretamina/toxicidade , Traumatismos Oculares/induzido quimicamente , Pálpebras , Modelos Animais de Doenças , Gás de Mostarda/toxicidade , Esfingolipídeos , Inflamação
10.
J Lipid Res ; 64(6): 100377, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37119922

RESUMO

There are few early biomarkers to identify pregnancies at risk of preeclampsia (PE) and abnormal placental function. In this cross-sectional study, we utilized targeted ultra-performance liquid chromatography-ESI MS/MS and a linear regression model to identify specific bioactive lipids that serve as early predictors of PE. Plasma samples were collected from 57 pregnant women prior to 24-weeks of gestation with outcomes of either PE (n = 26) or uncomplicated term pregnancies (n = 31), and the profiles of eicosanoids and sphingolipids were evaluated. Significant differences were revealed in the eicosanoid, (±)11,12 DHET, as well as multiple classes of sphingolipids; ceramides, ceramide-1-phosphate, sphingomyelin, and monohexosylceramides; all of which were associated with the subsequent development of PE regardless of aspirin therapy. Profiles of these bioactive lipids were found to vary based on self-designated race. Additional analyses demonstrated that PE patients can be stratified based on the lipid profile as to PE with a preterm birth linked to significant differences in the levels of 12-HETE, 15-HETE, and resolvin D1. Furthermore, subjects referred to a high-risk OB/GYN clinic had higher levels of 20-HETE, arachidonic acid, and Resolvin D1 versus subjects recruited from a routine, general OB/GYN clinic. Overall, this study shows that quantitative changes in plasma bioactive lipids detected by ultra-performance liquid chromatography-ESI-MS/MS can serve as an early predictor of PE and stratify pregnant people for PE type and risk.


Assuntos
Pré-Eclâmpsia , Nascimento Prematuro , Gravidez , Feminino , Humanos , Recém-Nascido , Espectrometria de Massas em Tandem , Placenta , Estudos Transversais , Esfingolipídeos , Biomarcadores , Eicosanoides , Aspirina/uso terapêutico
11.
J Lipid Res ; 63(4): 100187, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35219746

RESUMO

The sphingolipid, ceramide-1-phosphate (C1P), has been shown to promote the inflammatory phase and inhibit the proliferation and remodeling stages of wound repair via direct interaction with group IVA cytosolic phospholipase A2, a regulator of eicosanoid biosynthesis that fine-tunes the behaviors of various cell types during wound healing. However, the anabolic enzyme responsible for the production of C1P that suppresses wound healing as well as bioactive eicosanoids and target receptors that drive enhanced wound remodeling have not been characterized. Herein, we determined that decreasing C1P activity via inhibitors or genetic ablation of the anabolic enzyme ceramide kinase (CERK) significantly enhanced wound healing phenotypes. Importantly, postwounding inhibition of CERK enhanced the closure rate of acute wounds, improved the quality of healing, and increased fibroblast migration via a "class switch" in the eicosanoid profile. This switch reduced pro-inflammatory prostaglandins (e.g., prostaglandin E2) and increased levels of 5-hydroxyeicosatetraenoic acid and the downstream metabolite 5-oxo-eicosatetraenoic acid (5-oxo-ETE). Moreover, dermal fibroblasts from mice with genetically ablated CERK showed enhanced wound healing markers, while blockage of the murine 5-oxo-ETE receptor (oxoeicosanoid receptor 1) inhibited the enhanced migration phenotype of these cell models. Together, these studies reinforce the vital roles eicosanoids play in the wound healing process and demonstrate a novel role for CERK-derived C1P as a negative regulator of 5-oxo-ETE biosynthesis and the activation of oxoeicosanoid receptor 1 in wound healing. These findings provide foundational preclinical results for the use of CERK inhibitors to shift the balance from inflammation to resolution and increase the wound healing rate.


Assuntos
Ceramidas , Fosfotransferases (Aceptor do Grupo Álcool) , Animais , Ácidos Araquidônicos , Movimento Celular , Ceramidas/metabolismo , Eicosanoides , Camundongos , Fosfotransferases (Aceptor do Grupo Álcool)/genética , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Cicatrização/genética
12.
Nanomedicine ; 38: 102449, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34303838

RESUMO

Acute kidney injury (AKI) management remains mainly supportive as no specific therapeutic agents directed at singular signaling pathways have succeeded in clinical trials. Here, we report that inhibition of thrombin-driven clotting and inflammatory signaling with use of locally-acting thrombin-targeted perfluorocarbon nanoparticles (PFC NP) protects renal vasculature and broadly modulates diverse inflammatory processes that cause renal ischemia reperfusion injury. Each PFC NP was complexed with ~13,650 copies of the direct thrombin inhibitor, PPACK (proline-phenylalanine-arginine-chloromethyl-ketone). Mice treated after the onset of AKI with PPACK PFC NP exhibited downregulated VCAM-1, ICAM-1, PGD2 prostanoid, M-CSF, IL-6, and mast cell infiltrates. Microvascular architecture, tubular basement membranes, and brush border components were better preserved. Non-reperfusion was reduced as indicated by reduced red blood cell trapping and non-heme iron. Kidney function and tubular necrosis improved at 24 hours versus the untreated control group, suggesting a benefit for dual inhibition of thrombosis and inflammation by PPACK PFC NP.


Assuntos
Injúria Renal Aguda , Traumatismo por Reperfusão , Injúria Renal Aguda/tratamento farmacológico , Animais , Coagulação Sanguínea , Rim/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Traumatismo por Reperfusão/tratamento farmacológico , Trombina
13.
J Lipid Res ; 61(2): 143-158, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31818877

RESUMO

Phospholipases A2 (PLA2s) catalyze hydrolysis of the sn-2 substituent from glycerophospholipids to yield a free fatty acid (i.e., arachidonic acid), which can be metabolized to pro- or anti-inflammatory eicosanoids. Macrophages modulate inflammatory responses and are affected by Ca2+-independent phospholipase A2 (PLA2)ß (iPLA2ß). Here, we assessed the link between iPLA2ß-derived lipids (iDLs) and macrophage polarization. Macrophages from WT and KO (iPLA2ß-/-) mice were classically M1 pro-inflammatory phenotype activated or alternatively M2 anti-inflammatory phenotype activated, and eicosanoid production was determined by ultra-performance LC ESI-MS/MS. As a genotypic control, we performed similar analyses on macrophages from RIP.iPLA2ß.Tg mice with selective iPLA2ß overexpression in ß-cells. Compared with WT, generation of select pro-inflammatory prostaglandins (PGs) was lower in iPLA2ß-/- , and that of a specialized pro-resolving lipid mediator (SPM), resolvin D2, was higher; both changes are consistent with the M2 phenotype. Conversely, macrophages from RIP.iPLA2ß.Tg mice exhibited an opposite landscape, one associated with the M1 phenotype: namely, increased production of pro-inflammatory eicosanoids (6-keto PGF1α, PGE2, leukotriene B4) and decreased ability to generate resolvin D2. These changes were not linked with secretory PLA2 or cytosolic PLA2α or with leakage of the transgene. Thus, we report previously unidentified links between select iPLA2ß-derived eicosanoids, an SPM, and macrophage polarization. Importantly, our findings reveal for the first time that ß-cell iPLA2ß-derived signaling can predispose macrophage responses. These findings suggest that iDLs play critical roles in macrophage polarization, and we posit that they could be targeted therapeutically to counter inflammation-based disorders.


Assuntos
Cálcio/metabolismo , Eicosanoides/metabolismo , Fosfolipases A2 do Grupo IV/metabolismo , Macrófagos/metabolismo , Transdução de Sinais , Animais , Fosfolipases A2 do Grupo IV/deficiência , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos
15.
Biomolecules ; 14(3)2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38540794

RESUMO

Polyunsaturated fatty acids (PUFAs) generate pro- and anti-inflammatory eicosanoids via three different metabolic pathways. This study profiled tear PUFAs and their metabolites and examined the relationships with dry eye (DE) and meibomian gland dysfunction (MGD) symptoms and signs. A total of 40 individuals with normal eyelids and corneal anatomies were prospectively recruited. The symptoms and signs of DE and MGD were assessed, and tear samples (from the right eye) were analyzed by mass spectrometry. Mann-Whitney U tests assessed differences between medians; Spearman tests assessed correlations between continuous variables; and linear regression models assessed the impact of potential confounders. The median age was 63 years; 95% were male; 30% were White; and 85% were non-Hispanic. The symptoms of DE/MGD were not correlated with tear PUFAs and eicosanoids. DE signs (i.e., tear break-up time (TBUT) and Schirmer's) negatively correlated with anti-inflammatory eicosanoids (11,12-dihydroxyeicosatrienoic acid (11,12 DHET) and 14,15-dihydroxyicosatrienoic acid (14,15, DHET)). Corneal staining positively correlated with the anti-inflammatory PUFA, docosahexaenoic acid (DHA). MGD signs significantly associated with the pro-inflammatory eicosanoid 15-hydroxyeicosatetranoic acid (15-HETE) and DHA. Several relationships remained significant when potential confounders were considered. DE/MGD signs relate more to tear PUFAs and eicosanoids than symptoms. Understanding the impact of PUFA-related metabolic pathways in DE/MGD may provide targets for new therapeutic interventions.


Assuntos
Síndromes do Olho Seco , Humanos , Masculino , Pessoa de Meia-Idade , Feminino , Síndromes do Olho Seco/tratamento farmacológico , Eicosanoides/metabolismo , Lágrimas/metabolismo , Córnea/metabolismo , Ácidos Docosa-Hexaenoicos , Anti-Inflamatórios/uso terapêutico
16.
PNAS Nexus ; 3(1): pgad440, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38178979

RESUMO

We examined the effects of 1 month of a eucaloric, high-fat (48% of calories) diet (HFD) on gonadotropin secretion in normal-weight women to interrogate the role of free fatty acids and insulin in mediating the relative hypogonadotropic hypogonadism of obesity. Eighteen eumenorrheic women (body mass index [BMI] 18-25 kg/m2) were studied in the early follicular phase of the menstrual cycle before and after exposure to an HFD with frequent blood sampling for luteinizing hormone (LH) and follicle-stimulating hormone (FSH), followed by an assessment of pituitary sensitivity to gonadotropin-releasing hormone (GnRH). Mass spectrometry-based plasma metabolomic analysis was also performed. Paired testing and time-series analysis were performed as appropriate. Mean endogenous LH (unstimulated) was significantly decreased after the HFD (4.3 ± 1.0 vs. 3.8 ± 1.0, P < 0.01); mean unstimulated FSH was not changed. Both LH (10.1 ± 1.0 vs. 7.2 ± 1.0, P < 0.01) and FSH (9.5 ± 1.0 vs. 8.8 ± 1.0, P < 0.01) responses to 75 ng/kg of GnRH were reduced after the HFD. Mean LH pulse amplitude and LH interpulse interval were unaffected by the dietary exposure. Eucaloric HFD exposure did not cause weight change. Plasma metabolomics confirmed adherence with elevation of fasting free fatty acids (especially long-chain mono-, poly-, and highly unsaturated fatty acids) by the last day of the HFD. One-month exposure to an HFD successfully induced key reproductive and metabolic features of reprometabolic syndrome in normal-weight women. These data suggest that dietary factors may underlie the gonadotrope compromise seen in obesity-related subfertility and therapeutic dietary interventions, independent of weight loss, may be possible.

17.
Pathophysiology ; 31(1): 166-182, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38535623

RESUMO

To molecularly characterize the impact of exercise on mitigating neoadjuvant treatment (NAT)-induced physical decline in pancreatic ductal adenocarcinoma (PDAC) patients, a multi-omics approach was employed for the analysis of plasma samples before and after a personalized exercise intervention. Consisting of personalized aerobic and resistance exercises, this intervention was associated with significant molecular changes that correlated with improvements in lean mass, appendicular skeletal muscle index (ASMI), and performance in the 400-m walk test (MWT) and sit-to-stand test. These alterations indicated exercise-induced modulation of inflammation and mitochondrial function markers. This case study provides proof-of-principal application for multiomics-based assessments of supervised exercise, thereby supporting this intervention as a feasible and beneficial intervention for PDAC patients to potentially enhance treatment response and patient quality of life. The molecular changes observed here underscore the importance of physical activity in cancer treatment protocols, advocating for the development of accessible multiomics-guided exercise programs for cancer patients.

18.
Artigo em Inglês | MEDLINE | ID: mdl-38946610

RESUMO

Introduction: Females suffer greater lifetime risk of stroke and greater morbidity and mortality from stroke compared with males. This study's objective was to identify differences in metabolomic profiling of females and males with stroke and which differences were associated with neurological outcome. Methods: Females and males with acute ischemic stroke enrolled in the Emergency Medicine Specimen Bank at a comprehensive stroke center provided whole blood samples upon arrival for mass spectrometry-based metabolomics. We used descriptive statistics to characterize the cohort. A linear regression model was fit for individual metabolites to determine differences in relative abundance between males and females while controlling for covariates (age, race/ethnicity, postmenopausal status, cardiovascular risk factors, depression, time between sample collection and last known well, and initial National Institutes of Health Stroke Scale [NIHSS] score). For each differentially expressed metabolite, a linear regression model was fit to determine the association between the metabolite and NIHSS at 24 hours after admission while controlling for the covariates and acute treatments. Results: After adjusting for covariates, eight metabolites differed in females and males with a stroke. These included amino acids or their metabolites (proline and tryptophan), nucleotides (guanosine diphosphate [GDP], and inosine-3',5'-cyclic monophosphate), citrate, dehydroascorbate, choline, and acylcarnitine-(5-OH). GDP and dehydroascorbate were significantly associated with 24-hour NIHSS (p = 0.0991). Conclusions: Few metabolites were differentially abundant in blood after a stroke when comparing females with males and controlling for confounders, but the interactions between biological sex and GDP, as well as biological sex and dehydroascorbate, were associated with 24-hour neurological function. This has important implications for future studies that evaluate the therapeutic potential of these metabolites in ischemic stroke.

19.
mBio ; 15(4): e0029924, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38415594

RESUMO

Many intracellular pathogens structurally disrupt the Golgi apparatus as an evolutionarily conserved promicrobial strategy. Yet, the host factors and signaling processes involved are often poorly understood, particularly for Anaplasma phagocytophilum, the agent of human granulocytic anaplasmosis. We found that A. phagocytophilum elevated cellular levels of the bioactive sphingolipid, ceramide-1-phosphate (C1P), to promote Golgi fragmentation that enables bacterial proliferation, conversion from its non-infectious to infectious form, and productive infection. A. phagocytophilum poorly infected mice deficient in ceramide kinase, the Golgi-localized enzyme responsible for C1P biosynthesis. C1P regulated Golgi morphology via activation of a PKCα/Cdc42/JNK signaling axis that culminates in phosphorylation of Golgi structural proteins, GRASP55 and GRASP65. siRNA-mediated depletion of Cdc42 blocked A. phagocytophilum from altering Golgi morphology, which impaired anterograde trafficking of trans-Golgi vesicles into and maturation of the pathogen-occupied vacuole. Cells overexpressing phosphorylation-resistant versions of GRASP55 and GRASP65 presented with suppressed C1P- and A. phagocytophilum-induced Golgi fragmentation and poorly supported infection by the bacterium. By studying A. phagocytophilum, we identify C1P as a regulator of Golgi structure and a host factor that is relevant to disease progression associated with Golgi fragmentation.IMPORTANCECeramide-1-phosphate (C1P), a bioactive sphingolipid that regulates diverse processes vital to mammalian physiology, is linked to disease states such as cancer, inflammation, and wound healing. By studying the obligate intracellular bacterium Anaplasma phagocytophilum, we discovered that C1P is a major regulator of Golgi morphology. A. phagocytophilum elevated C1P levels to induce signaling events that promote Golgi fragmentation and increase vesicular traffic into the pathogen-occupied vacuole that the bacterium parasitizes. As several intracellular microbial pathogens destabilize the Golgi to drive their infection cycles and changes in Golgi morphology is also linked to cancer and neurodegenerative disorder progression, this study identifies C1P as a potential broad-spectrum therapeutic target for infectious and non-infectious diseases.


Assuntos
Anaplasma phagocytophilum , Neoplasias , Animais , Humanos , Camundongos , Anaplasma phagocytophilum/metabolismo , Complexo de Golgi/metabolismo , Ceramidas , Mamíferos/metabolismo
20.
Blood Adv ; 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38916993

RESUMO

The Glucose transporter 1 (GLUT1) is one of the most abundant proteins within the erythrocyte membrane and is required for glucose and dehydroascorbic acid (Vitamin C precursor) transport. It is widely recognized as a key protein for red cell structure, function, and metabolism. Previous reports highlighted the importance of GLUT1 activity within these uniquely glycolysis-dependent cells, in particular for increasing antioxidant capacity needed to avoid irreversible damage from oxidative stress in humans. However, studies of glucose transporter roles in erythroid cells are complicated by species-specific differences between humans and mice. Here, using CRISPR-mediated gene editing of immortalized erythroblasts and adult CD34+ hematopoietic progenitor cells, we generate committed human erythroid cells completely deficient in expression of GLUT1. We show that absence of GLUT1 does not impede human erythroblast proliferation, differentiation, or enucleation. This work demonstrates for the first-time generation of enucleated human reticulocytes lacking GLUT1. The GLUT1-deficient reticulocytes possess no tangible alterations to membrane composition or deformability in reticulocytes. Metabolomic analyses of GLUT1-deficient reticulocytes reveal hallmarks of reduced glucose import, downregulated metabolic processes and upregulated AMPK-signalling, alongside alterations in antioxidant metabolism, resulting in increased osmotic fragility and metabolic shifts indicative of higher oxidant stress. Despite detectable metabolic changes in GLUT1 deficient reticulocytes, the absence of developmental phenotype, detectable proteomic compensation or impaired deformability comprehensively alters our understanding of the role of GLUT1 in red blood cell structure, function and metabolism. It also provides cell biological evidence supporting clinical consensus that reduced GLUT1 expression does not cause anaemia in GLUT1 deficiency syndrome.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA