Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 63
Filtrar
1.
Eur Biophys J ; 52(6-7): 487-495, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37644211

RESUMO

The Nudt15 enzyme of the NUDIX protein family is the subject of extensive study due to its action on thiopurine drugs used in the treatment of cancer and inflammatory diseases. In addition to thiopurines, Nudt15 is enzymatically active in vitro on several nucleotide substrates. It has also been suggested that this enzyme may play a role in 5'RNA turnover by hydrolyzing m7GDP, a product of mRNA decapping. However, no detailed studies on this substrate with Nudt15 are available. Here, we analyzed the enzymatic activity of Nudt15 with m7GDP, its triphosphate form m7GTP, and the trimethylated counterparts (m32,2,7GDP and m32,2,7GTP). Kinetic data revealed a moderate activity of Nudt15 toward these methylated mononucleotides compared to the dGTP substrate. However m7GDP and m32,2,7GDP showed a distinct stabilization of Nudt15 upon ligand binding, in the same range as dGTP, and thus these two mononucleotides may be used as leading structures in the design of small molecule binders of Nudt15.


Assuntos
Guanosina , Pirofosfatases , Animais , Pirofosfatases/química , Pirofosfatases/genética , Pirofosfatases/metabolismo , RNA Mensageiro , Mamíferos/genética , Mamíferos/metabolismo
2.
Int J Mol Sci ; 22(20)2021 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-34681586

RESUMO

Nudt16 is a member of the NUDIX family of hydrolases that show specificity towards substrates consisting of a nucleoside diphosphate linked to another moiety X. Several substrates for hNudt16 and various possible biological functions have been reported. However, some of these reports contradict each other and studies comparing the substrate specificity of the hNudt16 protein are limited. Therefore, we quantitatively compared the affinity of hNudt16 towards a set of previously published substrates, as well as identified novel potential substrates. Here, we show that hNudt16 has the highest affinity towards IDP and GppG, with Kd below 100 nM. Other tested ligands exhibited a weaker affinity of several orders of magnitude. Among the investigated compounds, only IDP, GppG, m7GppG, AppA, dpCoA, and NADH were hydrolyzed by hNudt16 with a strong substrate preference for inosine or guanosine containing compounds. A new identified substrate for hNudt16, GppG, which binds the enzyme with an affinity comparable to that of IDP, suggests another potential regulatory role of this protein. Molecular docking of hNudt16-ligand binding inside the hNudt16 pocket revealed two binding modes for representative substrates. Nucleobase stabilization by Π stacking interactions with His24 has been associated with strong binding of hNudt16 substrates.


Assuntos
Fosfatos de Dinucleosídeos/metabolismo , Pirofosfatases/metabolismo , Sítios de Ligação , Dicroísmo Circular , Humanos , Hidrólise , Cinética , Simulação de Acoplamento Molecular , Estabilidade Proteica , Especificidade por Substrato , Termodinâmica
3.
RNA ; 24(5): 633-642, 2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29483298

RESUMO

Human Nudt16 (hNudt16) is a member of the Nudix family of hydrolases, comprising enzymes catabolizing various substrates including canonical (d)NTPs, oxidized (d)NTPs, nonnucleoside polyphosphates, and capped mRNAs. Decapping activity of the Xenopus laevis (X29) Nudt16 homolog was observed in the nucleolus, with a high specificity toward U8 snoRNA. Subsequent studies have reported cytoplasmic localization of mammalian Nudt16 with cap hydrolysis activity initiating RNA turnover, similar to Dcp2. The present study focuses on hNudt16 and its hydrolytic activity toward dinucleotide cap analogs and short capped oligonucleotides. We performed a screening assay for potential dinucleotide and oligonucleotide substrates for hNudt16. Our data indicate that dinucleotide cap analogs and capped oligonucleotides containing guanine base in the first transcribed nucleotide are more susceptible to enzymatic digestion by hNudt16 than their counterparts containing adenine. Furthermore, unmethylated dinucleotides (GpppG and ApppG) and respective oligonucleotides (GpppG-16nt and GpppA-16nt) were hydrolyzed by hNudt16 with greater efficiency than were m7GpppG and m7GpppG-16nt. In conclusion, we found that hNudt16 hydrolysis of dinucleotide cap analogs and short capped oligonucleotides displayed a broader spectrum specificity than is currently known.


Assuntos
Endorribonucleases/metabolismo , Pirofosfatases/metabolismo , Análogos de Capuz de RNA/metabolismo , Humanos , Hidrólise , Oligonucleotídeos/química , Oligonucleotídeos/metabolismo , Análogos de Capuz de RNA/química , Proteínas de Schizosaccharomyces pombe/metabolismo , Especificidade por Substrato
4.
Biochim Biophys Acta ; 1864(4): 331-45, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26772900

RESUMO

The mRNA 5' cap structure plays a pivotal role in coordination of eukaryotic translation and mRNA degradation. Poly(A)-specific ribonuclease (PARN) is a dimeric exoribonuclease that efficiently degrades mRNA 3' poly(A) tails while also simultaneously interacting with the mRNA 5' cap. The cap binding amplifies the processivity of PARN action. We used surface plasmon resonance kinetic analysis, quantitative equilibrium fluorescence titrations and circular dichroism to study the cap binding properties of PARN. The molecular mechanism of 5' cap recognition by PARN has been demonstrated to differ from interactions seen for other known cap-binding proteins in that: i) the auxiliary biological function of 5' cap binding by the 3' degrading enzyme is accomplished by negative cooperativity of PARN dimer subunits; ii) non-coulombic interactions are major factors in the complex formation; and iii) PARN has versatile activity toward alternative forms of the cap. These characteristics contribute to stabilization of the PARN-cap complex needed for the deadenylation processivity. Our studies provide a consistent biophysical basis for elucidation of the processive mechanism of PARN-mediated 3' mRNA deadenylation and provide a new framework to interpret the role of the 5' cap in mRNA degradation.


Assuntos
Exorribonucleases/química , Proteínas de Ligação ao Cap de RNA/química , Capuzes de RNA/química , Cinética , Concentração Osmolar , Conformação Proteica , RNA Mensageiro/metabolismo , Termodinâmica
5.
RNA ; 20(8): 1272-86, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24962368

RESUMO

Members of the eIF4E mRNA cap-binding family are involved in translation and the modulation of transcript availability in other systems as part of a three-component complex including eIF4G and eIF4A. The kinetoplastids possess four described eIF4E and five eIF4G homologs. We have identified two new eIF4E family proteins in Trypanosoma brucei, and define distinct complexes associated with the fifth member, TbEIF4E5. The cytosolic TbEIF4E5 protein binds cap 0 in vitro. TbEIF4E5 was found in association with two of the five TbEIF4Gs. TbIF4EG1 bound TbEIF4E5, a 47.5-kDa protein with two RNA-binding domains, and either the regulatory protein 14-3-3 II or a 117.5-kDa protein with guanylyltransferase and methyltransferase domains in a potentially dynamic interaction. The TbEIF4G2/TbEIF4E5 complex was associated with a 17.9-kDa hypothetical protein and both 14-3-3 variants I and II. Knockdown of TbEIF4E5 resulted in the loss of productive cell movement, as evidenced by the inability of the cells to remain in suspension in liquid culture and the loss of social motility on semisolid plating medium, as well as a minor reduction of translation. Cells appeared lethargic, as opposed to compromised in flagellar function per se. The minimal use of transcriptional control in kinetoplastids requires these organisms to implement downstream mechanisms to regulate gene expression, and the TbEIF4E5/TbEIF4G1/117.5-kDa complex in particular may be a key player in that process. We suggest that a pathway involved in cell motility is affected, directly or indirectly, by one of the TbEIF4E5 complexes.


Assuntos
Fator de Iniciação 4E em Eucariotos/metabolismo , Fator de Iniciação Eucariótico 4G/metabolismo , Proteínas de Ligação ao Cap de RNA/metabolismo , Processamento Pós-Transcricional do RNA , Trypanosoma brucei brucei/metabolismo , Sequência de Aminoácidos , Fator de Iniciação 4E em Eucariotos/química , Técnicas de Inativação de Genes , Humanos , Dados de Sequência Molecular , Ligação Proteica , Capuzes de RNA/metabolismo , RNA de Protozoário/metabolismo , Alinhamento de Sequência , Trypanosoma brucei brucei/genética
6.
Biochem Biophys Res Commun ; 464(1): 89-93, 2015 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-26049109

RESUMO

Scavenger decapping enzymes (DcpS) are involved in eukaryotic mRNA degradation process. They catalyze the cleavage of residual cap structure m(7)GpppN and/or short capped oligonucleotides resulting from exosom-mediated the 3' to 5' digestion. For the specific cap recognition and efficient degradation by DcpS, the positive charge at N7 position of guanine moiety is required. Here we examine the role the N7 substitution within the cap structure on the interactions with DcpS (human, Caenorhabditis elegans and Ascaris suum) comparing the hydrolysis rates of dinucleotide cap analogs (m(7)GpppG, et(7)GpppG, but(7)GpppG, bn(7)GpppG) and the binding affinities of hydrolysis products (m(7)GMP, et(7)GMP, but(7)GMP, bn(7)GMP). Our results show the conformational flexibility of the region within DcpS cap-binding pocket involved in the interaction with N7 substituted guanine, which enables accommodation of substrates with differently sized N7 substituents.


