Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 20
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 24(28): 8535-8541, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38968422

RESUMO

Polymorph engineering involves the manipulation of material properties through controlled structural modification and is a candidate technique for creating unique two-dimensional transition metal dichalcogenide (TMDC) nanodevices. Despite its promise, polymorph engineering of magnetic TMDC monolayers has not yet been demonstrated. Here we grow FeSe2 monolayers via molecular beam epitaxy and find that they have great promise for magnetic polymorph engineering. Using scanning tunneling microscopy (STM) and spectroscopy (STS), we find that FeSe2 monolayers predominantly display a 1T' structural polymorph at 5 K. Application of voltage pulses from an STM tip causes a local, reversible transition from the 1T' phase to the 1T phase. Density functional theory calculations suggest that this single-layer structural phase transition is accompanied by a magnetic transition from an antiferromagnetic to a ferromagnetic configuration. These results open new possibilities for creating functional magnetic devices with TMDC monolayers via polymorph engineering.

2.
Proc Natl Acad Sci U S A ; 117(26): 14838-14842, 2020 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-32541061

RESUMO

The reliability by which molecular motor proteins convert undirected energy input into directed motion or transport has inspired the design of innumerable artificial molecular motors. We have realized and investigated an artificial molecular motor applying scanning tunneling microscopy (STM), which consists of a single acetylene (C2H2) rotor anchored to a chiral atomic cluster provided by a PdGa(111) surface that acts as a stator. By breaking spatial inversion symmetry, the stator defines the unique sense of rotation. While thermally activated motion is nondirected, inelastic electron tunneling triggers rotations, where the degree of directionality depends on the magnitude of the STM bias voltage. Below 17 K and 30-mV bias voltage, a constant rotation frequency is observed which bears the fundamental characteristics of quantum tunneling. The concomitantly high directionality, exceeding 97%, implicates the combination of quantum and nonequilibrium processes in this regime, being the hallmark of macroscopic quantum tunneling. The acetylene on PdGa(111) motor therefore pushes molecular machines to their extreme limits, not just in terms of size, but also regarding structural precision, degree of directionality, and cross-over from classical motion to quantum tunneling. This ultrasmall motor thus opens the possibility to investigate in operando effects and origins of energy dissipation during tunneling events, and, ultimately, energy harvesting at the atomic scales.

3.
Small ; 18(31): e2202301, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35713270

RESUMO

The electronic, optical, and magnetic properties of graphene nanoribbons (GNRs) can be engineered by controlling their edge structure and width with atomic precision through bottom-up fabrication based on molecular precursors. This approach offers a unique platform for all-carbon electronic devices but requires careful optimization of the growth conditions to match structural requirements for successful device integration, with GNR length being the most critical parameter. In this work, the growth, characterization, and device integration of 5-atom wide armchair GNRs (5-AGNRs) are studied, which are expected to have an optimal bandgap as active material in switching devices. 5-AGNRs are obtained via on-surface synthesis under ultrahigh vacuum conditions from Br- and I-substituted precursors. It is shown that the use of I-substituted precursors and the optimization of the initial precursor coverage quintupled the average 5-AGNR length. This significant length increase allowed the integration of 5-AGNRs into devices and the realization of the first field-effect transistor based on narrow bandgap AGNRs that shows switching behavior at room temperature. The study highlights that the optimized growth protocols can successfully bridge between the sub-nanometer scale, where atomic precision is needed to control the electronic properties, and the scale of tens of nanometers relevant for successful device integration of GNRs.

4.
Chimia (Aarau) ; 76(3): 203-211, 2022 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38069734

RESUMO

On-surface synthesis has become a powerful approach to produce low-dimensional carbon-based nanostructures with atomistic precision. A large variety of analytical tools and methods are available to provide efficient monitoring of on-surface reactions, among which, scanning probe microscopy (SPM) has proven to be particularly efficient to characterize reaction intermediates and products down to the atomic scale. Nevertheless, due to limited temporal resolution, difficulties to explore the full temperature range, and lack of identifying the chemical environment of all elements involved in on-surface processes, SPM is ideally complemented with temperature programmed X-ray photoelectron spectroscopy (TP-XPS). In this short review, we aim to unveil some of the capabilities of synchrotron based TP-XPS reporting on our own research on Ullmann-type on-surface coupling reactions.

5.
Angew Chem Int Ed Engl ; 59(33): 14106-14110, 2020 Aug 10.
Artigo em Inglês | MEDLINE | ID: mdl-32338418

RESUMO

In the emerging field of on-surface synthesis, dehalogenative aryl-aryl coupling is unarguably the most prominent tool for the fabrication of covalently bonded carbon-based nanomaterials. Despite its importance, the reaction kinetics are still poorly understood. Here we present a comprehensive temperature-programmed x-ray photoelectron spectroscopy investigation of reaction kinetics and energetics in the prototypical on-surface dehalogenative polymerization of 4,4''-dibromo-p-terphenyl into poly(para-phenylene) on two coinage metal surfaces, Cu(111) and Au(111). We find clear evidence for reversible dehalogenation on Au(111), which is inhibited on Cu(111) owing to the formation of organometallic intermediates. The incorporation of reversible dehalogenation in the reaction rate equations leads to excellent agreement with experimental data and allows extracting the relevant energy barriers. Our findings deepen the mechanistic understanding and call for its reassessment for surface-confined aryl-aryl coupling on the most frequently used metal substrates.

6.
Angew Chem Int Ed Engl ; 59(41): 18179-18183, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32589816

RESUMO

Enantioselectivity in heterogeneous catalysis strongly depends on the chirality transfer between catalyst surface and all reactants, intermediates, and the product along the reaction pathway. Herein we report the first enantioselective on-surface synthesis of molecular structures from an initial racemic mixture and without the need of enantiopure modifier molecules. The reaction consists of a trimerization via an unidentified bonding motif of prochiral 9-ethynylphenanthrene (9-EP) upon annealing to 500 K on the chiral Pd3 -terminated PdGa{111} surfaces into essentially enantiopure, homochiral 9-EP propellers. The observed behavior strongly contrasts the reaction of 9-EP on the chiral Pd1 -terminated PdGa{111} surfaces, where 9-EP monomers that are in nearly enantiopure configuration, dimerize without enantiomeric excess. Our findings demonstrate strong chiral recognition and a significant ensemble effect in the PdGa system, hence highlighting the huge potential of chiral intermetallic compounds for enantioselective synthesis and underlining the importance to control the catalytically active sites at the atomic level.

7.
Angew Chem Int Ed Engl ; 59(32): 13281-13287, 2020 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-32350979

RESUMO

Cumulene compounds are notoriously difficult to prepare and study because their reactivity increases dramatically with the increasing number of consecutive double bonds. In this respect, the emerging field of on-surface synthesis provides exceptional opportunities because it relies on reactions on clean metal substrates under well-controlled ultrahigh-vacuum conditions. Here we report the on-surface synthesis of a polymer linked by cumulene-like bonds on a Au(111) surface via sequential thermally activated dehalogenative C-C coupling of a tribenzoazulene precursor equipped with two dibromomethylene groups. The structure and electronic properties of the resulting polymer with cumulene-like pentagon-pentagon and heptagon-heptagon connections have been investigated by means of scanning probe microscopy and spectroscopy methods and X-ray photoelectron spectroscopy, complemented by density functional theory calculations. Our results provide perspectives for the on-surface synthesis of cumulene-containing compounds, as well as protocols relevant to the stepwise fabrication of carbon-carbon bonds on surfaces.

8.
J Am Chem Soc ; 139(13): 4671-4674, 2017 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-28335591

RESUMO

We report on the surface-assisted synthesis and spectroscopic characterization of the hitherto longest periacene analogue with oxygen-boron-oxygen (OBO) segments along the zigzag edges, that is, a heteroatom-doped perihexacene 1. Surface-catalyzed cyclodehydrogenation successfully transformed the double helicene precursor 2, i.e., 12a,26a-dibora-12,13,26,27-tetraoxa-benzo[1,2,3-hi:4,5,6-h'i']dihexacene, into the planar perihexacene analogue 1, which was visualized by scanning tunneling microscopy and noncontact atomic force microscopy. X-ray photoelectron spectroscopy, Raman spectroscopy, together with theoretical modeling, on both precursor 2 and product 1, provided further insights into the cyclodehydrogenation process. Moreover, the nonplanar precursor 2 underwent a conformational change upon adsorption on surfaces, and one-dimensional self-assembled superstructures were observed for both 2 and 1 due to the presence of OBO units along the zigzag edges.

9.
Adv Sci (Weinh) ; 11(16): e2309081, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38353319

RESUMO

Homogenous enantioselective catalysis is nowadays the cornerstone in the manufacturing of enantiopure substances, but its technological implementation suffers from well-known impediments like the lack of endurable catalysts exhibiting long-term stability. The catalytically active intermetallic compound Palladium-Gallium (PdGa), conserving innate bulk chirality on its surfaces, represent a promising system to study asymmetric chemical reactions by heterogeneous catalysis, with prospective relevance for industrial processes. Here, this work investigates the adsorption of 10,10'-dibromo-9,9'-bianthracene (DBBA) on the PdGa:A( 1 ¯ 1 ¯ 1 ¯ $\bar{1}\bar{1}\bar{1}$ ) Pd3-terminated surface by means of scanning tunneling microscopy (STM) and spectroscopy (STS). A highly enantioselective adsorption of the molecule evolving into a near 100% enantiomeric excess below room temperature is observed. This exceptionally high enantiomeric excess is attributed to temperature activated conversion of the S to the R chiral conformer. Tip-induced bond cleavage of the R conformer shows a very high regioselectivity of the DBBA debromination. The experimental results are interpreted by density functional theory atomistic simulations. This work extends the knowledge of chirality transfer onto the enantioselective adsorption of non-planar molecules and manifests the ensemble effect of PdGa surfaces resulting in robust regioselective debromination.

10.
ACS Nanosci Au ; 4(2): 128-135, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38644965

RESUMO

Surface-catalyzed reactions have been used to synthesize carbon nanomaterials with atomically predefined structures. The recent discovery of a gold surface-catalyzed [3 + 3] cycloaromatization of isopropyl substituted arenes has enabled the on-surface synthesis of arylene-phenylene copolymers, where the surface activates the isopropyl substituents to form phenylene rings by intermolecular coupling. However, the resulting polymers suffered from undesired cross-linking when more than two molecules reacted at a single site. Here we show that such cross-links can be prevented through steric protection by attaching the isopropyl groups to larger arene cores. Upon thermal activation of isopropyl-substituted 8,9-dioxa-8a-borabenzo[fg]tetracene on Au(111), cycloaromatization is observed to occur exclusively between the two molecules. The cycloaromatization intermediate formed by the covalent linking of two molecules is prevented from reacting with further molecules by the wide benzotetracene core, resulting in highly selective one-to-one coupling. Our findings extend the versatility of the [3 + 3] cycloaromatization of isopropyl substituents and point toward steric protection as a powerful concept for suppressing competing reaction pathways in on-surface synthesis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA