Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
bioRxiv ; 2023 Oct 06.
Artigo em Inglês | MEDLINE | ID: mdl-37693545

RESUMO

The current understanding of the neuromodulatory role of the median raphe nucleus (MRN) is primarily based on its putative serotonergic output. However, a significant proportion of raphe neurons are glutamatergic. The present study investigated how glutamatergic MRN input modulates the medial prefrontal cortex (mPFC), a critical component of the fear circuitry. Our studies show that VGLUT3-expressing MRN neurons modulate VGLUT3- and somatostatin-expressing neurons in the mPFC. Consistent with this modulation of mPFC GABAergic neurons, activation of MRN (VGLUT3) neurons suppresses mPFC pyramidal neuron activity and attenuates fear memory in female but not male mice. In agreement with these female-specific effects, we observed sex differences in glutamatergic transmission onto MRN (VGLUT3) neurons and mPFC (VGLUT3) neuron-mediated dual release of glutamate and GABA. Thus, our results demonstrate a cell type-specific modulation of the mPFC by MRN (VGLUT3) neurons and reveal a sex-specific role of this neuromodulation in mPFC synaptic plasticity and fear memory.

2.
Sci Adv ; 9(45): eadg4800, 2023 11 10.
Artigo em Inglês | MEDLINE | ID: mdl-37948526

RESUMO

A substantial proportion of raphe neurons are glutamatergic. However, little is known about how these glutamatergic neurons modulate the forebrain. We investigated how glutamatergic median raphe nucleus (MRN) input modulates the medial prefrontal cortex (mPFC), a critical component of fear circuitry. We show that vesicular glutamate transporter 3 (VGLUT3)-expressing MRN neurons activate VGLUT3- and somatostatin-expressing neurons in the mPFC. Consistent with this modulation of mPFC GABAergic neurons, activation of MRN (VGLUT3) neurons enhances GABAergic transmission in mPFC pyramidal neurons and attenuates fear memory in female but not male mice. Serotonin plays a key role in MRN (VGLUT3) neuron-mediated GABAergic plasticity in the mPFC. In agreement with these female-specific effects, we observed sex differences in glutamatergic transmission onto MRN (VGLUT3) neurons and in mPFC (VGLUT3) neuron-mediated dual release of glutamate and GABA. Our results demonstrate a cell type-specific modulation of the mPFC by MRN (VGLUT3) neurons and reveal a sex-specific role of this neuromodulation in mPFC synaptic plasticity.


Assuntos
Núcleos da Rafe , Proteínas Vesiculares de Transporte de Glutamato , Feminino , Camundongos , Animais , Masculino , Proteínas Vesiculares de Transporte de Glutamato/metabolismo , Núcleos da Rafe/metabolismo , Células Piramidais/metabolismo , Neurônios GABAérgicos/metabolismo , Córtex Pré-Frontal/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA