Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 62(16): 2382-2390, 2023 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-37531469

RESUMO

PARP1, upon binding to damaged DNA, is activated to perform poly ADP-ribosylation (PARylation) on itself and other proteins, which leads to relaxation of chromatin and recruitment of DNA repair factors. HPF1 was recently discovered as a protein cofactor of PARP1 that directs preferential PARylation of histones over other targets by contributing to and altering the PARP1 active site. Inhibitors of PARP1 (PARPi) are used in the treatment of BRCA-/- cancers, but the basis for their potency in cells, especially in the context of HPF1, is not fully understood. Here, we demonstrate the simple one-step association for eight different PARPi to PARP1 with measured rates of association (kon) of 0.8-6 µM-1 s-1. We find only minor differences in these on rates when comparing PARP1 with the PARP1-HPF1 complex. By characterizing the rates of dissociation (koff) and the binding constants (KD) for two more recently discovered PARPi, we find, for example, that saruparib has a half-life for dissociation of 22.5 h and fluzoparib has higher affinity for PARP1 in the presence of HPF1, just like the structurally related compound olaparib. By using the measured KD and kon to calculate koff, we find that the potency of PARPi in cells correlates best with the koff from the PARP1-HPF1 complex. Our data suggest that dissociation of a drug compound from the PARP1-HPF1 complex should be the parameter of choice for guiding the development of next-generation PARPi.


Assuntos
Dano ao DNA , Histonas , Poli(ADP-Ribose) Polimerase-1/metabolismo , Histonas/metabolismo , Reparo do DNA , Poli ADP Ribosilação
2.
SLAS Discov ; 28(8): 394-401, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37844763

RESUMO

PARP1/2 inhibitors (PARPi) are effective clinically used drugs for the treatment of cancers with BRCA deficiencies. PARPi have had limited success and applicability beyond BRCA deficient cancers, and their effect is diminished by resistance mechanisms. The recent discovery of Histone PARylation Factor (HPF1) and the role it plays in the PARylation reaction by forming a shared active site with PARP1 raises the possibility that novel inhibitors that target the PARP1-HPF1 complex can be identified. Herein we describe a simple and cost-effective high-throughput screening (HTS) method aimed at discovering inhibitors of the PARP1-HPF1 complex. Upon HTS validation, we first applied this method to screen a small PARP-focused library of compounds and then scale up our approach using robotic automation to conduct a pilot screen of 10,000 compounds and validating >100 hits. This work demonstrates for the first time the capacity to discover potent inhibitors of the PARP1-HPF1 complex, which may have utility as probes to better understand the DNA damage response and as therapeutics for cancer.


Assuntos
Histonas , Neoplasias , Inibidores de Poli(ADP-Ribose) Polimerases , Humanos , Domínio Catalítico , Histonas/metabolismo , Neoplasias/tratamento farmacológico , Proteínas Nucleares/química , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Poli(ADP-Ribose) Polimerase-1/genética , Poli ADP Ribosilação , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA