Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
1.
Cell ; 187(16): 4193-4212.e24, 2024 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-38942014

RESUMO

Neuroimmune interactions mediate intercellular communication and underlie critical brain functions. Microglia, CNS-resident macrophages, modulate the brain through direct physical interactions and the secretion of molecules. One such secreted factor, the complement protein C1q, contributes to complement-mediated synapse elimination in both developmental and disease models, yet brain C1q protein levels increase significantly throughout aging. Here, we report that C1q interacts with neuronal ribonucleoprotein (RNP) complexes in an age-dependent manner. Purified C1q protein undergoes RNA-dependent liquid-liquid phase separation (LLPS) in vitro, and the interaction of C1q with neuronal RNP complexes in vivo is dependent on RNA and endocytosis. Mice lacking C1q have age-specific alterations in neuronal protein synthesis in vivo and impaired fear memory extinction. Together, our findings reveal a biophysical property of C1q that underlies RNA- and age-dependent neuronal interactions and demonstrate a role of C1q in critical intracellular neuronal processes.


Assuntos
Envelhecimento , Encéfalo , Complemento C1q , Homeostase , Microglia , Neurônios , Ribonucleoproteínas , Animais , Complemento C1q/metabolismo , Camundongos , Microglia/metabolismo , Envelhecimento/metabolismo , Encéfalo/metabolismo , Ribonucleoproteínas/metabolismo , Neurônios/metabolismo , Camundongos Endogâmicos C57BL , Humanos
2.
Cell ; 186(20): 4438-4453.e23, 2023 09 28.
Artigo em Inglês | MEDLINE | ID: mdl-37774681

RESUMO

Cellular perturbations underlying Alzheimer's disease (AD) are primarily studied in human postmortem samples and model organisms. Here, we generated a single-nucleus atlas from a rare cohort of cortical biopsies from living individuals with varying degrees of AD pathology. We next performed a systematic cross-disease and cross-species integrative analysis to identify a set of cell states that are specific to early AD pathology. These changes-which we refer to as the early cortical amyloid response-were prominent in neurons, wherein we identified a transitional hyperactive state preceding the loss of excitatory neurons, which we confirmed by acute slice physiology on independent biopsy specimens. Microglia overexpressing neuroinflammatory-related processes also expanded as AD pathology increased. Finally, both oligodendrocytes and pyramidal neurons upregulated genes associated with ß-amyloid production and processing during this early hyperactive phase. Our integrative analysis provides an organizing framework for targeting circuit dysfunction, neuroinflammation, and amyloid production early in AD pathogenesis.


Assuntos
Doença de Alzheimer , Lobo Frontal , Microglia , Neurônios , Humanos , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Amiloide , Peptídeos beta-Amiloides/metabolismo , Microglia/patologia , Neurônios/patologia , Células Piramidais , Biópsia , Lobo Frontal/patologia , Análise da Expressão Gênica de Célula Única , Núcleo Celular/metabolismo , Núcleo Celular/patologia
3.
Cell ; 184(15): 4048-4063.e32, 2021 07 22.
Artigo em Inglês | MEDLINE | ID: mdl-34233165

RESUMO

Microglia, the resident immune cells of the brain, have emerged as crucial regulators of synaptic refinement and brain wiring. However, whether the remodeling of distinct synapse types during development is mediated by specialized microglia is unknown. Here, we show that GABA-receptive microglia selectively interact with inhibitory cortical synapses during a critical window of mouse postnatal development. GABA initiates a transcriptional synapse remodeling program within these specialized microglia, which in turn sculpt inhibitory connectivity without impacting excitatory synapses. Ablation of GABAB receptors within microglia impairs this process and leads to behavioral abnormalities. These findings demonstrate that brain wiring relies on the selective communication between matched neuronal and glial cell types.


Assuntos
Microglia/metabolismo , Inibição Neural/fisiologia , Ácido gama-Aminobutírico/metabolismo , Animais , Animais Recém-Nascidos , Comportamento Animal , Regulação da Expressão Gênica , Células HEK293 , Humanos , Camundongos , Parvalbuminas/metabolismo , Fenótipo , Receptores de GABA-B/metabolismo , Sinapses/fisiologia , Transcrição Gênica
4.
Nat Immunol ; 24(8): 1382-1390, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37500887

RESUMO

Microglia, the macrophages of the brain parenchyma, are key players in neurodegenerative diseases such as Alzheimer's disease. These cells adopt distinct transcriptional subtypes known as states. Understanding state function, especially in human microglia, has been elusive owing to a lack of tools to model and manipulate these cells. Here, we developed a platform for modeling human microglia transcriptional states in vitro. We found that exposure of human stem-cell-differentiated microglia to synaptosomes, myelin debris, apoptotic neurons or synthetic amyloid-beta fibrils generated transcriptional diversity that mapped to gene signatures identified in human brain microglia, including disease-associated microglia, a state enriched in neurodegenerative diseases. Using a new lentiviral approach, we demonstrated that the transcription factor MITF drives a disease-associated transcriptional signature and a highly phagocytic state. Together, these tools enable the manipulation and functional interrogation of human microglial states in both homeostatic and disease-relevant contexts.


Assuntos
Doença de Alzheimer , Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Humanos , Microglia , Doença de Alzheimer/genética , Encéfalo
5.
Cell ; 174(1): 156-171.e16, 2018 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-29909984

RESUMO

Extracellular proTGF-ß is covalently linked to "milieu" molecules in the matrix or on cell surfaces and is latent until TGF-ß is released by integrins. Here, we show that LRRC33 on the surface of microglia functions as a milieu molecule and enables highly localized, integrin-αVß8-dependent TGF-ß activation. Lrrc33-/- mice lack CNS vascular abnormalities associated with deficiency in TGF-ß-activating integrins but have microglia with a reactive phenotype and after 2 months develop ascending paraparesis with loss of myelinated axons and death by 5 months. Whole bone marrow transplantation results in selective repopulation of Lrrc33-/- brains with WT microglia and halts disease progression. The phenotypes of WT and Lrrc33-/- microglia in the same brain suggest that there is little spreading of TGF-ß activated from one microglial cell to neighboring microglia. Our results suggest that interactions between integrin-bearing cells and cells bearing milieu molecule-associated TGF-ß provide localized and selective activation of TGF-ß.


Assuntos
Proteínas de Transporte/metabolismo , Microglia/metabolismo , Sistema Nervoso/metabolismo , Fator de Crescimento Transformador beta/metabolismo , Animais , Axônios/metabolismo , Transplante de Medula Óssea , Encéfalo/metabolismo , Proteínas de Transporte/classificação , Proteínas de Transporte/genética , Células Cultivadas , Integrinas/metabolismo , Estimativa de Kaplan-Meier , Macrófagos/citologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/citologia , Mutagênese Sítio-Dirigida , Doenças Neurodegenerativas/mortalidade , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia , Filogenia , Ligação Proteica , Precursores de Proteínas/genética , Precursores de Proteínas/metabolismo , Fator de Crescimento Transformador beta/genética
6.
Annu Rev Cell Dev Biol ; 34: 523-544, 2018 10 06.
Artigo em Inglês | MEDLINE | ID: mdl-30089221

RESUMO

An explosion of findings driven by powerful new technologies has expanded our understanding of microglia, the resident immune cells of the central nervous system (CNS). This wave of discoveries has fueled a growing interest in the roles that these cells play in the development of the CNS and in the neuropathology of a diverse array of disorders. In this review, we discuss the crucial roles that microglia play in shaping the brain-from their influence on neurons and glia within the developing CNS to their roles in synaptic maturation and brain wiring-as well as some of the obstacles to overcome when assessing their contributions to normal brain development. Furthermore, we examine how normal developmental functions of microglia are perturbed or remerge in neurodevelopmental and neurodegenerative disease.


Assuntos
Encéfalo/crescimento & desenvolvimento , Sistema Nervoso Central/crescimento & desenvolvimento , Microglia/metabolismo , Neurônios/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/patologia , Sistema Nervoso Central/metabolismo , Sistema Nervoso Central/patologia , Humanos , Microglia/patologia , Doenças Neurodegenerativas , Neuroglia/metabolismo , Neuroglia/patologia , Neurônios/patologia , Transdução de Sinais/genética
8.
Cell ; 166(5): 1295-1307.e21, 2016 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-27565350

RESUMO

Cellular compartments that cannot be biochemically isolated are challenging to characterize. Here we demonstrate the proteomic characterization of the synaptic clefts that exist at both excitatory and inhibitory synapses. Normal brain function relies on the careful balance of these opposing neural connections, and understanding how this balance is achieved relies on knowledge of their protein compositions. Using a spatially restricted enzymatic tagging strategy, we mapped the proteomes of two of the most common excitatory and inhibitory synaptic clefts in living neurons. These proteomes reveal dozens of synaptic candidates and assign numerous known synaptic proteins to a specific cleft type. The molecular differentiation of each cleft allowed us to identify Mdga2 as a potential specificity factor influencing Neuroligin-2's recruitment of presynaptic neurotransmitters at inhibitory synapses.


Assuntos
Moléculas de Adesão Celular Neuronais/metabolismo , Neurônios GABAérgicos/metabolismo , Imunoglobulinas/metabolismo , Glicoproteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Proteoma/metabolismo , Membranas Sinápticas/metabolismo , Animais , Antígenos CD/metabolismo , Ácido Glutâmico/metabolismo , Células HEK293 , Humanos , Camundongos , Moléculas de Adesão de Célula Nervosa/metabolismo , Peroxidase/genética , Peroxidase/metabolismo , Proteômica , Ratos , Receptores de GABA/metabolismo , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Tálamo/metabolismo
9.
Cell ; 161(4): 704-6, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25957677

RESUMO

Cancer is known for opportunistically utilizing resources from its surroundings for its own growth and survival. In this issue of Cell, Venkatesh et al. demonstrate that this also occurs in the brain, identifying neuronal activity-induced secretion of neuroligin-3 as a novel mechanism promoting glioma proliferation.


Assuntos
Neoplasias Encefálicas/patologia , Moléculas de Adesão Celular Neuronais/metabolismo , Proliferação de Células , Glioma/patologia , Proteínas de Membrana/metabolismo , Proteínas do Tecido Nervoso/metabolismo , Animais , Humanos , Masculino
10.
Nature ; 615(7952): 472-481, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36859544

RESUMO

The meninges are densely innervated by nociceptive sensory neurons that mediate pain and headache1,2. Bacterial meningitis causes life-threatening infections of the meninges and central nervous system, affecting more than 2.5 million people a year3-5. How pain and neuroimmune interactions impact meningeal antibacterial host defences are unclear. Here we show that Nav1.8+ nociceptors signal to immune cells in the meninges through the neuropeptide calcitonin gene-related peptide (CGRP) during infection. This neuroimmune axis inhibits host defences and exacerbates bacterial meningitis. Nociceptor neuron ablation reduced meningeal and brain invasion by two bacterial pathogens: Streptococcus pneumoniae and Streptococcus agalactiae. S. pneumoniae activated nociceptors through its pore-forming toxin pneumolysin to release CGRP from nerve terminals. CGRP acted through receptor activity modifying protein 1 (RAMP1) on meningeal macrophages to polarize their transcriptional responses, suppressing macrophage chemokine expression, neutrophil recruitment and dural antimicrobial defences. Macrophage-specific RAMP1 deficiency or pharmacological blockade of RAMP1 enhanced immune responses and bacterial clearance in the meninges and brain. Therefore, bacteria hijack CGRP-RAMP1 signalling in meningeal macrophages to facilitate brain invasion. Targeting this neuroimmune axis in the meninges can enhance host defences and potentially produce treatments for bacterial meningitis.


Assuntos
Encéfalo , Meninges , Meningites Bacterianas , Neuroimunomodulação , Humanos , Encéfalo/imunologia , Encéfalo/microbiologia , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Meninges/imunologia , Meninges/microbiologia , Meninges/fisiopatologia , Dor/etiologia , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Meningites Bacterianas/complicações , Meningites Bacterianas/imunologia , Meningites Bacterianas/microbiologia , Meningites Bacterianas/patologia , Streptococcus agalactiae/imunologia , Streptococcus agalactiae/patogenicidade , Streptococcus pneumoniae/imunologia , Streptococcus pneumoniae/patogenicidade , Nociceptores/metabolismo , Proteína 1 Modificadora da Atividade de Receptores/metabolismo , Macrófagos/imunologia , Macrófagos/metabolismo
11.
Immunity ; 50(4): 955-974, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995509

RESUMO

Neurodegenerative diseases of the central nervous system progressively rob patients of their memory, motor function, and ability to perform daily tasks. Advances in genetics and animal models are beginning to unearth an unexpected role of the immune system in disease onset and pathogenesis; however, the role of cytokines, growth factors, and other immune signaling pathways in disease pathogenesis is still being examined. Here we review recent genetic risk and genome-wide association studies and emerging mechanisms for three key immune pathways implicated in disease, the growth factor TGF-ß, the complement cascade, and the extracellular receptor TREM2. These immune signaling pathways are important under both healthy and neurodegenerative conditions, and recent work has highlighted new functional aspects of their signaling. Finally, we assess future directions for immune-related research in neurodegeneration and potential avenues for immune-related therapies.


Assuntos
Doenças Neurodegenerativas/imunologia , Transdução de Sinais/imunologia , Envelhecimento/imunologia , Animais , Ativação do Complemento , Progressão da Doença , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Gliose/imunologia , Gliose/patologia , Humanos , Imunidade Inata , Inflamação/imunologia , Glicoproteínas de Membrana/imunologia , Camundongos , Camundongos Knockout , Camundongos Transgênicos , Microglia/imunologia , Modelos Imunológicos , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/patologia , Doenças Neurodegenerativas/terapia , Agregação Patológica de Proteínas/imunologia , Receptores Imunológicos/imunologia , Fator de Crescimento Transformador beta/imunologia
12.
Immunity ; 50(1): 253-271.e6, 2019 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-30471926

RESUMO

Microglia, the resident immune cells of the brain, rapidly change states in response to their environment, but we lack molecular and functional signatures of different microglial populations. Here, we analyzed the RNA expression patterns of more than 76,000 individual microglia in mice during development, in old age, and after brain injury. Our analysis uncovered at least nine transcriptionally distinct microglial states, which expressed unique sets of genes and were localized in the brain using specific markers. The greatest microglial heterogeneity was found at young ages; however, several states-including chemokine-enriched inflammatory microglia-persisted throughout the lifespan or increased in the aged brain. Multiple reactive microglial subtypes were also found following demyelinating injury in mice, at least one of which was also found in human multiple sclerosis lesions. These distinct microglia signatures can be used to better understand microglia function and to identify and manipulate specific subpopulations in health and disease.


Assuntos
Envelhecimento/imunologia , Lesões Encefálicas/imunologia , Encéfalo/fisiologia , Microglia/fisiologia , Esclerose Múltipla/imunologia , Adaptação Fisiológica , Envelhecimento/genética , Animais , Lesões Encefálicas/genética , Diferenciação Celular , Doenças Desmielinizantes , Humanos , Longevidade , Camundongos , Camundongos Endogâmicos C57BL , Análise de Sequência de RNA , Análise de Célula Única
13.
EMBO J ; 42(19): e113246, 2023 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-37575021

RESUMO

Neuronal hyperactivity is a key feature of early stages of Alzheimer's disease (AD). Genetic studies in AD support that microglia act as potential cellular drivers of disease risk, but the molecular determinants of microglia-synapse engulfment associated with neuronal hyperactivity in AD are unclear. Here, using super-resolution microscopy, 3D-live imaging of co-cultures, and in vivo imaging of lipids in genetic models, we found that spines become hyperactive upon Aß oligomer stimulation and externalize phosphatidylserine (ePtdSer), a canonical "eat-me" signal. These apoptotic-like spines are targeted by microglia for engulfment via TREM2 leading to amelioration of Aß oligomer-induced synaptic hyperactivity. We also show the in vivo relevance of ePtdSer-TREM2 signaling in microglia-synapse engulfment in the hAPP NL-F knock-in mouse model of AD. Higher levels of apoptotic-like synapses in mice as well as humans that carry TREM2 loss-of-function variants were also observed. Our work supports that microglia remove hyperactive ePtdSer+ synapses in Aß-relevant context and suggest a potential beneficial role for microglia in the earliest stages of AD.


Assuntos
Doença de Alzheimer , Humanos , Camundongos , Animais , Doença de Alzheimer/genética , Microglia , Sinapses , Modelos Animais de Doenças , Peptídeos beta-Amiloides/genética , Glicoproteínas de Membrana/genética , Receptores Imunológicos/genética
14.
Annu Rev Neurosci ; 42: 107-127, 2019 07 08.
Artigo em Inglês | MEDLINE | ID: mdl-31283900

RESUMO

Maturation of neuronal circuits requires selective elimination of synaptic connections. Although neuron-intrinsic mechanisms are important in this process, it is increasingly recognized that glial cells also play a critical role. Without proper functioning of these cells, the number, morphology, and function of synaptic contacts are profoundly altered, resulting in abnormal connectivity and behavioral abnormalities. In addition to their role in synaptic refinement, glial cells have also been implicated in pathological synapse loss and dysfunction following injury or nervous system degeneration in adults. Although mechanisms regulating glia-mediated synaptic elimination are still being uncovered, it is clear this complex process involves many cues that promote and inhibit the removal of specific synaptic connections. Gaining a greater understanding of these signals and the contribution of different cell types will not only provide insight into this critical biological event but also be instrumental in advancing knowledge of brain development and neural disease.


Assuntos
Sistema Nervoso Central/embriologia , Degeneração Neural/fisiopatologia , Doenças do Sistema Nervoso/fisiopatologia , Neuroglia/fisiologia , Neurônios/fisiologia , Sistema Nervoso Periférico/embriologia , Sinapses/fisiologia , Animais , Astrócitos/fisiologia , Evolução Biológica , Sistema Nervoso Central/crescimento & desenvolvimento , Sinais (Psicologia) , Exossomos/fisiologia , Humanos , Invertebrados/embriologia , Microglia/fisiologia , Morfogênese , Bainha de Mielina/fisiologia , Junção Neuromuscular/embriologia , Sistema Nervoso Periférico/crescimento & desenvolvimento , Sinapses/patologia
15.
Trends Immunol ; 45(5): 327-328, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38664101

RESUMO

Lawrence et al. report that fetal cortical boundaries are susceptible to morphogenetic stress that regulates a microglia state resembling postnatal, axon-tract associated microglia (ATM). This state performs a newfound function at these boundaries by preventing the formation of cavitary lesions, mediated in part by Spp1-regulated phagocytosis of fibronectin 1.


Assuntos
Microglia , Microglia/fisiologia , Animais , Humanos , Fagocitose , Córtex Cerebral/embriologia , Córtex Cerebral/citologia , Encéfalo/embriologia , Encéfalo/fisiologia , Fibronectinas/metabolismo
16.
Semin Immunol ; 60: 101651, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-36155944

RESUMO

Microglia are resident macrophages of the brain parenchyma and play an essential role in various aspects of brain development, plasticity, and homeostasis. With recent advances in single-cell RNA-sequencing, heterogeneous microglia transcriptional states have been identified in both animal models of neurodegenerative disorders and patients. However, the functional roles of these microglia states remain unclear; specifically, the question of whether individual states or combinations of states are protective or detrimental (or both) in the context of disease progression. To attempt to answer this, the field has largely relied on studies employing mouse models, human in vitro and chimeric models, and human post-mortem tissue, all of which have their caveats, but used in combination can enable new biological insight and validation of candidate disease pathways and mechanisms. In this review, we summarize our current understanding of disease-associated microglia states and phenotypes in neurodegenerative disorders, discuss important considerations when comparing mouse and human microglia states and functions, and identify areas of microglia biology where species differences might limit our understanding of microglia state.


Assuntos
Doenças Neurodegenerativas , Humanos , Animais , Camundongos , Doenças Neurodegenerativas/metabolismo , Microglia , Macrófagos/metabolismo , Modelos Animais de Doenças , Encéfalo
17.
EMBO J ; 39(16): e104136, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32452062

RESUMO

Developmental synaptic remodeling is important for the formation of precise neural circuitry, and its disruption has been linked to neurodevelopmental disorders such as autism and schizophrenia. Microglia prune synapses, but integration of this synapse pruning with overlapping and concurrent neurodevelopmental processes, remains elusive. Adhesion G protein-coupled receptor ADGRG1/GPR56 controls multiple aspects of brain development in a cell type-specific manner: In neural progenitor cells, GPR56 regulates cortical lamination, whereas in oligodendrocyte progenitor cells, GPR56 controls developmental myelination and myelin repair. Here, we show that microglial GPR56 maintains appropriate synaptic numbers in several brain regions in a time- and circuit-dependent fashion. Phosphatidylserine (PS) on presynaptic elements binds GPR56 in a domain-specific manner, and microglia-specific deletion of Gpr56 leads to increased synapses as a result of reduced microglial engulfment of PS+ presynaptic inputs. Remarkably, a particular alternatively spliced isoform of GPR56 is selectively required for microglia-mediated synaptic pruning. Our present data provide a ligand- and isoform-specific mechanism underlying microglial GPR56-mediated synapse pruning in the context of complex neurodevelopmental processes.


Assuntos
Processamento Alternativo , Microglia/metabolismo , Fosfatidilserinas/metabolismo , Receptores Acoplados a Proteínas G/metabolismo , Sinapses/metabolismo , Animais , Camundongos , Camundongos Transgênicos , Microglia/citologia , Fosfatidilserinas/genética , Ligação Proteica , Isoformas de Proteínas , Receptores Acoplados a Proteínas G/genética , Sinapses/genética
18.
EMBO J ; 39(16): e105380, 2020 08 17.
Artigo em Inglês | MEDLINE | ID: mdl-32657463

RESUMO

Neuronal circuit assembly requires the fine balance between synapse formation and elimination. Microglia, through the elimination of supernumerary synapses, have an established role in this process. While the microglial receptor TREM2 and the soluble complement proteins C1q and C3 are recognized as key players, the neuronal molecular components that specify synapses to be eliminated are still undefined. Here, we show that exposed phosphatidylserine (PS) represents a neuronal "eat-me" signal involved in microglial-mediated pruning. In hippocampal neuron and microglia co-cultures, synapse elimination can be partially prevented by blocking accessibility of exposed PS using Annexin V or through microglial loss of TREM2. In vivo, PS exposure at both hippocampal and retinogeniculate synapses and engulfment of PS-labeled material by microglia occurs during established developmental periods of microglial-mediated synapse elimination. Mice deficient in C1q, which fail to properly refine retinogeniculate connections, have elevated presynaptic PS exposure and reduced PS engulfment by microglia. These data provide mechanistic insight into microglial-mediated synapse pruning and identify a novel role of developmentally regulated neuronal PS exposure that is common among developing brain structures.


Assuntos
Hipocampo/metabolismo , Microglia/metabolismo , Neurônios/metabolismo , Fosfatidilserinas/metabolismo , Sinapses/metabolismo , Animais , Técnicas de Cocultura , Complemento C1q/genética , Complemento C1q/metabolismo , Complemento C3/genética , Complemento C3/metabolismo , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Camundongos , Camundongos Knockout , Fosfatidilserinas/genética , Receptores Imunológicos/genética , Receptores Imunológicos/metabolismo , Sinapses/genética
19.
Brain Behav Immun ; 119: 317-332, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38552925

RESUMO

Complement proteins facilitate synaptic elimination during neurodevelopmental pruning, but neural complement regulation is not well understood. CUB and Sushi Multiple Domains 1 (CSMD1) can regulate complement activity in vitro, is expressed in the brain, and is associated with increased schizophrenia risk. Beyond this, little is known about CSMD1 including whether it regulates complement activity in the brain or otherwise plays a role in neurodevelopment. We used biochemical, immunohistochemical, and proteomic techniques to examine the regional, cellular, and subcellular distribution as well as protein interactions of CSMD1 in the brain. To evaluate whether CSMD1 is involved in complement-mediated synapse elimination, we examined Csmd1-knockout mice and CSMD1-knockout human stem cell-derived neurons. We interrogated synapse and circuit development of the mouse visual thalamus, a process that involves complement pathway activity. We also quantified complement deposition on synapses in mouse visual thalamus and on cultured human neurons. Finally, we assessed uptake of synaptosomes by cultured microglia. We found that CSMD1 is present at synapses and interacts with complement proteins in the brain. Mice lacking Csmd1 displayed increased levels of complement component C3, an increased colocalization of C3 with presynaptic terminals, fewer retinogeniculate synapses, and aberrant segregation of eye-specific retinal inputs to the visual thalamus during the critical period of complement-dependent refinement of this circuit. Loss of CSMD1 in vivo enhanced synaptosome engulfment by microglia in vitro, and this effect was dependent on activity of the microglial complement receptor, CR3. Finally, human stem cell-derived neurons lacking CSMD1 were more vulnerable to complement deposition. These data suggest that CSMD1 can function as a regulator of complement-mediated synapse elimination in the brain during development.


Assuntos
Encéfalo , Proteínas de Membrana , Camundongos Knockout , Neurônios , Sinapses , Animais , Humanos , Camundongos , Encéfalo/metabolismo , Células Cultivadas , Complemento C3/metabolismo , Proteínas do Sistema Complemento/metabolismo , Proteínas de Membrana/metabolismo , Proteínas de Membrana/genética , Camundongos Endogâmicos C57BL , Microglia/metabolismo , Neurônios/metabolismo , Sinapses/metabolismo , Tálamo/metabolismo
20.
Immunity ; 42(4): 600-2, 2015 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-25902477

RESUMO

Mutations in methyl-CpG-binding protein 2 (MECP2) underlie most cases of Rett Syndrome, a neurodevelopmental disorder with neurological and somatic impairments. In this issue of Immunity, Cronk et al. (2015) find that macrophages in MeCP2-deficient mice are abnormal in number, as well as in glucocorticoid, hypoxia, and inflammatory responses.


Assuntos
Ilhas de CpG/imunologia , Epigênese Genética , Macrófagos Peritoneais/imunologia , Proteína 2 de Ligação a Metil-CpG/imunologia , Microglia/imunologia , Síndrome de Rett/imunologia , Animais , Feminino , Humanos , Masculino
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA