Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Eur J Immunol ; 44(5): 1535-40, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24497027

RESUMO

The duration and/or the magnitude of Ras-Erk activation are known to be crucial for cell-fate decisions. In T cells, sustained Erk activation correlates with differentiation/proliferation, whereas transient Erk activation parallels with unresponsiveness/apoptosis. The mechanism by which Son of sevenless (Sos) proteins and Ras guanyl-releasing protein 1 (RasGRP1) contribute to dynamics of Erk activation in mature T cells is not yet known. Here, we have assessed this issue using stimuli inducing either transient or sustained TCR signaling and RNA interference mediated suppression of Sos1, Sos2, and RasGRP1 expression in primary human T cells. We found that transient Erk activation depends on RasGRP1 but not on Sos. Conversely, sustained Erk signaling and T-cell activation depend on both Sos1 and RasGRP1. In summary, our data show for the first time that the two guanine nucleotide exchange factors expressed in T cells are differentially involved in the regulation of the duration of Erk phosphorylation and T-cell activation.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/imunologia , Ativação Linfocitária/fisiologia , Sistema de Sinalização das MAP Quinases/fisiologia , Receptores de Antígenos de Linfócitos T/imunologia , Proteína SOS1/imunologia , Linfócitos T/imunologia , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/imunologia , Ativação Enzimática/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/biossíntese , MAP Quinases Reguladas por Sinal Extracelular/genética , Feminino , Regulação da Expressão Gênica/fisiologia , Fatores de Troca do Nucleotídeo Guanina/biossíntese , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/imunologia , Humanos , Masculino , Fosforilação/fisiologia , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos de Linfócitos T/metabolismo , Proteína SOS1/genética , Proteína SOS1/metabolismo , Proteínas Son Of Sevenless/genética , Proteínas Son Of Sevenless/imunologia , Proteínas Son Of Sevenless/metabolismo , Linfócitos T/citologia , Linfócitos T/metabolismo
2.
Carcinogenesis ; 35(5): 1084-91, 2014 May.
Artigo em Inglês | MEDLINE | ID: mdl-24464785

RESUMO

Ras is frequently activated in cutaneous squamous cell carcinoma, a prevalent form of skin cancer. However, the pathways that contribute to Ras-induced transformation have not been entirely elucidated. We have previously demonstrated that in transgenic mice, overexpression of the Ras activator RasGRP1 promotes the formation of spontaneous skin tumors and enhances malignant progression in the multistage carcinogenesis skin model that relies on the oncogenic activation of H-Ras. Utilizing a RasGRP1 knockout mouse model (RasGRP1 KO), we now show that lack of RasGRP1 reduced the susceptibility to skin tumorigenesis. The dependency on RasGRP1 was associated with a diminished response to the phorbol ester tumor promoter 12-O-tetradecanoylphorbol-13-acetate (TPA). Specifically, we found impairment of epidermal hyperplasia induced by TPA through keratinocyte proliferation. Using a keratinocyte cell line that carries a ras oncogenic mutation, we also demonstrated that RasGRP1 could further activate Ras in response to TPA. Thus, we propose that RasGRP1 upregulates signaling from Ras and contributes to epidermal tumorigenesis by increasing the total dosage of active Ras.


Assuntos
Transformação Celular Neoplásica/genética , Deleção de Genes , Fatores de Troca do Nucleotídeo Guanina/genética , Neoplasias Cutâneas/genética , Pele/metabolismo , Animais , Transformação Celular Neoplásica/metabolismo , Códon , Marcação de Genes , Genes ras , Hiperplasia/tratamento farmacológico , Hiperplasia/genética , Camundongos , Camundongos Knockout , Mutação , Pele/patologia , Neoplasias Cutâneas/metabolismo , Neoplasias Cutâneas/patologia , Acetato de Tetradecanoilforbol/efeitos adversos , Ativação Transcricional/efeitos dos fármacos
3.
EMBO Rep ; 13(4): 386-91, 2012 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-22344067

RESUMO

Sos proteins are ubiquitously expressed activators of Ras. Lymphoid cells also express RasGRP1, another Ras activator. Sos and RasGRP1 are thought to cooperatively control full Ras activation upon T-cell receptor triggering. Using RNA interference, we evaluated whether this mechanism operates in primary human T cells. We found that T-cell antigen receptor (TCR)-mediated Erk activation requires RasGRP1, but not Grb2/Sos. Conversely, Grb2/Sos­but not RasGRP1­are required for IL2-mediated Erk activation. Thus, RasGRP1 and Grb2/Sos are insulators of signals that lead to Ras activation induced by different stimuli, rather than cooperating downstream of the TCR.


Assuntos
MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Proteína Adaptadora GRB2/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Proteína Son Of Sevenless de Drosófila/metabolismo , Linfócitos T/enzimologia , Células Cultivadas , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática/efeitos dos fármacos , Técnicas de Silenciamento de Genes , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Humanos , Interleucina-2/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Fosforilação/efeitos dos fármacos , RNA Interferente Pequeno/metabolismo , Receptores de Interleucina-2/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
4.
J Immunol ; 189(1): 61-71, 2012 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-22623331

RESUMO

γδ T (γδT) cells belong to a distinct T cell lineage that performs immune functions different from αß T (αßT) cells. Previous studies established that Erk1/2 MAPKs are critical for positive selection of αßT cells. Additional evidence suggests that increased Erk1/2 activity promotes γδT cell generation. RasGRP1, a guanine nucleotide-releasing factor for Ras, plays an important role in positive selection of αßT cells by activating the Ras-Erk1/2 pathway. In this article, we demonstrate that RasGRP1 is critical for TCR-induced Erk1/2 activation in γδT cells, but it exerts different roles for γδT cell generation and activation. Deficiency of RasGRP1 does not obviously affect γδT cell numbers in the thymus, but it leads to increased γδT cells, particularly CD4(-)CD8(+) γδT cells, in the peripheral lymphoid organs. The virtually unhindered γδT cell development in the RasGRP1(-/-) thymus proved to be cell intrinsic, whereas the increase in CD8(+) γδT cells is caused by non-cell-intrinsic mechanisms. Our data provide genetic evidence that decreased Erk1/2 activation in the absence of RasGRP1 is compatible with γδT cell generation. Although RasGRP1 is dispensable for γδT cell generation, RasGRP1-deficient γδT cells are defective in proliferation following TCR stimulation. Additionally, RasGRP1-deficient γδT cells are impaired to produce IL-17 but not IFNγ. Together, these observations revealed that RasGRP1 plays differential roles for γδ and αß T cell development but is critical for γδT cell proliferation and production of IL-17.


Assuntos
Diferenciação Celular/imunologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Ativação Linfocitária/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/biossíntese , Subpopulações de Linfócitos T/citologia , Subpopulações de Linfócitos T/imunologia , Animais , Diferenciação Celular/genética , Proliferação de Células , Fatores de Troca do Nucleotídeo Guanina/deficiência , Fatores de Troca do Nucleotídeo Guanina/genética , Interleucina-17/biossíntese , Ativação Linfocitária/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Especificidade de Órgãos/genética , Especificidade de Órgãos/imunologia , Receptores de Antígenos de Linfócitos T alfa-beta/biossíntese , Baço/citologia , Baço/imunologia , Baço/metabolismo , Subpopulações de Linfócitos T/metabolismo , Timócitos/citologia , Timócitos/imunologia , Timócitos/metabolismo
5.
J Immunol ; 187(9): 4467-73, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-21957144

RESUMO

The invariant NKT (iNKT) cell lineage contains CD4(+) and CD4(-) subsets. The mechanisms that control such subset differentiation and iNKT cell maturation in general have not been fully understood. RasGRP1, a guanine nucleotide exchange factor for TCR-induced activation of the Ras-ERK1/2 pathway, is critical for conventional αß T cell development but dispensable for generating regulatory T cells. Its role in iNKT cells has been unknown. In this study, we report severe decreases of iNKT cells in RasGRP1(-/-) mice through cell intrinsic mechanisms. In the remaining iNKT cells in RasGRP1(-/-) mice, there is a selective absence of the CD4(+) subset. Furthermore, RasGRP1(-/-) iNKT cells are defective in TCR-induced proliferation in vitro. These observations establish that RasGRP1 is not only important for early iNKT cell development but also for the generation/maintenance of the CD4(+) iNKT cells. Our data provide genetic evidence that the CD4(+) and CD4(-) iNKT cells are distinct sublineages with differential signaling requirements for their development.


Assuntos
Diferenciação Celular/imunologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Células T Matadoras Naturais/imunologia , Animais , Antígenos CD4/biossíntese , Antígenos CD4/genética , Diferenciação Celular/genética , Linhagem da Célula/genética , Linhagem da Célula/imunologia , Fatores de Troca do Nucleotídeo Guanina/deficiência , Fatores de Troca do Nucleotídeo Guanina/genética , Linfopenia/genética , Linfopenia/imunologia , Linfopenia/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células T Matadoras Naturais/citologia , Células T Matadoras Naturais/metabolismo , Receptores de Antígenos de Linfócitos T alfa-beta/deficiência , Receptores de Antígenos de Linfócitos T alfa-beta/genética , Receptores de Antígenos de Linfócitos T gama-delta/deficiência , Receptores de Antígenos de Linfócitos T gama-delta/genética , Transdução de Sinais/genética , Transdução de Sinais/imunologia
6.
J Immunol ; 184(2): 666-76, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20007535

RESUMO

Ag encounter by naive CD8 T cells initiates a developmental program consisting of cellular proliferation, changes in gene expression, and the formation of effector and memory T cells. The strength and duration of TCR signaling are known to be important parameters regulating the differentiation of naive CD8 T cells, although the molecular signals arbitrating these processes remain poorly defined. The Ras-guanyl nucleotide exchange factor RasGRP1 has been shown to transduce TCR-mediated signals critically required for the maturation of developing thymocytes. To elucidate the role of RasGRP1 in CD8 T cell differentiation, in vitro and in vivo experiments were performed with 2C TCR transgenic CD8 T cells lacking RasGRP1. In this study, we report that RasGRP1 regulates the threshold of T cell activation and Ag-induced expansion, at least in part, through the regulation of IL-2 production. Moreover, RasGRP1(-/-) 2C CD8 T cells exhibit an anergic phenotype in response to cognate Ag stimulation that is partially reversible upon the addition of exogenous IL-2. By contrast, the capacity of IL-2/IL-2R interactions to mediate Ras activation and CD8 T cell expansion and differentiation appears to be largely RasGRP1-independent. Collectively, our results demonstrate that RasGRP1 plays a selective role in T cell signaling, controlling the initiation and duration of CD8 T cell immune responses.


Assuntos
Antígenos/imunologia , Linfócitos T CD8-Positivos/imunologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Animais , Diferenciação Celular/imunologia , Proliferação de Células , Fatores de Troca do Nucleotídeo Guanina/deficiência , Fatores de Troca do Nucleotídeo Guanina/imunologia , Interleucina-2/farmacologia , Ativação Linfocitária/imunologia , Camundongos , Camundongos Knockout , Transdução de Sinais/imunologia , Transgenes
7.
J Biol Chem ; 285(21): 15724-30, 2010 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-20308057

RESUMO

RasGRP1 is a guanine nucleotide exchange factor for Ras that binds with high affinity to diacylglycerol analogs like the phorbol esters. Recently, we demonstrated a role for RasGRP1 in skin carcinogenesis and suggested its participation in the action of tumor-promoting phorbol esters like 12-O-tetradecanoylphorbol-13-acetate (TPA) on Ras pathways in epidermal cells. Given the importance of Ras in carcinogenesis, we sought to discern whether RasGRP1 was a critical pathway in Ras activation, using a RasGRP1 knockout (KO) mouse model to examine the response of keratinocytes to TPA. In contrast to the effect seen in wild type keratinocytes, Ras(GTP) levels were barely detected in RasGRP1 KO cells even after 60 min of exposure to phorbol esters. The lack of response was rescued by enforced expression of RasGRP1. Furthermore, small hairpin RNA-induced silencing of RasGRP1 abrogated the effect of TPA on Ras. Analysis of Ras isoforms showed that both H-Ras and N-Ras depended on RasGRP1 for activation by TPA, whereas activation of K-Ras could not be detected. Although RasGRP1 was dispensable for ERK activation in response to TPA, JNK activation was reduced in the KO keratinocytes. Notably, TPA-induced phosphorylation of JNK2, but not JNK1, was reduced by RasGRP1 depletion. These data identify RasGRP1 as a critical molecule in the activation of Ras by TPA in primary mouse keratinocytes and suggest JNK2 as one of the relevant downstream targets. Given the role of TPA as a skin tumor promoter, our findings provide additional support for a role for RasGRP1 in skin carcinogenesis.


Assuntos
Carcinógenos/farmacologia , Epiderme/metabolismo , Fatores de Troca do Nucleotídeo Guanina/metabolismo , Queratinócitos/metabolismo , Proteínas Proto-Oncogênicas p21(ras)/metabolismo , Acetato de Tetradecanoilforbol/farmacologia , Animais , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Inativação Gênica , Fatores de Troca do Nucleotídeo Guanina/genética , MAP Quinase Quinase 4/genética , MAP Quinase Quinase 4/metabolismo , Camundongos , Camundongos Knockout , Proteínas Proto-Oncogênicas p21(ras)/genética , Fatores de Tempo
8.
J Biol Chem ; 284(42): 28522-32, 2009 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-19700408

RESUMO

We describe a role for diacylglycerol in the activation of Ras and Rap1 at the phagosomal membrane. During phagocytosis, Ras density was similar on the surface and invaginating areas of the membrane, but activation was detectable only in the latter and in sealed phagosomes. Ras activation was associated with the recruitment of RasGRP3, a diacylglycerol-dependent Ras/Rap1 exchange factor. Recruitment to phagosomes of RasGRP3, which contains a C1 domain, parallels and appears to be due to the formation of diacylglycerol. Accordingly, Ras and Rap1 activation was precluded by antagonists of phospholipase C and of diacylglycerol binding. Ras is dispensable for phagocytosis but controls activation of extracellular signal-regulated kinase, which is partially impeded by diacylglycerol inhibitors. By contrast, cross-activation of complement receptors by stimulation of Fcgamma receptors requires Rap1 and involves diacylglycerol. We suggest a role for diacylglycerol-dependent exchange factors in the activation of Ras and Rap1, which govern distinct processes induced by Fcgamma receptor-mediated phagocytosis to enhance the innate immune response.


Assuntos
Diglicerídeos/metabolismo , Proteínas rap1 de Ligação ao GTP/metabolismo , Proteínas ras/metabolismo , Animais , Eritrócitos/metabolismo , Imunidade Inata , Imunoglobulina G/metabolismo , Camundongos , Microscopia Confocal/métodos , Fagocitose , Isoformas de Proteínas , Estrutura Terciária de Proteína , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Ovinos , Transdução de Sinais
9.
Am J Pathol ; 175(1): 392-9, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19497993

RESUMO

Models of epidermal carcinogenesis have demonstrated that Ras is a critical molecule involved in tumor initiation and progression. Previously, we have shown that RasGRP1 increases the susceptibility of mice to skin tumorigenesis when overexpressed in the epidermis by a transgenic approach, related to its ability to activate Ras. Moreover, RasGRP1 transgenic mice develop spontaneous papillomas and cutaneous squamous cell carcinomas, some of which appear to originate in sites of injury, suggesting that RasGRP1 may be responding to signals generated during the wound-healing process. In this study, we examined the response of the RasGRP1 transgenic animals to full-thickness incision wounding of the skin, and demonstrated that they respond by developing tumors along the wounded site. The tumors did not present mutations in the H-ras gene, but Rasgrp1 transgene dosage correlated with tumor susceptibility and size. Analysis of serum cytokines showed increased levels of granulocyte colony-stimulating factor in transgenic animals after wounding. Furthermore, in vitro experiments with primary keratinocytes showed that granulocyte colony-stimulating factor stimulated Ras activation, although RasGRP1 was dispensable for this effect. Since granulocyte colony-stimulating factor has been recently associated with proliferation of skin cancer cells, our results may help in the elucidation of pathways that activate Ras in the epidermis during tumorigenesis in the absence of oncogenic ras mutations.


Assuntos
Carcinoma de Células Escamosas/genética , Fatores de Troca do Nucleotídeo Guanina/genética , Neoplasias Cutâneas/genética , Pele/lesões , Cicatrização/genética , Animais , Southern Blotting , Genes ras , Fator Estimulador de Colônias de Granulócitos/sangue , Camundongos , Camundongos Transgênicos , Mutação
10.
Biochem Biophys Res Commun ; 390(4): 1395-401, 2009 Dec 25.
Artigo em Inglês | MEDLINE | ID: mdl-19896467

RESUMO

In leukocytes, diacylglycerol (DAG) regulates the small GTPase Ras through the agency of Ras guanyl releasing proteins (RasGRPs). Ras is thought to regulate phosphatidylinositol 3-kinase (PI3K). Therefore, DAG signaling is hypothesized to impact PI3K activity. The DAG analogue "pico" was used to activate RasGRPs in leukocyte-derived cell lines. PI3K signaling was monitored using antibodies that recognize the activated form of the PI3K-regulated protein kinase Akt. Diverse responses were documented. Some cell lines exhibit a DAG analogue-stimulated increase in phospho-Akt but this response proceeded even when Ras activation was blocked. In some Epstein-Barr virus-associated malignant cell lines and transformed B cells, high basal phospho-Akt was decreased by DAG analogue treatment. The pan-PKC inhibitor Bisindolymaleimide I blocked this effect. Basal phospho-Akt was also decreased by treatment with Go6976, an inhibitor of conventional protein kinase C and protein kinase D. While the proposed RasGRP-Ras-PI3K-Akt signaling axis may operate in some situations, our results indicate that alternative links between DAG targets such as protein kinases and the PI3K signaling system are more prominent.


Assuntos
Diglicerídeos/metabolismo , Leucócitos/metabolismo , Fosfatidilinositóis/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Humanos , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Proteínas ras/metabolismo
11.
Immunol Lett ; 105(1): 77-82, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16530850

RESUMO

RasGRP1 links TCR signaling to Ras in T cells, while both RasGRP1 and RasGRP3 link BCR signaling to Ras in B cells. T cells deficient in RasGRP1 have defective proliferative responses as do B cells deficient in both RasGRP1 and RasGRP3, confirming the importance of Ras activation in lymphocyte proliferation. While aged Rasgrp1-/- mice develop late-onset autoimmunity characterized by splenomegaly and the presence of anti-nuclear antibodies (ANA), the additional loss of RasGRP3 expression inhibits this phenotype. We show here that the autoimmunity in Rasgrp1-/- mice is T cell dependent. Compared to wildtype, Rasgrp1-/- T cells induce greater in vitro B cell proliferation that is due, at least in part, to increased production of interleukin-4 (IL-4). Rasgrp1 Rasgrp3 double mutant B cells are less responsive to this T cell stimulation. The reduced double mutant B cell proliferative response was paralleled by decreased induction of cyclin D2 upon stimulation with IL-4 and anti-IgM. Taken together these results suggest that double mutant mice fail to generate autoimmunity due to their decreased B cell cyclin D2 accumulation, and thus proliferation, in response to the elevated levels of IL-4 produced by mutant T cells.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/metabolismo , Linfócitos/imunologia , Linfócitos/metabolismo , Animais , Autoimunidade , Linfócitos B/citologia , Linfócitos B/imunologia , Linfócitos B/metabolismo , Linfócitos T CD4-Positivos/citologia , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/metabolismo , Proliferação de Células , Fatores de Troca do Nucleotídeo Guanina/deficiência , Fatores de Troca do Nucleotídeo Guanina/genética , Fatores de Troca do Nucleotídeo Guanina/imunologia , Técnicas In Vitro , Interleucina-4/biossíntese , Ativação Linfocitária , Linfócitos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Nus , Receptores de Antígenos de Linfócitos B/metabolismo , Receptores de Antígenos de Linfócitos T/metabolismo , Transdução de Sinais
12.
FASEB J ; 16(6): 595-7, 2002 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-11919165

RESUMO

Regulating the generation and clearance of lipid second messengers, such as diacylglycerol (DAG), is critical for the correct propagation of intracellular signaling pathways. DAGK type alpha acts as a negative modulator of the DAG levels generated during T cell activation, which is initiated by triggering of the endogenous T cell receptor (TCR), as well as by stimulation of an ectopically expressed human muscarinic type 1 receptor. Here we show that stimulation of either of these receptors causes rapid, transient membrane translocation of the recently discovered Ras guanyl nucleotide release protein (RasGRP), followed by activation of mitogen-activated protein kinase (MAPK). When cells expressing a catalytically inactive form of DAGKalpha were analyzed, however, similar agonist stimulation resulted in sustained signaling through RasGRP and MAPK. Biochemical analysis showed that expression of kinase-dead diacylglycerol kinase a (DGKalpha) led to a greater, more sustained, DAG accumulation following receptor stimulation. These results suggest that, in T cells, agonist-stimulated DAG generation is the key factor controlling activation of the Ras/MAPK signaling pathway through membrane translocation of RasGRP. Moreover, we demonstrate that through the modulation of the intracellular level of agonist-stimulated DAG, DGKalpha alters Ras activation and downstream signaling dramatically, a process of utmost importance for sound immunological function.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Diacilglicerol Quinase/genética , Diacilglicerol Quinase/metabolismo , Fatores de Troca do Nucleotídeo Guanina , Transdução de Sinais , Linfócitos T/imunologia , Carbacol/farmacologia , Catálise , Proteínas de Fluorescência Verde , Humanos , Indicadores e Reagentes/análise , Cinética , Proteínas Luminescentes/análise , Proteínas Luminescentes/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Transporte Proteico , Receptores de Antígenos de Linfócitos T/metabolismo , Proteínas Recombinantes de Fusão/análise , Linfócitos T/efeitos dos fármacos
13.
J Med Chem ; 47(26): 6638-44, 2004 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-15588099

RESUMO

The functional properties of four diacylglycerol (DAG) analogues were compared using cell-signaling assays based on the protein RasGRP1, a DAG-regulated Ras activator. Compounds 1 and 2, synthetic analogues of bryostatin 1, were compared to authentic bryostatin 1 and phorbol 12-myristate-13-acetate (PMA). The two "bryologues" were able to activate RasGRP1 signaling rapidly in cultured cells and isolated mouse thymocytes. They elicited expression of the T cell activation marker CD69 in human T cells. DAG analogues promptly recruited RasGRP1 to cell membranes, but they did not induce RasGRP1 proteolysis. Bryostatin 1 and compounds 1 and 2 appeared to be less potent than PMA at inducing aggregation of mouse thymocytes, a PKC-dependent, RasGRP1-independent response. In addition to sharing potential anticancer properties with bryostatin 1, compounds 1 and 2 might be clinically useful as modulators of the immune system.


Assuntos
Proteínas de Ligação a DNA/fisiologia , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Fatores Imunológicos/síntese química , Lactonas/síntese química , Animais , Antígenos CD/biossíntese , Antígenos de Diferenciação de Linfócitos T/biossíntese , Briostatinas , Agregação Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Células Cultivadas , Proteínas de Ligação a DNA/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Humanos , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Lactonas/química , Lactonas/farmacologia , Lectinas Tipo C , Macrolídeos , Camundongos , Mutação , Fosforilação , Proteína Quinase C/fisiologia , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/efeitos dos fármacos , Linfócitos T/metabolismo , Linfócitos T/fisiologia , Acetato de Tetradecanoilforbol/farmacologia , Timo/citologia , Transfecção
14.
J Med Chem ; 45(4): 853-60, 2002 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-11831896

RESUMO

The Ras guanyl releasing protein RasGRP belongs to the CDC25 class of guanyl nucleotide exchange factors that regulate Ras-related GTPases. These GTPases serve as switches for the propagation and divergence of signaling pathways. One interesting feature of RasGRP is the presence of a C-terminal C1 domain, which has high homology to the PKC C1 domain and binds to diacylglycerol (DAG) and phorbol esters. RasGRP thus represents a novel, non-kinase phorbol ester receptor. In this paper, we investigate the binding of indolactam(V) (ILV), 7-(n-octyl)-ILV, 8-(1-decynyl)benzolactam(V) (benzolactam), and 7-methoxy-8-(1-decynyl)benzolactam(V) (methoxylated benzolactam) to RasGRP through both experimental binding assays and molecular modeling studies. The binding affinities of these lactams to RasGRP are within the nanomolar range. Homology modeling was used to model the structure of the RasGRP C1 domain (C1-RasGRP), which was subsequently used to model the structures of C1-RasGRP in complex with these ligands and phorbol 13-acetate using a computational docking method. The structural model of C1-RasGRP exhibits a folding pattern that is nearly identical to that of C1b-PKCdelta and is comprised of three antiparallel-strand beta-sheets capped against a C-terminal alpha-helix. Two loops A and B comprising residues 8-12 and 21-27 form a binding pocket that has some positive charge character. The ligands phorbol 13-acetate, benzolactam, and ILV are recognized by C1-RasGRP through a number of hydrogen bonds with loops A and B. In the models of C1-RasGRP in complex with phorbol 13-acetate, benzolactam, and ILV, common hydrogen bonds are formed with two residues Thr12 and Leu21, whereas other hydrogen bond interactions are unique for each ligand. Furthermore, our modeling results suggest that the shallower insertion of ligands into the binding pocket of C1-RasGRP compared to C1b-PKCdelta may be due to the presence of Phe rather than Leu at position 20 in C1-RasGRP. Taken together, our experimental and modeling studies provide us with a better understanding of the structural basis of the binding of PKC ligands to the novel phorbol ester receptor RasGRP.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Fatores de Troca do Nucleotídeo Guanina , Indóis/metabolismo , Isoenzimas/metabolismo , Lactamas/metabolismo , Ésteres de Forbol/metabolismo , Proteína Quinase C/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Ligação a DNA/química , Ligação de Hidrogênio , Indóis/química , Isoenzimas/química , Lactamas/química , Ligantes , Modelos Moleculares , Dados de Sequência Molecular , Ésteres de Forbol/química , Proteína Quinase C/química , Proteína Quinase C-delta , Ratos , Alinhamento de Sequência
15.
Transplantation ; 75(2): 173-80, 2003 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-12548118

RESUMO

BACKGROUND: Mitogen-activated protein kinases (MAPKs), including extracellular-responsive kinase (ERK) and p38 MAPK, are activated by stresses associated with hypothermia-rewarming and ischemia-reperfusion. Their activation in heart is associated with beneficial (preconditioning) and adverse effects (apoptosis and impaired contractility). This study determined whether ERK and p38 MAPK activities are altered by hypothermic ischemia and normothermic reperfusion and the consequences of their inhibition on recovery of myocardial function. METHODS: Left ventricular work (L x min(-1) x mm Hg) was assessed during normothermic perfusion (30 min) of isolated rat hearts that were either freshly excised or previously subjected to hypothermic storage (8 hr, 3 degrees C) and rewarming (10 min, 37 degrees C) before normothermic reperfusion (30 min). Phospho-specific immunoblot analysis of p38 MAPK was performed in hearts and various cultured cells. RESULTS: Compared with fresh hearts, hearts subjected to hypothermia and rewarming demonstrated impaired left ventricular work (1.96+/-0.53, n=12 vs. 8.37+/-0.46, n=4, <0.05) during reperfusion. The ERK inhibitor, PD98059 (20 microM), present during storage and rewarming, caused modest improvement (3.66+/-0.75, n=9, <0.05). The p38 MAPK inhibitor, SB202190 (10 microM), when present during reperfusion, improved recovery (to 6.12+/-0.75, n=6, <0.05); it was ineffective if present only during rewarming (1.52+/-0.88, n=4). In rat2 fibroblasts, hypothermia and rewarming activated p38 MAPK and its downstream kinase MAPK-activated protein kinase 2, but not c-Jun N-terminal kinase/stress-activated protein kinase. CONCLUSIONS: Myocardial p38 MAPK and MAPK-activated protein kinase 2 are stimulated by hypothermia, ischemia, and rewarming and are detrimental to recovery of mechanical function of hearts subjected to prolonged hypothermic storage. Inhibition of p38 MAPK may be useful in protocols to improve the recovery of mechanical function of cold-stored hearts.


Assuntos
Flavonoides/farmacologia , Hipotermia Induzida , Imidazóis/farmacologia , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Isquemia Miocárdica/fisiopatologia , Piridinas/farmacologia , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Ativação Enzimática , Masculino , Fosforilação , Ratos , Ratos Sprague-Dawley , Proteínas Quinases p38 Ativadas por Mitógeno
16.
PLoS One ; 8(1): e53300, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23308188

RESUMO

T cell development is a highly dynamic process that is driven by interactions between developing thymocytes and the thymic microenvironment. Upon entering the thymus, the earliest thymic progenitors, called CD4(-)CD8(-) 'double negative' (DN) thymocytes, pass through a checkpoint termed "ß-selection" before maturing into CD4(+)CD8(+) 'double positive' (DP) thymocytes. ß-selection is an important developmental checkpoint during thymopoiesis where developing DN thymocytes that successfully express the pre-T cell receptor (TCR) undergo extensive proliferation and differentiation towards the DP stage. Signals transduced through the pre-TCR, chemokine receptor CXCR4 and Notch are thought to drive ß-selection. Additionally, it has long been known that ERK is activated during ß-selection; however the pathways regulating ERK activation remain unknown. Here, we performed a detailed analysis of the ß-selection events in mice lacking RasGRP1, RasGRP3 and RasGRP1 and 3. We report that RasGRP1 KO and RasGRP1/3 DKO deficient thymi show a partial developmental block at the early DN3 stage of development. Furthermore, DN3 thymocytes from RasGRP1 and RasGRP1/3 double knock-out thymi show significantly reduced proliferation, despite expression of the TCRß chain. As a result of impaired ß-selection, the pool of TCRß(+) DN4 is significantly diminished, resulting in inefficient DN to DP development. Also, we report that RasGRP1 is required for ERK activation downstream of CXCR4 signaling, which we hypothesize represents a potential mechanism of RasGRP1 regulation of ß-selection. Our results demonstrate that RasGRP1 is an important regulator of proliferation and differentiation at the ß-selection checkpoint and functions downstream of CXCR4 to activate the Ras/MAPK pathway.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/imunologia , Sistema de Sinalização das MAP Quinases , Receptores CXCR4/imunologia , Linfócitos T/citologia , Timo/citologia , Fatores ras de Troca de Nucleotídeo Guanina/imunologia , Animais , Linhagem Celular , Proliferação de Células , Feminino , Técnicas de Inativação de Genes , Fatores de Troca do Nucleotídeo Guanina/genética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Linfócitos T/imunologia , Linfócitos T/metabolismo , Timo/imunologia , Timo/metabolismo , Fatores ras de Troca de Nucleotídeo Guanina/genética
17.
PLoS One ; 8(8): e72331, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23991094

RESUMO

Ingenol-3-angelate (I3A) is a non-tumor promoting phorbol ester-like compound identified in the sap of Euphoria peplus. Similar to tumor promoting phorbol esters, I3A is a diacylglycerol (DAG) analogue that binds with high affinity to the C1 domains of PKCs, recruits PKCs to cellular membranes and promotes enzyme activation. Numerous anti-cancer activities have been attributed to I3A and ascribed to I3A's effects on PKCs. We show here that I3A also binds to and activates members of the RasGRP family of Ras activators leading to robust elevation of Ras-GTP and engagement of the Raf-Mek-Erk kinase cascade. In response to I3A, recombinant proteins consisting of GFP fused separately to full-length RasGRP1 and RasGRP3 were rapidly recruited to cell membranes, consistent with direct binding of the compound to RasGRP's C1 domain. In the case of RasGRP3, IA3 treatment led to positive regulatory phosphorylation on T133 and activation of the candidate regulatory kinase PKCδ. I3A treatment of select B non-Hodgkin's lymphoma cell lines resulted in quantitative and qualitative changes in Bcl-2 family member proteins and induction of apoptosis, as previously demonstrated with the DAG analogue bryostatin 1 and its synthetic analogue pico. Our results offer further insights into the anticancer properties of I3A, support the idea that RasGRPs represent potential cancer therapeutic targets along with PKC, and expand the known range of ligands for RasGRP regulation.


Assuntos
Antineoplásicos/farmacologia , Diterpenos/farmacologia , Proteínas ras/antagonistas & inibidores , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Proteínas Quinases/metabolismo , Ratos , Proteínas ras/metabolismo
18.
Exp Hematol ; 40(8): 646-56.e2, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22465296

RESUMO

The anti-cancer effects of bryostatin-1, a potent diacylglycerol analogue, have traditionally been attributed to its action on protein kinase C. However, we previously documented apoptosis in a B non-Hodgkin lymphoma cell line involving diacylglycerol analogue stimulation of Ras guanyl-releasing protein, a Ras activator, and Bim, a proapoptotic Bcl-2 family protein. To further explore the role of Bim, we examined several Bim-deficient B non-Hodgkin lymphoma cells for their responses to pico, a synthetic bryostatin-1-like compound. The Bim(-) mantle cell lymphoma cell lines Jeko-1, Mino, Sp53, UPN1, and Z138 and the Bim(+) cell line Rec-1, as well as the Burkitt lymphoma cells lines BL2 (Bim(-)) and Daudi (Bim(+)), were examined for their response to pico using assays for proliferation and apoptosis as well as biochemical methods for Ras guanyl-releasing proteins and Bcl-2 family members. With the exception of UPN1, mantle cell lymphoma cell lines underwent pico-induced apoptosis, as did BL2. In some cases, hallmarks of apoptosis were substantially diminished in the presence of mitogen-activated protein kinase kinase inhibitors. Pico treatment generally led to increased expression of proapoptotic Bik, although the absolute levels of Bik varied considerably between cell lines. A pico-resistant variant of Z138 exhibited decreased Bik induction compared to parental Z138 cells. Pico also generally decreased expression of anti-apoptotic Bcl-XL and Mcl1. Although, these changes in Bcl-2 family members seem unlikely to fully account for the differential behavior of the cell lines, our demonstration of a potent apoptotic process in most cell lines derived from mantle cell lymphoma encourages a re-examination of diacylglycerol analogues in the treatment of this subset of B non-Hodgkin lymphoma cases.


Assuntos
Antineoplásicos/farmacologia , Proteínas Reguladoras de Apoptose/fisiologia , Apoptose/efeitos dos fármacos , Briostatinas/farmacologia , Linfoma de Célula do Manto/tratamento farmacológico , Proteínas de Membrana/fisiologia , Proteínas Proto-Oncogênicas/fisiologia , Proteína 11 Semelhante a Bcl-2 , Linhagem Celular Tumoral , Proteínas de Ligação a DNA/análise , Proteínas de Ligação a DNA/fisiologia , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/análise , Fatores de Troca do Nucleotídeo Guanina/fisiologia , Humanos , Linfoma de Célula do Manto/patologia , Proteínas Proto-Oncogênicas c-bcl-2/análise , Proteína bcl-X/análise
19.
PLoS One ; 7(6): e38796, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22719950

RESUMO

The Ras-guanyl nucleotide exchange factor RasGRP1 plays a critical role in T cell receptor-mediated Erk activation. Previous studies have emphasized the importance of RasGRP1 in the positive selection of thymocytes, activation of T cells, and control of autoimmunity. RasGRP1 consists of a number of well-characterized domains, which it shares with its other family members; however, RasGRP1 also contains an ~200 residue-long tail domain, the function of which is unknown. To elucidate the physiological role of this domain, we generated knock-in mice expressing RasGRP1 without the tail domain. Further analysis of these knock-in mice showed that thymocytes lacking the tail domain of RasGRP1 underwent aberrant thymic selection and, following TCR stimulation, were unable to activate Erk. Furthermore, the deletion of the tail domain led to enhanced CD4(+) T cell expansion in aged mice, as well as the production of autoantibodies. Mechanistically, the tail-deleted form of RasGRP1 was not able to traffic to the cell membrane following stimulation, indicating a potential reason for its inability to activate Erk. While the DAG-binding C1 domain of RasGRP1 has long been recognized as an important factor mediating Erk activation, we have revealed the physiological relevance of the tail domain in RasGRP1 function and control of Erk signaling.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/fisiologia , Ativação Linfocitária , Linfócitos T/imunologia , Animais , Ativação Enzimática , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Fatores de Troca do Nucleotídeo Guanina/genética , Camundongos , Camundongos Knockout , Timo/citologia
20.
Genes Cancer ; 2(3): 320-34, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21779502

RESUMO

Ras guanyl nucleotide releasing proteins (RasGRPs) are guanyl nucleotide exchange factors that activate Ras and related GTPases such as Rap. Like Sos proteins, RasGRPs have a catalytic region composed of a Ras exchange motif (REM) and a CDC25 domain. RasGRPs also possess a pair of atypical EF hands that may bind calcium in vivo and a C1 domain resembling the diacylglycerol (DAG)-binding domain of protein kinase C. DAG directly activates RasGRPs by a membrane recruitment mechanism as well as indirectly by PKC-mediated phosphorylation. RasGRPs are prominently expressed in blood cells. RasGRP1 acts downstream of TCR, while RasGRP1 and RasGRP3 both act downstream of BCR. Together, they regulate Ras in adaptive immune cells. RasGRP2, through Rap, plays a role in controlling platelet adhesion, while RasGRP4 controls Ras activation in mast cells. RasGRP malfunction likely contributes to autoimmunity and may contribute to blood malignancies. RasGRPs might prove to be viable drug targets. The intracellular site of RasGRP action and the relationship between RasGRPs and other Ras regulatory mechanisms are subjects of lively debate.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA