RESUMO
Wolbachia pipientis from Drosophila melanogaster (wMel) is an endosymbiotic bacterium that restricts transmission of human pathogenic flaviviruses and alphaviruses, including dengue, Zika, and chikungunya viruses, when introduced into the mosquito vector Aedes aegypti. To date, wMel-infected Ae. aegypti have been released in field trials in 5 countries to evaluate the effectiveness of this strategy for disease control. Despite the success in establishing wMel-infected mosquitoes in wild populations, and the well-characterized antiviral capabilities of wMel, transinfecting different or additional Wolbachia strains into Ae. aegypti may improve disease impact, and perhaps more importantly, could provide a strategy to account for the possible evolution of resistant arboviruses. Here, we report the successful transinfection of Ae. aegypti with the Wolbachia strains wMelCS (D. melanogaster), wRi (D. simulans) and wPip (Culex quinquefasciatus) and assess the effects on Ae. aegypti fitness, cytoplasmic incompatibility, tissue tropism and pathogen blocking in a laboratory setting. The results demonstrate that wMelCS provides a similar degree of protection against dengue virus as wMel following an infectious blood meal, and significantly reduces viral RNA levels beyond that of wMel following a direct challenge with infectious virus in mosquitoes, with no additional fitness cost to the host. The protection provided by wRi is markedly weaker than that of wMelCS, consistent with previous characterisations of these lines in Drosophila, while wPip was found to substantially reduce the fitness of Ae. aegypti. Thus, we determine wMelCS as a key candidate for further testing in field-relevant fitness tests and viremic blood feeding challenges in a clinical setting to determine if it may represent an alternative Wolbachia strain with more desirable attributes than wMel for future field testing.
Assuntos
Aedes/microbiologia , Transmissão Vertical de Doenças Infecciosas/veterinária , Mosquitos Vetores/microbiologia , Wolbachia/crescimento & desenvolvimento , Aedes/crescimento & desenvolvimento , Aedes/fisiologia , Aedes/virologia , Animais , Controle de Doenças Transmissíveis/métodos , Culex/microbiologia , Vírus da Dengue/isolamento & purificação , Vírus da Dengue/fisiologia , Drosophila melanogaster/microbiologia , Drosophila simulans/microbiologia , Feminino , Fertilidade , Masculino , Controle de Mosquitos/métodos , Mosquitos Vetores/fisiologia , Mosquitos Vetores/virologia , Especificidade de Órgãos , Ovário/microbiologia , Ovário/fisiologia , RNA Viral/isolamento & purificação , Glândulas Salivares/microbiologia , Glândulas Salivares/fisiologia , Caracteres Sexuais , Especificidade da Espécie , Análise de Sobrevida , Tropismo Viral , Wolbachia/isolamento & purificaçãoRESUMO
BACKGROUND: The community-associated methicillin-resistant S. aureus (CA-MRSA) ST93 clone is becoming dominant in Australia and is clinically highly virulent. In addition, sepsis and skin infection models demonstrate that ST93 CA-MRSA is the most virulent global clone of S. aureus tested to date. While the determinants of virulence have been studied in other clones of CA-MRSA, the basis for hypervirulence in ST93 CA-MRSA has not been defined. RESULTS: Here, using a geographically and temporally dispersed collection of ST93 isolates we demonstrate that the ST93 population hyperexpresses key CA-MRSA exotoxins, in particular α-hemolysin, in comparison to other global clones. Gene deletion and complementation studies, and virulence comparisons in a murine skin infection model, showed unequivocally that increased expression of α-hemolysin is the key staphylococcal virulence determinant for this clone. Genome sequencing and comparative genomics of strains with divergent exotoxin profiles demonstrated that, like other S. aureus clones, the quorum sensing agr system is the master regulator of toxin expression and virulence in ST93 CA-MRSA. However, we also identified a previously uncharacterized AraC/XylS family regulator (AryK) that potentiates toxin expression and virulence in S. aureus. CONCLUSIONS: These data demonstrate that hyperexpression of α-hemolysin mediates enhanced virulence in ST93 CA-MRSA, and additional control of exotoxin production, in particular α-hemolysin, mediated by regulatory systems other than agr have the potential to fine-tune virulence in CA-MRSA.
Assuntos
Infecções Comunitárias Adquiridas/microbiologia , Infecções Comunitárias Adquiridas/patologia , Expressão Gênica , Proteínas Hemolisinas/biossíntese , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Infecções Cutâneas Estafilocócicas/microbiologia , Infecções Cutâneas Estafilocócicas/patologia , Animais , Austrália , Toxinas Bacterianas/biossíntese , Toxinas Bacterianas/genética , Modelos Animais de Doenças , Feminino , Deleção de Genes , Regulação Bacteriana da Expressão Gênica , Teste de Complementação Genética , Genoma Bacteriano , Proteínas Hemolisinas/genética , Humanos , Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Camundongos , Camundongos Endogâmicos BALB C , Análise de Sequência de DNARESUMO
The occurrence of mutations in methicillin-resistant Staphylococcus aureus (MRSA) during persistent infection leads to antimicrobial resistance but may also impact host-pathogen interactions. Here, we investigate the host-pathogen consequences of 2 mutations arising in clinical MRSA during persistent infection: RpoB H481Y, which is linked to rifampicin resistance, and RelA F128Y, which is associated with an active stringent response. Allelic exchange experiments showed that both mutations cause global transcriptional changes, leading to upregulation of capsule production, with attenuated virulence in a murine bacteremia model and reduced susceptibility to both antimicrobial peptides and whole-blood killing. Disruption of capsule biosynthesis reversed these impacts on innate immune function. These data clearly link MRSA persistence and reduced virulence to the same mechanisms that alter antimicrobial susceptibility. Our study highlights the wider consequences of suboptimal antimicrobial use, where drug resistance and immune escape mechanisms coevolve, thus increasing the likelihood of treatment failure.
Assuntos
RNA Polimerases Dirigidas por DNA/genética , Farmacorresistência Bacteriana/genética , Staphylococcus aureus Resistente à Meticilina/genética , Staphylococcus aureus Resistente à Meticilina/patogenicidade , Infecções Estafilocócicas/imunologia , Fator de Transcrição RelA/genética , Transcrição Gênica/genética , Animais , Cápsulas Bacterianas/genética , Cápsulas Bacterianas/imunologia , Cápsulas Bacterianas/metabolismo , Feminino , Interações Hospedeiro-Patógeno/genética , Interações Hospedeiro-Patógeno/imunologia , Humanos , Imunidade Inata , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Fenótipo , Polimorfismo de Nucleotídeo Único , Rifampina , Regulação para Cima , Virulência/genética , alfa-Defensinas/farmacologia , beta-Defensinas/farmacologiaRESUMO
Community-associated methicillin-resistant Staphylococcus aureus (CA-MRSA) has emerged as a major public health problem around the world. In Australia, ST93-IV[2B] is the dominant CA-MRSA clone and displays significantly greater virulence than other S. aureus. Here, we have examined the evolution of ST93 via genomic analysis of 12 MSSA and 44 MRSA ST93 isolates, collected from around Australia over a 17-year period. Comparative analysis revealed a core genome of 2.6 Mb, sharing greater than 99.7% nucleotide identity. The accessory genome was 0.45 Mb and comprised additional mobile DNA elements, harboring resistance to erythromycin, trimethoprim, and tetracycline. Phylogenetic inference revealed a molecular clock and suggested that a single clone of methicillin susceptible, Panton-Valentine leukocidin (PVL) positive, ST93 S. aureus likely spread from North Western Australia in the early 1970s, acquiring methicillin resistance at least twice in the mid 1990s. We also explored associations between genotype and important MRSA phenotypes including oxacillin MIC and production of exotoxins (α-hemolysin [Hla], δ-hemolysin [Hld], PSMα3, and PVL). High-level expression of Hla is a signature feature of ST93 and reduced expression in eight isolates was readily explained by mutations in the agr locus. However, subtle but significant decreases in Hld were also noted over time that coincided with decreasing oxacillin resistance and were independent of agr mutations. The evolution of ST93 S. aureus is thus associated with a reduction in both exotoxin expression and oxacillin MIC, suggesting MRSA ST93 isolates are under pressure for adaptive change.