Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Curr Biol ; 17(10): 834-43, 2007 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-17475495

RESUMO

BACKGROUND: Centrosomes have important roles in many aspects of cell organization, and aberrations in their number and function are associated with various diseases, including cancer. Centrosomes consist of a pair of centrioles surrounded by a pericentriolar matrix (PCM), and their replication is tightly regulated. Here, we investigate the effects of overexpressing the three proteins known to be required for centriole replication in Drosophila-DSas-6, DSas-4, and Sak. RESULTS: By directly observing centriole replication in living Drosophila embryos, we show that the overexpression of GFP-DSas-6 can drive extra rounds of centriole replication within a single cell cycle. Extra centriole-like structures also accumulate in brain cells that overexpress either GFP-DSas-6 or GFP-Sak, but not DSas-4-GFP. No extra centrioles accumulate in spermatocytes that overexpress any of these three proteins. Most remarkably, the overexpression of any one of these three proteins results in the rapid de novo formation of many hundreds of centriole-like structures in unfertilized eggs, which normally do not contain centrioles. CONCLUSIONS: Our data suggest that the levels of centriolar DSas-6 determine the number of daughter centrioles formed during centriole replication. Overexpression of either DSas-6 or Sak can induce the formation of extra centrioles in some tissues but not others, suggesting that centriole replication is regulated differently in different tissues. The finding that the overexpression of DSas-4, DSas-6, or Sak can rapidly induce the de novo formation of centriole-like structures in Drosophila eggs suggests that this process results from the stabilization of centriole-precursors that are normally present in the egg.


Assuntos
Centríolos/metabolismo , Proteínas de Drosophila/fisiologia , Drosophila/metabolismo , Animais , Encéfalo/metabolismo , Encéfalo/ultraestrutura , Drosophila/embriologia , Drosophila/ultraestrutura , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Embrião não Mamífero/metabolismo , Proteínas de Fluorescência Verde/análise , Larva/metabolismo , Larva/ultraestrutura , Masculino , Proteínas Associadas aos Microtúbulos , Oogênese , Óvulo/metabolismo , Óvulo/ultraestrutura , Proteínas Serina-Treonina Quinases , Proteínas Recombinantes de Fusão/análise , Espermatócitos/metabolismo , Espermatócitos/ultraestrutura
2.
Curr Biol ; 17(17): 1498-503, 2007 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-17716897

RESUMO

Centrosome asymmetry plays a key role in ensuring the asymmetric division of Drosophila neural stem cells (neuroblasts [NBs]) and male germline stem cells (GSCs) [1-3]. In both cases, one centrosome is anchored close to a specific cortical region during interphase, thus defining the orientation of the spindle during the ensuing mitosis. To test whether asymmetric centrosome behavior is a general feature of stem cells, we have studied female GSCs, which divide asymmetrically, producing another GSC and a cystoblast. The cystoblast then divides and matures into an oocyte, a process in which centrosomes exhibit a series of complex behaviors proposed to play a crucial role in oogenesis [4-6]. We show that the interphase centrosome does not define spindle orientation in female GSCs and that DSas-4 mutant GSCs [7], lacking centrioles and centrosomes, invariably divide asymmetrically to produce cystoblasts that proceed normally through oogenesis-remarkably, oocyte specification, microtubule organization, and mRNA localization are all unperturbed. Mature oocytes can be fertilized, but embryos that cannot support centriole replication arrest very early in development. Thus, centrosomes are dispensable for oogenesis but essential for early embryogenesis. These results reveal that asymmetric centrosome behavior is not an essential feature of stem cell divisions.


Assuntos
Centríolos/fisiologia , Drosophila/fisiologia , Desenvolvimento Embrionário/fisiologia , Oogênese/fisiologia , Células-Tronco Totipotentes/fisiologia , Animais , Proteínas de Drosophila/fisiologia , Feminino , Proteínas Associadas aos Microtúbulos , Microtúbulos/fisiologia , Oócitos/fisiologia , RNA Mensageiro/metabolismo
3.
Dev Cell ; 19(6): 913-9, 2010 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-21145506

RESUMO

Centrioles form cilia and centrosomes, organelles whose dysfunction is increasingly linked to human disease. Centriole duplication relies on a few conserved proteins (ZYG-1/Sak/Plk4, SAS-6, SAS-5/Ana2, and SAS-4), and is often initiated by the formation of an inner "cartwheel" structure. Here, we show that overexpressed Drosophila Sas-6 and Ana2 coassemble into extended tubules (SAStubules) that bear a striking structural resemblance to the inner cartwheel of the centriole. SAStubules specifically interact with centriole proximal ends, but extra DSas-6/Ana2 is only recruited onto centrioles when Sak/Plk4 kinase is also overexpressed. This extra centriolar DSas-6/Ana2 induces centriole overduplication and, surprisingly, increased centriole cohesion. Intriguingly, we observe tubules that are structurally similar to SAStubules linking the engaged centrioles in normal wild-type cells. We conclude that DSas-6 and Ana2 normally cooperate to drive the formation of the centriole inner cartwheel and that they promote both centriole duplication and centriole cohesion in a Sak/Plk4-dependent manner.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Centríolos/ultraestrutura , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/crescimento & desenvolvimento , Drosophila melanogaster/metabolismo , Animais , Animais Geneticamente Modificados , Proteínas de Ciclo Celular/genética , Proteínas de Drosophila/genética , Drosophila melanogaster/genética , Expressão Gênica , Genes de Insetos , Humanos , Masculino , Microscopia Eletrônica de Transmissão , Multimerização Proteica , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Espermatócitos/metabolismo , Espermatócitos/ultraestrutura
4.
J Cell Biol ; 188(3): 313-23, 2010 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-20123993

RESUMO

In Caenorhabditis elegans, five proteins are required for centriole duplication: SPD-2, ZYG-1, SAS-5, SAS-6, and SAS-4. Functional orthologues of all but SAS-5 have been found in other species. In Drosophila melanogaster and humans, Sak/Plk4, DSas-6/hSas-6, and DSas-4/CPAP-orthologues of ZYG-1, SAS-6, and SAS-4, respectively-are required for centriole duplication. Strikingly, all three fly proteins can induce the de novo formation of centriole-like structures when overexpressed in unfertilized eggs. Here, we find that of eight candidate duplication factors identified in cultured fly cells, only two, Ana2 and Asterless (Asl), share this ability. Asl is now known to be essential for centriole duplication in flies, but no equivalent protein has been found in worms. We show that Ana2 is the likely functional orthologue of SAS-5 and that it is also related to the vertebrate STIL/SIL protein family that has been linked to microcephaly in humans. We propose that members of the SAS-5/Ana2/STIL family of proteins are key conserved components of the centriole duplication machinery.


Assuntos
Proteínas de Ciclo Celular/metabolismo , Centríolos/metabolismo , Proteínas de Drosophila/metabolismo , Animais , Caenorhabditis , Proteínas de Caenorhabditis elegans/genética , Proteínas de Caenorhabditis elegans/metabolismo , Proteínas de Ciclo Celular/genética , Centríolos/genética , Proteínas de Drosophila/genética , Drosophila melanogaster , Ovos , Humanos , Especificidade da Espécie
5.
J Cell Biol ; 187(3): 355-63, 2009 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-19948479

RESUMO

Recent studies have identified a conserved "core" of proteins that are required for centriole duplication. A small number of additional proteins have recently been identified as potential duplication factors, but it is unclear whether any of these proteins are components of the core duplication machinery. In this study, we investigate the function of one of these proteins, Drosophila melanogaster Ana3. We show that Ana3 is present in centrioles and basal bodies, but its behavior is distinct from that of the core duplication proteins. Most importantly, we find that Ana3 is required for the structural integrity of both centrioles and basal bodies and for centriole cohesion, but it is not essential for centriole duplication. We show that Ana3 has a mammalian homologue, Rotatin, that also localizes to centrioles and basal bodies and appears to be essential for cilia function. Thus, Ana3 defines a conserved family of centriolar proteins and plays an important part in ensuring the structural integrity of centrioles and basal bodies.


Assuntos
Centríolos/ultraestrutura , Proteínas de Drosophila/fisiologia , Drosophila/metabolismo , Animais , Proteínas de Ciclo Celular , Centríolos/metabolismo , Drosophila/genética , Drosophila/ultraestrutura , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Células HeLa , Humanos , Proteínas de Membrana/análise , Proteínas de Membrana/metabolismo , Proteínas de Membrana/fisiologia , Camundongos
6.
Neural Dev ; 2: 1, 2007 Jan 05.
Artigo em Inglês | MEDLINE | ID: mdl-17207270

RESUMO

BACKGROUND: The choice of a stem cell to divide symmetrically or asymmetrically has profound consequences for development and disease. Unregulated symmetric division promotes tumor formation, whereas inappropriate asymmetric division affects organ morphogenesis. Despite its importance, little is known about how spindle positioning is regulated. In some tissues cell fate appears to dictate the type of cell division, whereas in other tissues it is thought that stochastic variation in spindle position dictates subsequent sibling cell fate. RESULTS: Here we investigate the relationship between neural progenitor identity and spindle positioning in the Drosophila optic lobe. We use molecular markers and live imaging to show that there are two populations of progenitors in the optic lobe: symmetrically dividing neuroepithelial cells and asymmetrically dividing neuroblasts. We use genetically marked single cell clones to show that neuroepithelial cells give rise to neuroblasts. To determine if a change in spindle orientation can trigger a neuroepithelial to neuroblast transition, we force neuroepithelial cells to divide along their apical/basal axis by misexpressing Inscuteable. We find that this does not induce neuroblasts, nor does it promote premature neuronal differentiation. CONCLUSION: We show that symmetrically dividing neuroepithelial cells give rise to asymmetrically dividing neuroblasts in the optic lobe, and that regulation of spindle orientation and division symmetry is a consequence of cell type specification, rather than a mechanism for generating cell type diversity.


Assuntos
Divisão Celular/fisiologia , Drosophila melanogaster/crescimento & desenvolvimento , Neurônios/citologia , Lobo Óptico de Animais não Mamíferos/crescimento & desenvolvimento , Fuso Acromático/fisiologia , Células-Tronco/citologia , Animais , Padronização Corporal/fisiologia , Linhagem da Célula/fisiologia , Polaridade Celular/fisiologia , Proliferação de Células , Citocinese/fisiologia , Drosophila melanogaster/citologia , Drosophila melanogaster/metabolismo , Larva , Células Neuroepiteliais/citologia , Lobo Óptico de Animais não Mamíferos/citologia , Lobo Óptico de Animais não Mamíferos/metabolismo , Organogênese/fisiologia , Fuso Acromático/ultraestrutura , Células-Tronco/classificação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA