RESUMO
The role of future forests in global biogeochemical cycles will depend on how different tree species respond to climate. Interpreting the response of forest growth to climate change requires an understanding of the temporal and spatial patterns of seasonal climatic influences on the growth of common tree species. We constructed a new network of 310 tree-ring width chronologies from three common tree species (Quercus robur, Pinus sylvestris and Fagus sylvatica) collected for different ecological, management and climate purposes in the south Baltic Sea region at the border of three bioclimatic zones (temperate continental, oceanic, southern boreal). The major climate factors (temperature, precipitation, drought) affecting tree growth at monthly and seasonal scales were identified. Our analysis documents that 20th century Scots pine and deciduous species growth is generally controlled by different climate parameters, and that summer moisture availability is increasingly important for the growth of deciduous species examined. We report changes in the influence of winter climate variables over the last decades, where a decreasing influence of late winter temperature on deciduous tree growth and an increasing influence of winter temperature on Scots pine growth was found. By comparing climate-growth responses for the 1943-1972 and 1973-2002 periods and characterizing site-level growth response stability, a descriptive application of spatial segregation analysis distinguished sites with stable responses to dominant climate parameters (northeast of the study region), and sites that collectively showed unstable responses to winter climate (southeast of the study region). The findings presented here highlight the temporally unstable and nonuniform responses of tree growth to climate variability, and that there are geographical coherent regions where these changes are similar. Considering continued climate change in the future, our results provide important regional perspectives on recent broad-scale climate-growth relationships for trees across the temperate to boreal forest transition around the south Baltic Sea.
RESUMO
To enhance our understanding of forest carbon sequestration, climate change mitigation and drought impact on forest ecosystems, the availability of high-resolution annual forest growth maps based on tree-ring width (TRW) would provide a significant advancement to the field. Site-specific characteristics, which can be approximated by high-resolution Earth observation by satellites (EOS), emerge as crucial drivers of forest growth, influencing how climate translates into tree growth. EOS provides information on surface reflectance related to forest characteristics and thus can potentially improve the accuracy of forest growth models based on TRW. Through the modelling of TRW using EOS, climate and topography data, we showed that species-specific models can explain up to 52 % of model variance (Quercus petraea), while combining different species results in relatively poor model performance (R2 = 13 %). The integration of EOS into models based solely on climate and elevation data improved the explained variance by 6 % on average. Leveraging these insights, we successfully generated a map of annual TRW for the year 2021. We employed the area of applicability (AOA) approach to delineate the range in which our models are deemed valid. The calculated AOA for the established forest-type models was 73 % of the study region, indicating robust spatial applicability. Notably, unreliable predictions predominantly occurred in the climate margins of our dataset. In conclusion, our large-scale assessment underscores the efficacy of combining climate, EOS and topographic data to develop robust models for mapping annual TRW. This research not only fills a critical void in the current understanding of forest growth dynamics but also highlights the potential of integrated data sources for comprehensive ecosystem assessments.
Assuntos
Ecossistema , Tecnologia de Sensoriamento Remoto , Florestas , Árvores , Mudança Climática , Europa Oriental , Europa (Continente)RESUMO
In the upcoming United Nations Decade on Ecosystem Restoration, a global challenge for scientists and practitioners will be to develop a well-functioning seed production sector on the basis of a sound species-selection process1. To balance crop production with biodiversity functions in Mediterranean woody crops, agroecological practices2 suggest the need to move towards the establishment of herbaceous ground covers3-5. However, establishing such plants requires a supply of suitable native seeds, which is currently unavailable. Here, we present a comprehensive process for selecting regionally adapted species that also emphasizes considerations for seed production6. Using olive groves as a target system, we found that research on ground covers for regenerative agriculture has largely overlooked native species at the expense of commercial and ill-suited varieties. Our assessment of native annuals showed that 85% of the grasses and forbs evaluated exhibit a suite of ecological and production traits that can be tailored to meet the requirements of farmers, seed producers and environmental agencies. These findings suggest that many native species are neglected in agronomic research, despite being potentially suitable for ground covers and for supporting a nature-based solution7 in restoration practice. The framework used here may be applied in other agroecosystems to follow global greening initiatives and to support native seed production to scale up restoration8-10.