Assuntos
Proteínas de Caenorhabditis elegans/química , Endorribonucleases/química , Pirofosfatases/química , Análogos de Capuz de RNA/química , Estabilidade de RNA/genética , Proteínas Recombinantes de Fusão/química , Animais , Ascaris suum/genética , Ascaris suum/metabolismo , Caenorhabditis elegans/genética , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Endorribonucleases/genética , Endorribonucleases/metabolismo , Ensaios Enzimáticos , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Cinética , Conformação de Ácido Nucleico , Pirofosfatases/genética , Pirofosfatases/metabolismo , Análogos de Capuz de RNA/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Eletricidade Estática
7.
EMBO Rep ; 12(5): 415-20, 2011 May.
Artigo em Inglês | MEDLINE | ID: mdl-21475248

RESUMO

In RNA silencing, microRNA (miRNA)-mediated translational repression occurs through mechanisms that do not invoke messenger-RNA (mRNA) target cleavage by Argonaute proteins. The nature of these mechanisms is unclear, but several recent studies have proposed that a direct interaction between the mRNA-cap and the middle (MID) domain of Argonautes is involved. Here, we present crystallographic and NMR data demonstrating that cap analogues do not bind significantly to the isolated MID domain of human Argonaute 2 (hAGO2) and are found in the miRNA 5'-nucleotide binding site in an implausible binding mode. Additionally, in vitro pull-down experiments with full-length hAGO2 indicate that the interaction with cap analogues is nonspecific.


Assuntos
Fator de Iniciação 2 em Eucariotos/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , Estrutura Terciária de Proteína/genética , Capuzes de RNA/metabolismo , Interferência de RNA , Proteínas Argonautas , Biofísica , Cristalografia , Fator de Iniciação 2 em Eucariotos/genética , Humanos , Espectroscopia de Ressonância Magnética , Capuzes de RNA/genética
8.
Nucleic Acids Res ; 39(20): 8820-32, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21965542

RESUMO

Metazoan spliced leader (SL) trans-splicing generates mRNAs with an m(2,2,7)G-cap and a common downstream SL RNA sequence. The mechanism for eIF4E binding an m²²7G-cap is unknown. Here, we describe the first structure of an eIF4E with an m(2,2,7)G-cap and compare it to the cognate m7G-eIF4E complex. These structures and Nuclear Magnetic Resonance (NMR) data indicate that the nematode Ascaris suum eIF4E binds the two different caps in a similar manner except for the loss of a single hydrogen bond on binding the m(2,2,7)G-cap. Nematode and mammalian eIF4E both have a low affinity for m(2,2,7)G-cap compared with the m7G-cap. Nematode eIF4E binding to the m7G-cap, m(2,2,7)G-cap and the m(2,2,7)G-SL 22-nt RNA leads to distinct eIF4E conformational changes. Additional interactions occur between Ascaris eIF4E and the SL on binding the m(2,2,7)G-SL. We propose interactions between Ascaris eIF4E and the SL impact eIF4G and contribute to translation initiation, whereas these interactions do not occur when only the m(2,2,7)G-cap is present. These data have implications for the contribution of 5'-UTRs in mRNA translation and the function of different eIF4E isoforms.


Assuntos
Fator de Iniciação 4E em Eucariotos/química , Proteínas de Helminto/química , Iniciação Traducional da Cadeia Peptídica , Análogos de Capuz de RNA/química , Animais , Ascaris suum , Fosfatos de Dinucleosídeos/química , Fator de Iniciação 4E em Eucariotos/metabolismo , Proteínas de Helminto/metabolismo , Modelos Moleculares , Ligação Proteica , Conformação Proteica , RNA Líder para Processamento/química
9.
Biochim Biophys Acta Gen Subj ; 1867(9): 130400, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37301333

RESUMO

Recent findings have substantially broadened our knowledge about the diversity of modifications of the 5'end of RNAs, an issue generally attributed to mRNA cap structure (m7GpppN). Nudt12 is one of the recently described new enzymatic activities involved in cap metabolism. However, in contrast to its roles in metabolite-cap turnover (e.g., NAD-cap) and NADH/NAD metabolite hydrolysis, little is known regarding its hydrolytic activity towards dinucleotide cap structures. In order to gain further insight into this Nudt12 activity, comprehensive analysis with a spectrum of cap-like dinucleotides was performed with respect to different nucleotide types adjacent to the (m7)G moiety and its methylation status. Among the tested compounds, GpppA, GpppAm, and Gpppm6Am were identified as novel potent Nudt12 substrates, with KM values in the same range as that of NADH. Interestingly, substrate inhibition of Nudt12 catalytic activity was detected in the case of the GpppG dinucleotide, a phenomenon not reported to date. Finally, comparison of Nudt12 with DcpS and Nud16, two other enzymes with known activity on dinucleotide cap structures, revealed their overlapping and more specific substrates. Altogether, these findings provide a basis for clarifying the role of Nudt12 in cap-like dinucleotide turnover.


Assuntos
NAD , Pirofosfatases , NAD/metabolismo , Pirofosfatases/química , RNA Mensageiro/metabolismo , Hidrólise , Capuzes de RNA/genética , Capuzes de RNA/química , Capuzes de RNA/metabolismo
10.
Biochemistry ; 51(40): 8003-13, 2012 Oct 09.
Artigo em Inglês | MEDLINE | ID: mdl-22985415

RESUMO

Decapping scavenger (DcpS) enzymes catalyze the cleavage of a residual cap structure following 3' → 5' mRNA decay. Some previous studies suggested that both m(7)GpppG and m(7)GDP were substrates for DcpS hydrolysis. Herein, we show that mononucleoside diphosphates, m(7)GDP (7-methylguanosine diphosphate) and m(3)(2,2,7)GDP (2,2,7-trimethylguanosine diphosphate), resulting from mRNA decapping by the Dcp1/2 complex in the 5' → 3' mRNA decay, are not degraded by recombinant DcpS proteins (human, nematode, and yeast). Furthermore, whereas mononucleoside diphosphates (m(7)GDP and m(3)(2,2,7)GDP) are not hydrolyzed by DcpS, mononucleoside triphosphates (m(7)GTP and m(3)(2,2,7)GTP) are, demonstrating the importance of a triphosphate chain for DcpS hydrolytic activity. m(7)GTP and m(3)(2,2,7)GTP are cleaved at a slower rate than their corresponding dinucleotides (m(7)GpppG and m(3)(2,2,7)GpppG, respectively), indicating an involvement of the second nucleoside for efficient DcpS-mediated digestion. Although DcpS enzymes cannot hydrolyze m(7)GDP, they have a high binding affinity for m(7)GDP and m(7)GDP potently inhibits DcpS hydrolysis of m(7)GpppG, suggesting that m(7)GDP may function as an efficient DcpS inhibitor. Our data have important implications for the regulatory role of m(7)GDP in mRNA metabolic pathways due to its possible interactions with different cap-binding proteins, such as DcpS or eIF4E.


Assuntos
Endorribonucleases/metabolismo , Nucleotídeos de Guanina/metabolismo , Guanosina Difosfato/análogos & derivados , Sequência de Aminoácidos , Animais , Caenorhabditis elegans , Endorribonucleases/genética , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação Enzimológica da Expressão Gênica , Nucleotídeos de Guanina/química , Guanosina Difosfato/química , Guanosina Difosfato/metabolismo , Humanos , Hidrólise , Dados de Sequência Molecular , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Saccharomyces cerevisiae , Especificidade da Espécie
11.
RNA ; 16(1): 211-20, 2010 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-19926722

RESUMO

The Tgs proteins are structurally homologous AdoMet-dependent eukaryal enzymes that methylate the N2 atom of 7-methyl guanosine nucleotides. They have an imputed role in the synthesis of the 2,2,7-trimethylguanosine (TMG) RNA cap. Here we exploit a collection of cap-like substrates to probe the repertoire of three exemplary Tgs enzymes, from mammalian, protozoan, and viral sources, respectively. We find that human Tgs (hTgs1) is a bona fide TMG synthase adept at two separable transmethylation steps: (1) conversion of m(7)G to m(2,7)G, and (2) conversion of m(2,7)G to m(2,2,7)G. hTgs1 is unable to methylate G or m(2)G, signifying that both steps require an m(7)G cap. hTgs1 utilizes a broad range of m(7)G nucleotides, including mono-, di-, tri-, and tetraphosphate derivatives as well as cap dinucleotides with triphosphate or tetraphosphate bridges. In contrast, Giardia lamblia Tgs (GlaTgs2) exemplifies a different clade of guanine-N2 methyltransferase that synthesizes only a dimethylguanosine (DMG) cap structure and cannot per se convert DMG to TMG under any conditions tested. Methylation of benzyl(7)G and ethyl(7)G nucleotides by hTgs1 and GlaTgs2 underscored the importance of guanine N7 alkylation in providing a key pi-cation interaction in the methyl acceptor site. Mimivirus Tgs (MimiTgs) shares with the Giardia homolog the ability to catalyze only a single round of methyl addition at guanine-N2, but is distinguished by its capacity for guanine-N2 methylation in the absence of prior N7 methylation. The relaxed cap specificity of MimiTgs is revealed at alkaline pH. Our findings highlight both stark and subtle differences in acceptor specificity and reaction outcomes among Tgs family members.


Assuntos
Metiltransferases/classificação , Metiltransferases/metabolismo , Análogos de Capuz de RNA/metabolismo , Análogos de Capuz de RNA/farmacologia , Capuzes de RNA/metabolismo , Catálise , Domínio Catalítico/fisiologia , Giardia lamblia/enzimologia , Giardia lamblia/metabolismo , Guanosina/análogos & derivados , Guanosina/metabolismo , Humanos , Concentração de Íons de Hidrogênio , Metilação , Metiltransferases/fisiologia , Mimiviridae/enzimologia , Mimiviridae/metabolismo , Capuzes de RNA/classificação , Especificidade por Substrato
12.
J Biol Chem ; 285(43): 33037-33044, 2010 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-20713356

RESUMO

Cellular eukaryotic mRNAs are capped at their 5' ends with a 7-methylguanosine nucleotide, a structural feature that has been shown to be important for conferring mRNA stability, stimulating mRNA biogenesis (splicing, poly(A) addition, nucleocytoplasmic transport), and increasing translational efficiency. Whereas yeast mRNAs have no additional modifications to the cap, called cap0, higher eukaryotes are methylated at the 2'-O-ribose of the first or the first and second transcribed nucleotides, called cap1 and cap2, respectively. In the present study, we identify the methyltransferase responsible for cap1 formation in human cells, which we call hMTr1 (also known as FTSJD2 and ISG95). We show in vitro that hMTr1 catalyzes specific methylation of the 2'-O-ribose of the first nucleotide of a capped RNA transcript. Using siRNA-mediated knockdown of hMTr1 in HeLa cells, we demonstrate that hMTr1 is responsible for cap1 formation in vivo.


Assuntos
Metiltransferases/química , Metiltransferases/metabolismo , Capuzes de RNA/química , Capuzes de RNA/metabolismo , Ribose/química , Ribose/metabolismo , Catálise , Células HeLa , Humanos , Metilação , Metiltransferases/genética , Capuzes de RNA/genética , Ribose/genética
13.
RNA ; 15(8): 1554-64, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19541768

RESUMO

A new member of the FHIT protein family, designated HIT-45, has been identified in the African trypanosome Trypanosoma brucei. Recombinant HIT-45 proteins were purified from trypanosomal and bacterial protein expression systems and analyzed for substrate specificity using various dinucleoside polyphosphates, including those that contain the 5'-mRNA cap, i.e., m(7)GMP. This enzyme exhibited typical dinucleoside triphosphatase activity (EC 3.6.1.29), having its highest specificity for diadenosine triphosphate (ApppA). However, the trypanosome enzyme contains a unique amino-terminal extension, and hydrolysis of cap dinucleotides with monomethylated guanosine or dimethylated guanosine always yielded m(7)GMP (or m(2,7)GMP) as one of the reaction products. Interestingly, m(7)Gpppm(3)(N6, N6, 2'O)A was preferred among the methylated substrates. This hypermethylated dinucleotide is unique to trypanosomes and may be an intermediate in the decay of cap 4, i.e., m(7)Gpppm(3)(N6, N6, 2'O)Apm(2'O)Apm(2'O)Cpm(2)(N3, 2'O)U, that occurs in these organisms.


Assuntos
Hidrolases Anidrido Ácido/metabolismo , Proteínas de Neoplasias/metabolismo , Proteínas de Protozoários/metabolismo , Trypanosoma brucei brucei/metabolismo , Hidrolases Anidrido Ácido/genética , Sequência de Aminoácidos , Animais , Fosfatos de Dinucleosídeos/metabolismo , Genes de Protozoários , Cinética , Metilação , Modelos Biológicos , Dados de Sequência Molecular , Proteínas de Neoplasias/genética , Proteínas de Protozoários/genética , Capuzes de RNA/química , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , RNA Mensageiro/química , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Homologia de Sequência de Aminoácidos , Especificidade por Substrato , Trypanosoma brucei brucei/genética
14.
J Biol Chem ; 284(45): 31336-49, 2009 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-19710013

RESUMO

The eukaryotic translation initiation factor eIF4E recognizes the mRNA cap, a key step in translation initiation. Here we have characterized eIF4E from the human parasite Schistosoma mansoni. Schistosome mRNAs have either the typical monomethylguanosine (m(7)G) or a trimethylguanosine (m(2,2,7)G) cap derived from spliced leader trans-splicing. Quantitative fluorescence titration analyses demonstrated that schistosome eIF4E has similar binding specificity for both caps. We present the first crystal structure of an eIF4E with similar binding specificity for m(7)G and m(2,2,7)G caps. The eIF4E.m(7)GpppG structure demonstrates that the schistosome protein binds monomethyl cap in a manner similar to that of single specificity eIF4Es and exhibits a structure similar to other known eIF4Es. The structure suggests an alternate orientation of a conserved, key Glu-90 in the cap-binding pocket that may contribute to dual binding specificity and a position for mRNA bound to eIF4E consistent with biochemical data. Comparison of NMR chemical shift perturbations in schistosome eIF4E on binding m(7)GpppG and m(2,2,7)GpppG identified key differences between the two complexes. Isothermal titration calorimetry demonstrated significant thermodynamics differences for the binding process with the two caps (m(7)G versus m(2,2,7)G). Overall the NMR and isothermal titration calorimetry data suggest the importance of intrinsic conformational flexibility in the schistosome eIF4E that enables binding to m(2,2,7)G cap.


Assuntos
Fator de Iniciação 4E em Eucariotos/química , Proteínas de Protozoários/química , Capuzes de RNA/química , Schistosoma mansoni/química , Sequência de Aminoácidos , Animais , Sítios de Ligação , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , Humanos , Cinética , Conformação Molecular , Dados de Sequência Molecular , Ligação Proteica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Capuzes de RNA/genética , Capuzes de RNA/metabolismo , Schistosoma mansoni/genética , Schistosoma mansoni/metabolismo , Esquistossomose mansoni/parasitologia , Alinhamento de Sequência , Especificidade por Substrato
15.
RNA ; 14(6): 1119-31, 2008 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-18430890

RESUMO

Analogs of the mRNA cap are widely employed to study processes involved in mRNA metabolism as well as being useful in biotechnology and medicinal applications. Here we describe synthesis of six dinucleotide cap analogs bearing a single phosphorothioate modification at either the alpha, beta, or gamma position of the 5',5'-triphosphate chain. Three of them were also modified with methyl groups at the 2'-O position of 7-methylguanosine to produce anti-reverse cap analogs (ARCAs). Due to the presence of stereogenic P centers in the phosphorothioate moieties, each analog was obtained as a mixture of two diastereomers, D1 and D2. The mixtures were resolved by RP HPLC, providing 12 different compounds. Fluorescence quenching experiments were employed to determine the association constant (K(AS)) for complexes of the new analogs with eIF4E. We found that phosphorothioate modifications generally stabilized the complex between eIF4E and the cap analog. The most strongly bound phosphorothioate analog (the D1 isomer of the beta-substituted analog m(7)Gpp(S)pG) was characterized by a K(AS) that was more than fourfold higher than that of its unmodified counterpart (m(7)GpppG). All analogs modified in the gamma position were resistant to hydrolysis by the scavenger decapping pyrophosphatase DcpS from both human and Caenorhabditis elegans sources. The absolute configurations of the diastereomers D1 and D2 of analogs modified at the alpha position (i.e., m(7)Gppp(S)G and m(2) (7,2'-O )Gppp(S)G) were established as S(P) and R(P) , respectively, using enzymatic digestion and correlation with the S(P) and R(P) diastereomers of guanosine 5'-O-(1-thiodiphosphate) (GDPalphaS). The analogs resistant to DcpS act as potent inhibitors of in vitro protein synthesis in rabbit reticulocyte lysates.


Assuntos
Proteínas de Caenorhabditis elegans/química , Endorribonucleases/química , Fator de Iniciação 4E em Eucariotos/química , Fosfatos/química , Oligonucleotídeos Fosforotioatos/química , Pirofosfatases/química , Análogos de Capuz de RNA/química , Animais , Guanosina/análogos & derivados , Guanosina/química , Humanos , Hidrólise , Estrutura Molecular , Oligonucleotídeos Fosforotioatos/síntese química , Oligonucleotídeos Fosforotioatos/farmacologia , Biossíntese de Proteínas/efeitos dos fármacos , Análogos de Capuz de RNA/síntese química , Análogos de Capuz de RNA/farmacologia
16.
ACS Omega ; 5(19): 10759-10766, 2020 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-32455195

RESUMO

Decapping scavenger enzymes (DcpSs) are important players in mRNA degradation machinery and conserved in eukaryotes. Importantly, human DcpS is the recognized target for spinal muscular atrophy (SMA) and acute myeloid leukemia (AML) therapy, and has recently been connected to development of intellectual disability. Most recombinant DcpSs used in biochemical and biophysical studies are prepared as tagged proteins, with polyhistidine (His-tag) at the N-terminus or C-terminus. Our work is the first report on the parallel characterization of three versions of DcpSs (native and N- or C-terminally tagged) of three species (humans, Caenorhabditis elegans , and Ascaris suum). The native forms of all three enzymes were prepared by N-(His)10 tag cleavage. Protein thermal stability, measured by differential scanning fluorimetry (DSF), was unaffected in the case of native and tagged versions of human and A. suum DcpS; however, the melting temperature (T m) of C. elagans DcpS of was significantly influenced by the presence of the additional N- or C-tag. To investigate the impact of the tag positioning on the catalytic properties of DcpS, we tested the hydrolytic activity of native DcpS and their His-tagged counterparts toward cap dinucleotides (m7GpppG and m3 2,2,7GpppG) and m7GDP. The kinetic data indicate that dinucleotide substrates are hydrolyzed with comparable efficiency by native human and A. suum DcpS and their His-tagged forms. In contrast, both His-tagged C. elegans DcpSs exhibited higher activity toward m7GpppG than the native enzyme. m7GDP is resistant to enzymatic cleavage by all three forms of human and nematode DcpS.

17.
Methods Enzymol ; 430: 209-45, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17913640

RESUMO

Specific recognition of mRNA 5' cap by eukaryotic initiation factor eIF4E is a rate-limiting step in the translation initiation. Structural determination of the eIF4E-cap complexes, as well as complexes of eIF4E with other proteins regulating its activity, requires complementary experiments that allow for energetic and dynamic aspects of formation and stability of the complexes. Such a combined approach provides information on the binding mechanisms and, hence, may lead to mechanistic models of eIF4E functioning and regulation on the molecular level. This chapter summarizes in detail the method of experiments used to probe the cap-binding center of eIF4E, steady state and stopped-flow fluorescence, and microcalorimetry. The studies were performed with a wide class of synthetic, structurally modified cap analogs that resembles in some respect an application of site directed mutagenesis of the protein. The chapter presents a general recipe as to how to investigate protein-ligand interactions if the protein has no enzymatic activity and both the protein and the ligand absorb and emit UV/VIS radiation in the same spectral ranges.


Assuntos
Fator de Iniciação 4E em Eucariotos , Biossíntese de Proteínas , Análogos de Capuz de RNA , Capuzes de RNA , Animais , Calorimetria , Interpretação Estatística de Dados , Fator de Iniciação 4E em Eucariotos/química , Fator de Iniciação 4E em Eucariotos/metabolismo , Humanos , Camundongos , Estrutura Molecular , Ligação Proteica , Análogos de Capuz de RNA/química , Análogos de Capuz de RNA/metabolismo , Capuzes de RNA/química , Capuzes de RNA/metabolismo , Espectrometria de Fluorescência , Termodinâmica
18.
Methods Enzymol ; 431: 203-27, 2007.
Artigo em Inglês | MEDLINE | ID: mdl-17923237

RESUMO

Synthetic capped RNA transcripts produced by in vitro transcription in the presence of m(7)Gp(3)G have found a wide application in studying such processes as mRNA translation, pre-mRNA splicing, mRNA turnover, and intracellular transport of mRNA and snRNA. However, because of the presence of a 3'-OH on both m(7)Guo and Guo moieties of the cap structure, one-third to one-half of the mRNAs contain a cap incorporated in the reverse orientation. The reverse cap structures bind poorly to eIF4E, the cap binding protein, and reduce overall translational efficiency. We therefore replaced the conventional m(7)Gp(3)G cap by "anti-reverse" cap analogs (ARCAs) in which the 3'-OH of m(7)Guo moiety was substituted by 3'-deoxy or 3'-O-methyl groups, leading to m(7)3'dGp(3)G or m(2)(7,3'-O) Gp(3)G, respectively. The class of ARCAs was extended to analogs possessing an O-methyl group or deoxy group at C2' of m(7)Guo. We have also developed a series of ARCAs containing tetra- and pentaphosphates. mRNAs capped with various ARCAs were translated 1.1- to 2.6-fold more efficiently than their counterparts capped with m(7)Gp(3)G in both in vitro and in vivo systems. In a separate series, a methylene group was introduced between the alpha- and beta-, or beta- and gamma-phosphate moieties, leading to m(2)(7,3'-O)Gpp(CH2)pG and m(2)(7,3'-O)Gp(CH2)ppG. These analogs are resistant to cleavage by the decapping enzymes Dcp1/Dcp2 and DcpS, respectively. mRNA transcripts capped with m(2)(7,3'-O)Gpp(CH2)pG were more stable when introduced into cultured mammalian cells. In this chapter, we describe the synthesis of representative ARCAs and their biophysical and biochemical characterization, with emphasis on practical applications in mRNA translation.


Assuntos
Biossíntese de Proteínas , Análogos de Capuz de RNA/síntese química , Estabilidade de RNA , Animais , Sistema Livre de Células/metabolismo , Células Cultivadas , Fator de Iniciação 4E em Eucariotos/metabolismo , Humanos , Espectroscopia de Ressonância Magnética/métodos , Metano/análogos & derivados , Metano/química , Modelos Biológicos , Conformação de Ácido Nucleico , Ligação Proteica , Biossíntese de Proteínas/efeitos dos fármacos , Análogos de Capuz de RNA/química , Análogos de Capuz de RNA/farmacologia , Estabilidade de RNA/efeitos dos fármacos , Especificidade por Substrato , Transcrição Gênica
19.
Mol Biochem Parasitol ; 153(2): 95-106, 2007 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-17391777

RESUMO

Spliced leader trans-splicing adds a short exon, the spliced leader (SL), to pre-mRNAs to generate 5' ends of mRNAs. Addition of the SL in metazoa also adds a new cap to the mRNA, a trimethylguanosine (m(3)(2,2,7)GpppN) (TMG) that replaces the typical eukaryotic monomethylguanosine (m7GpppN)(m7G) cap. Both trans-spliced (m3(2,2,7)GpppN-SL-RNA) and not trans-spliced (m7GpppN-RNA) mRNAs are present in the same cells. Previous studies using cell-free systems to compare the overall translation of trans-spliced versus non-trans-spliced RNAs led to different conclusions. Here, we examine the contribution of m3(2,2,7)GpppG-cap and SL sequence and other RNA elements to in vivo mRNA translation and stability in nematode embryos. Although 70-90% of all nematode mRNAs have a TMG-cap, the TMG cap does not support translation as well as an m7G-cap. However, when the TMG cap and SL are present together, they synergistically interact and translation is enhanced, indicating both trans-spliced elements are necessary to promote efficient translation. The SL by itself does not act as a cap-independent enhancer of translation. The poly(A)-tail synergistically interacts with the mRNA cap enhancing translation and plays a greater role in facilitating translation of TMG-SL mRNAs. In general, recipient mRNA sequences between the SL and AUG and the 3' UTR do not significantly contribute to the translation of trans-spliced mRNAs. Overall, the combination of TMG cap and SL contribute to mRNA translation and stability in a manner typical of a eukaryotic m7G-cap and 5' UTRs, but they do not differentially enhance mRNA translation or stability compared to RNAs without the trans-spliced elements.


Assuntos
Ascaris/embriologia , Biossíntese de Proteínas , Estabilidade de RNA , Trans-Splicing , Animais , Ascaris/genética , Sequência de Bases , Meia-Vida , Dados de Sequência Molecular , RNA de Helmintos/genética , RNA de Helmintos/metabolismo , RNA Líder para Processamento/genética , RNA Líder para Processamento/metabolismo
20.
Biophys Chem ; 129(2-3): 289-97, 2007 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-17651889

RESUMO

The kinetics of binding of five analogues of the 5'-mRNA cap, differing in size and electric charge, to the eukaryotic initiation factor eIF4E, at 20 degrees C, pH 7.2, and ionic strength of 150 mM, were measured, after mixing solutions of comparable concentrations of the reagents, in a stopped-flow spectrofluorimeter. The registered stopped-flow signals were fitted using an efficient software package, called Dyna Fit, based on a numerical solution of the kinetic rate equations for assumed reaction mechanisms. One-, two-, and three-step binding models were considered. The quality of fits for these models were compared using two statistical criteria: Akaike's Information Criterion and Bayesian Information Criterion. Based on resulting probabilities of the models, it was concluded that for all investigated ligands a one-step binding model has essentially no support in the experimental observations. Our conclusions were also analysed from the perspective of kinetic transients obtained for cap-eIF4E systems under the so called pseudo-first order reaction condition, which result in the linear correlation of the observed association rate constant with ligand concentration. The existence of such a linear correlation is usually considered as proof of a one-step binding mechanism. The kinetic and optical parameters, derived from fitting a two-step cap-binding model with the DynaFit, were used to simulate kinetic transients under pseudo-first order reaction conditions. It appeared that the observed association rate constants derived from these simulated transients are also linearly correlated with the ligand concentration. This indicated that these linear dependencies are not sufficient to conclude a one-step binding.


Assuntos
Fator de Iniciação 4E em Eucariotos/química , Modelos Químicos , Análogos de Capuz de RNA/química , RNA Mensageiro/química , Animais , Concentração de Íons de Hidrogênio , Cinética , Camundongos , Software , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA