Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Syst Biol ; 9: 679, 2013 Jul 02.
Artigo em Inglês | MEDLINE | ID: mdl-23820781

RESUMO

Mutations in the daf-2 gene of the conserved Insulin/Insulin-like Growth Factor (IGF-1) pathway double the lifespan of the nematode Caenorhabditis elegans. This phenotype is completely suppressed by deletion of Forkhead transcription factor daf-16. To uncover regulatory mechanisms coordinating this extension of life, we employed a quantitative proteomics strategy with daf-2 mutants in comparison with N2 and daf-16; daf-2 double mutants. This revealed a remarkable longevity-specific decrease in proteins involved in mRNA processing and transport, the translational machinery, and protein metabolism. Correspondingly, the daf-2 mutants display lower amounts of mRNA and 20S proteasome activity, despite maintaining total protein levels equal to that observed in wild types. Polyribosome profiling in the daf-2 and daf-16;daf-2 double mutants confirmed a daf-16-dependent reduction in overall translation, a phenotype reminiscent of Dietary Restriction-mediated longevity, which was independent of germline activity. RNA interference (RNAi)-mediated knockdown of proteins identified by our approach resulted in modified C. elegans lifespan confirming the importance of these processes in Insulin/IGF-1-mediated longevity. Together, the results demonstrate a role for the metabolism of proteins in the Insulin/IGF-1-mediated extension of life.


Assuntos
Proteínas de Caenorhabditis elegans/genética , Caenorhabditis elegans/genética , Fator de Crescimento Insulin-Like I/genética , Insulina/metabolismo , Biossíntese de Proteínas , RNA Mensageiro/metabolismo , Receptor de Insulina/genética , Fatores de Transcrição/genética , Animais , Caenorhabditis elegans/metabolismo , Proteínas de Caenorhabditis elegans/antagonistas & inibidores , Proteínas de Caenorhabditis elegans/metabolismo , Fatores de Transcrição Forkhead , Regulação da Expressão Gênica , Genótipo , Fator de Crescimento Insulin-Like I/metabolismo , Longevidade/genética , Mutação , Fenótipo , Complexo de Endopeptidases do Proteassoma/genética , Complexo de Endopeptidases do Proteassoma/metabolismo , RNA Mensageiro/genética , RNA Interferente Pequeno/genética , Receptor de Insulina/antagonistas & inibidores , Receptor de Insulina/metabolismo , Transdução de Sinais , Fatores de Transcrição/antagonistas & inibidores , Fatores de Transcrição/metabolismo
2.
DNA Repair (Amst) ; 4(1): 81-9, 2005 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-15533840

RESUMO

Nucleotide excision repair (NER), cell cycle regulation and apoptosis are major defence mechanisms against the carcinogenic effects of UVB radiation. NER eliminates UVB-induced DNA photolesions via two subpathways: global genome repair (GGR) and transcription-coupled repair (TCR). In a previous study, we found UVB-induced accumulation of tetraploid (4N) keratinocytes in the epidermis of Xpc(-/-) mice (no GGR), but not in Xpa(-/-) (no TCR and no GGR) or in wild-type (WT) mice. We inferred that this arrest in Xpc(-/-) mice is caused by erroneous replication past photolesions, leading to 'compound lesions' known to be recognised by mismatch repair (MMR). MMR-induced futile cycles of breakage and resynthesis at sites of compound lesions may then sustain a cell cycle arrest. The present experiments with Xpc(-/-)Msh2(-/-) mice and derived keratinocytes show that the MMR protein Msh2 indeed plays a role in the generation of the UVB-induced arrested cells: a Msh2-deficiency lowered significantly the percentage of arrested cells in vivo (40-50%) and in vitro (30-40%). Analysis of calyculin A (CA)-induced premature chromosome condensation (PCC) of cultured Xpc(-/-) keratinocytes showed that the delayed arrest occurred in late S phase rather than in G(2)-phase. Taken together, the results indicate that in mouse epidermis and cultured keratinocytes, the MMR protein Msh2 plays a role in the UVB-induced S-phase arrest. This indicates that MMR plays a role in the UVB-induced S-phase arrest. Alternatively, Msh2 may have a more direct signalling function.


Assuntos
Pareamento Incorreto de Bases/genética , Ciclo Celular/efeitos da radiação , Reparo do DNA , Proteínas de Ligação a DNA/genética , Proteínas Proto-Oncogênicas/genética , Animais , Bromodesoxiuridina , Ciclo Celular/genética , Citometria de Fluxo , Queratinócitos/fisiologia , Toxinas Marinhas , Camundongos , Camundongos Mutantes , Proteína 2 Homóloga a MutS , Oxazóis , Raios Ultravioleta
3.
DNA Repair (Amst) ; 4(11): 1337-44, 2005 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-16182614

RESUMO

Cellular DNA damage responses (DDRs) are induced by unrepaired DNA lesions and constitute a protective back-up system that prevents the expansion of damaged cells. These cellular signaling pathways trigger either growth arrest or cell death and are believed to be major components of an early anti-cancer barrier. Cultures of C57BL/6J keratinocytes with various defects in NER sub-pathways allowed us to follow the kinetics of DDRs in an isogenic background and in the proper (physiologically relevant) target cells, supplementing earlier studies in heterogenic human fibroblasts. In a series of well-controlled parallel experiments we have shown that, depending on the NER deficiency, murine keratinocytes elicited highly selective DDRs. After a dose of UV-B that did not affect wild-type keratinocytes, Xpa(-/-) keratinocytes (complete NER deficiency) showed a rapid depletion of DNA replicating S-phase cells, a transient increase in quiescent S-phase cells (not replicating DNA), followed by massive apoptosis. Csb(-/-) keratinocytes (TC-NER deficient) responded by a more sustained increase in QS-phase cells and appeared more resistant to UV-B induced apoptosis than Xpa(-/-). In irradiated Xpc(-/-) keratinocytes (GG-NER deficient) the loss of replicating S-phase cells was associated with a gradual build-up of both QS-phase cells and cells arrested in late-S phase, in complete absence of apoptosis. Our analysis complements and extends previous in vivo investigations and highlights both similarities and differences with earlier fibroblast studies. In vitro cultures of murine keratinocytes provide a new tool to unravel the molecular mechanisms of UV-induced cellular stress responses in great detail and in a physiologically relevant background. This will be essential to fully appreciate the implications of DDRs in tumor suppression and cancer prevention.


Assuntos
Dano ao DNA/genética , Enzimas Reparadoras do DNA/genética , Reparo do DNA/genética , Proteínas de Ligação a DNA/genética , Queratinócitos/patologia , Neoplasias Cutâneas/genética , Raios Ultravioleta , Proteína de Xeroderma Pigmentoso Grupo A/genética , Animais , Apoptose/genética , Apoptose/efeitos da radiação , Morte Celular/efeitos da radiação , Divisão Celular/efeitos da radiação , Células Cultivadas , Dano ao DNA/fisiologia , Reparo do DNA/fisiologia , Enzimas Reparadoras do DNA/fisiologia , Enzimas Reparadoras do DNA/efeitos da radiação , Replicação do DNA/efeitos da radiação , Proteínas de Ligação a DNA/fisiologia , Proteínas de Ligação a DNA/efeitos da radiação , Predisposição Genética para Doença , Queratinócitos/metabolismo , Queratinócitos/efeitos da radiação , Camundongos , Proteínas de Ligação a Poli-ADP-Ribose , Tolerância a Radiação , Fase S/genética , Fase S/efeitos da radiação , Transdução de Sinais/genética , Transdução de Sinais/efeitos da radiação , Neoplasias Cutâneas/etiologia , Neoplasias Cutâneas/patologia , Proteína de Xeroderma Pigmentoso Grupo A/fisiologia , Proteína de Xeroderma Pigmentoso Grupo A/efeitos da radiação
4.
DNA Repair (Amst) ; 4(11): 1325-36, 2005 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-16182615

RESUMO

Epidermal keratinocytes constitute the most relevant cellular system in terms of DNA damage because of their continuous exposure to UV light and genotoxic chemicals from the environment. Here, we describe the establishment of long-term keratinocyte cultures from the skin of wild-type and nucleotide excision repair (NER) deficient mouse mutants. The use of media with a lowered calcium concentration and the inclusion of keratinocyte growth factor (KGF) permitted repeated passaging of the cultures and resulted in the generation of stable cell lines that proliferated efficiently. The cells retained their normal ability to engage into terminal differentiation when triggered with high calcium concentrations or after suspension in semi-solid medium. The cultures reflected the cellular characteristics (i.e. repair and transcription profiles) of the Xpa(-/-), Xpc(-/-), Csb(-/-) and Xpd(TTD) mouse models from which they were derived. For instance, in line with earlier in vivo results, Xpd(TTD) keratinocytes were disturbed in their ability to terminally differentiate in vitro. This was concluded from a delay in calcium-induced stratification and by reduced transcription of both early (keratin 10) and late (loricrin) terminal differentiation marker genes. UDS measurements in wild-type cells committed to terminal differentiation did not reveal any reduction in global DNA repair that could be indicative of differentiation associated repair (DAR) as found in neurons. UV sensitivity data revealed that in keratinocytes global genome repair contributes more to cell survival than previously concluded from fibroblast studies. It is inferred that these fully controllable in vitro cultures will be a valuable tool to assess critical parameters of genome care-taking systems in cell proliferation and differentiation.


Assuntos
Diferenciação Celular , Reparo do DNA/genética , Modelos Animais de Doenças , Epiderme , Queratinócitos/fisiologia , Animais , Técnicas de Cultura de Células , Diferenciação Celular/genética , Diferenciação Celular/fisiologia , Linhagem Celular , Reparo do DNA/fisiologia , Enzimas Reparadoras do DNA/genética , Proteínas de Ligação a DNA/genética , Células Epidérmicas , Epiderme/patologia , Epiderme/fisiologia , Queratinócitos/citologia , Queratinócitos/patologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Mutantes , Proteínas de Ligação a Poli-ADP-Ribose , Proteína de Xeroderma Pigmentoso Grupo A/genética , Proteína Grupo D do Xeroderma Pigmentoso/genética
5.
PLoS One ; 9(5): e98438, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24875183

RESUMO

The Forkhead transcription factor FOXA2 plays a fundamental role in controlling metabolic homeostasis in the liver during fasting. The precise molecular regulation of FOXA2 in response to nutrients is not fully understood. Here, we studied whether FOXA2 could be controlled at a post-translational level by acetylation. By means of LC-MS/MS analyses, we identified five acetylated residues in FOXA2. Sirtuin family member SIRT1 was found to interact with and deacetylate FOXA2, the latter process being dependent on the NAD+-binding catalytic site of SIRT1. Deacetylation by SIRT1 reduced protein stability of FOXA2 by targeting it towards proteasomal degradation, and inhibited transcription from the FOXA2-driven G6pase and CPT1a promoters. While mutation of the five identified acetylated residues weakly affected protein acetylation and stability, mutation of at least seven additional lysine residues was required to abolish acetylation and reduce protein levels of FOXA2. The importance of acetylation of FOXA2 became apparent upon changes in nutrient levels. The interaction of FOXA2 and SIRT1 was strongly reduced upon nutrient withdrawal in cell culture, while enhanced Foxa2 acetylation levels were observed in murine liver in vivo after starvation for 36 hours. Collectively, this study demonstrates that SIRT1 controls the acetylation level of FOXA2 in a nutrient-dependent manner and in times of nutrient shortage the interaction between SIRT1 and FOXA2 is reduced. As a result, FOXA2 is protected from degradation by enhanced acetylation, hence enabling the FOXA2 transcriptional program to be executed to maintain metabolic homeostasis.


Assuntos
Ração Animal , Fator 3-beta Nuclear de Hepatócito/metabolismo , Sirtuína 1/metabolismo , Acetilação , Transporte Ativo do Núcleo Celular , Animais , Catálise , Linhagem Celular , Regulação da Expressão Gênica , Fator 3-beta Nuclear de Hepatócito/genética , Humanos , Fígado/metabolismo , Camundongos , Ligação Proteica , Processamento de Proteína Pós-Traducional , Transporte Proteico , Inanição , Transcrição Gênica
6.
Cancer Res ; 73(6): 1844-54, 2013 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-23288511

RESUMO

Xeroderma pigmentosum (XP), a UV-sensitivity syndrome characterized by skin hyperpigmentation, premature aging, and increased skin cancer, is caused by defects in the nucleotide excision repair (NER) pathway. XP shares phenotypical characteristics with telomere-associated diseases like Dyskeratosis congenita and mouse models with dysfunctional telomeres, including mice deficient for telomerase (Terc(-/-) mice). Thus, we investigated a hypothesized role for telomerase and telomere dysfunction in the pathobiology of XP by comparing Xpc(-/-)-mutant mice and Xpc(-/-)G1-G3Terc(-/-) double-mutant mice and exposed them to UV radiation. Chronically UV-exposed Xpc(-/-) skin displayed shorter telomeres on an average compared with wild-type skin. Strikingly, this effect was reversed by an additional deficiency in the telomerase. Moreover, aberrantly long telomeres were observed in the double-mutant mice. Telomere lengthening in the absence of telomerase suggested activation of the alternative lengthening of telomeres (ALT) in the UV-exposed skin of the double mutants. Mechanistic investigations revealed an elevated susceptibility for UV-induced p53 patches, known to represent precursor lesions of carcinomas, in Xpc(-/-)G1-G3Terc(-/-) mice where a high number of UV-induced skin tumors occurred that were characterized by aggressive growth. Taken together, our results establish a role for xeroderma pigmentosum, complementation group C (XPC) in telomere stability, particularly upon UV exposure. In absence of telomerase, critically short telomeres in XP mutants seem to aggravate this pathology, associated with an increased tumor incidence, by activating the ALT pathway of telomere lengthening.


Assuntos
Telomerase/metabolismo , Telômero , Raios Ultravioleta , Xeroderma Pigmentoso/enzimologia , Xeroderma Pigmentoso/genética , Animais , Imuno-Histoquímica , Hibridização in Situ Fluorescente , Camundongos , Camundongos Knockout , Neoplasias Induzidas por Radiação/genética
7.
Dis Model Mech ; 2(3-4): 139-56, 2009.
Artigo em Inglês | MEDLINE | ID: mdl-19259387

RESUMO

TRF2 is a telomere-binding protein involved in the protection of chromosome ends. Interestingly, TRF2 is overexpressed in a number of human cancers. Mice with increased TRF2 expression (K5TRF2 mice) display a severe skin phenotype including an increase in skin cancer and premature skin degeneration, which includes increased skin hyperpigmentation and skin dryness; these pathologies are concomitant with dramatic telomere shortening and increased chromosomal instability. Here, we show that K5TRF2 mice have a severe epidermal stem cell (ESC) dysfunction, which is reversed by abrogation of p53 in the absence of rescue of telomere length. Importantly, p53 deletion also rescues severe skin hyperpigmentation in these mice through regulation of alpha-melanocyte-stimulating hormone (alpha-MSH). In addition, skin carcinogenesis is accelerated in K5TRF2/p53(-/-)mice owing to attenuated p21 induction, which enables cell proliferation to resume. Altogether, these results reveal the existence of a DNA damage-dependent checkpoint that acts on ESCs with critically short telomeres and restricts skin proliferation, thereby increasing protection against skin cancer; however, the checkpoint also leads to premature skin aging phenotypes. Finally, the results described here are relevant to our understanding of the pathobiology of those human diseases that are characterized by the presence of critically short telomeres (hereafter referred to as 'telopathies'), such as dyskeratosis congenita which causes severe skin phenotypes including skin hyperpigmentation and skin cancer.


Assuntos
Células Epidérmicas , Células-Tronco/citologia , Células-Tronco/metabolismo , Telômero/ultraestrutura , Proteína 2 de Ligação a Repetições Teloméricas/genética , Proteína 2 de Ligação a Repetições Teloméricas/fisiologia , Animais , Proliferação de Células , Proteínas de Ligação a DNA/genética , Genes p53 , Hibridização in Situ Fluorescente , Queratinócitos/citologia , Masculino , Camundongos , Microscopia Confocal , Modelos Genéticos , Pele/patologia
8.
Proc Natl Acad Sci U S A ; 102(52): 18980-5, 2005 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-16365302

RESUMO

The interplay among nucleotide excision repair, cell-cycle regulation, and apoptosis in the UV-exposed epidermis is extremely important to avoid mutations and malignant transformation. In Xpc(-/-) mice deficient in global genome nucleotide excision repair (GGR), a cell-cycle arrest of epidermal cells in late S-phase [with near-double normal diploid (4N) DNA content] was observed 48-72 h after UV exposure. This arrest resolved without apoptosis (96-168 h). We surmised that these arrested keratinocytes with persistent DNA damage were removed by epidermal turnover. In vivo BrdUrd pulse-chase labeling (>17 h after UV exposure) showed that DNA replication after UV exposure was resumed in Xpc(-/-) mice, but it did not reveal any evidence of retained BrdUrd-labeled S-phase cells in the basal layer of the epidermis at 72 h. Interestingly, by this time a maximum number of cytokeratin 10-negative and cytokeratin 5-positive cells had appeared in the suprabasal epidermal cell layers of UV-exposed Xpc(-/-) mice. Accumulation of these "basal cell"-like keratinocytes in the suprabasal layers was clearly aberrant and was not observed in WT and heterozygous mice. Flow cytometric analyses of single-cell suspensions from UV-exposed Xpc(-/-) epidermis further showed that the "near-4N" arrested cells retained cytokeratin 5 and lacked cytokeratin 10. Hence, we conclude that the arrested near-4N cells became detached from the basal layer without entering a proper differentiation program and were indeed subsequently lost through the epidermal turnover. This expulsion apparently constitutes an alternative route, different from in situ apoptosis, to eliminate DNA-damaged arrested cells from the epidermis.


Assuntos
Apoptose , Proteínas de Ligação a DNA/genética , Queratinócitos/citologia , Animais , Bromodesoxiuridina/farmacologia , Diferenciação Celular , Transformação Celular Neoplásica , DNA/química , Dano ao DNA , Reparo do DNA , Proteínas de Ligação a DNA/fisiologia , Epiderme/metabolismo , Citometria de Fluxo , Heterozigoto , Imuno-Histoquímica , Queratinócitos/efeitos da radiação , Queratinas/metabolismo , Camundongos , Camundongos Transgênicos , Modelos Biológicos , Mutação , Fatores de Tempo , Transgenes , Raios Ultravioleta
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA