Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 161(3): 647-660, 2015 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-25910212

RESUMO

How disease-associated mutations impair protein activities in the context of biological networks remains mostly undetermined. Although a few renowned alleles are well characterized, functional information is missing for over 100,000 disease-associated variants. Here we functionally profile several thousand missense mutations across a spectrum of Mendelian disorders using various interaction assays. The majority of disease-associated alleles exhibit wild-type chaperone binding profiles, suggesting they preserve protein folding or stability. While common variants from healthy individuals rarely affect interactions, two-thirds of disease-associated alleles perturb protein-protein interactions, with half corresponding to "edgetic" alleles affecting only a subset of interactions while leaving most other interactions unperturbed. With transcription factors, many alleles that leave protein-protein interactions intact affect DNA binding. Different mutations in the same gene leading to different interaction profiles often result in distinct disease phenotypes. Thus disease-associated alleles that perturb distinct protein activities rather than grossly affecting folding and stability are relatively widespread.


Assuntos
Doença/genética , Mutação de Sentido Incorreto , Mapas de Interação de Proteínas , Proteínas/genética , Proteínas/metabolismo , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Estudo de Associação Genômica Ampla , Humanos , Fases de Leitura Aberta , Dobramento de Proteína , Estabilidade Proteica
2.
Cancers (Basel) ; 15(6)2023 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-36980658

RESUMO

Despite intensive scientific efforts, the therapy of peritonitis is presently limited to symptomatic measures, including infectious source control and broad-spectrum antibiotics. Promising therapeutic approaches to reduce morbidity and mortality are still missing. Within the early phase of abdominal sepsis, apoptosis of neutrophil granulocytes is inhibited, which is linked to tissue damage and septic shock. TNF-related apoptosis-inducing ligand (TRAIL) is a promising agent to stimulate neutrophil apoptosis. However, the underlying mechanisms have not been elucidated so far. The objective of the present study was to characterize the molecular mechanisms of TRAIL-stimulated apoptosis in early abdominal sepsis. Therefore, the murine sepsis model Colon ascendens stent peritonitis (CASP) was applied in wild type (WT) and TRAIL knock-out (TRAIL-/-) C57/BL6j mice. Neutrophil granulocytes were isolated from spleen, blood, bone marrow, and peritoneal lavage using magnetic-activated cell sorting. Neutrophil maturation was analyzed by light microscopy, and apoptotic neutrophils were quantified by fluorescence-activated cell sorting (FACS). Western blot and FACS were used to investigate expression changes in apoptotic proteins and TRAIL receptors. The impact of TRAIL-induced apoptosis was studied in vitro. In septic mice (CASP 6 h), the number of neutrophils in the BM was reduced but increased in the blood and peritoneal lavage. This was paralleled by an increased maturation of neutrophils from rod-shaped to segmented neutrophils (right shift). In vitro, extrinsic TRAIL stimulation did not alter the apoptosis level of naïve neutrophils but stimulated apoptosis in neutrophils derived from septic WT and TRAIL-/- mice. Neutrophils of the bone marrow and spleen showed enhanced protein expression of anti-apoptotic Flip, c-IAP1, and McL-1 and reduced expression levels of pro-apoptotic Bax in neutrophils, which might correlate with apoptosis inhibition in these cells. CASP increased the expression of intrinsic TRAIL in neutrophils derived from the bone marrow and spleen. This might be explained by an increased expression of the TRAIL receptors DR5, DcR1, and DcR2 on neutrophils in sepsis. No differences were observed between septic or naïve WT and TRAIL-/- mice. In conclusion, the present study shows that neutrophil granulocytes are sensitive to TRAIL-stimulated apoptosis in the early stage of abdominal sepsis, emphasizing the promising role of TRAIL as a therapeutic agent.

3.
Cancers (Basel) ; 15(5)2023 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-36900266

RESUMO

The TNF-superfamily member TRAIL is known to mediate selective apoptosis in tumor cells suggesting this protein as a potential antitumor drug target. However, initial successful pr-clinical results could not be translated into the clinic. Reasons for the ineffectiveness of TRAIL-targeting in tumor therapies could include acquired TRAIL resistance. A tumor cell acquires TRAIL resistance, for example, by upregulation of antiapoptotic proteins. In addition, TRAIL can also influence the immune system and thus, tumor growth. We were able to show in our previous work that TRAIL-/- mice show improved survival in a mouse model of pancreatic carcinoma. Therefore, in this study we aimed to immunologically characterize the TRAIL-/- mice. We observed no significant differences in the distribution of CD3+, CD4+, CD8+ T-cells, Tregs, and central memory CD4+ and CD8+ cells. However, we provide evidence for relevant differences in the distribution of effector memory T-cells and CD8+CD122+ cells but also in dendritic cells. Our findings suggest that T-lymphocytes of TRAIL-/- mice proliferate at a lower rate, and that the administration of recombinant TRAIL significantly increases their proliferation, while regulatory T-cells (Tregs) from TRAIL-/- mice are less suppressive. Regarding the dendritic cells, we found more type-2 conventional dendritic cells (DC2s) in the TRAIL-/- mice. For the first time (to the best of our knowledge), we provide a comprehensive characterization of the immunological landscape of TRAIL-deficient mice. This will establish an experimental basis for future investigations of TRAIL-mediated immunology.

4.
Nat Commun ; 10(1): 5629, 2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31822667

RESUMO

Leptin has been shown to modulate intestinal inflammation in mice. However, clinical evidence regarding its immune-stimulatory potential in human Crohn's disease remains sparse. We here describe a patient with the unique combination of acquired generalized lipodystrophy and Crohn's disease (AGLCD) featuring a lack of adipose tissue, leptin deficiency and intestinal inflammation. Using mass and flow cytometry, immunohistochemistry and functional metabolic analyses, the AGLCD patient was compared to healthy individuals and Crohn's disease patients regarding immune cell composition, function and metabolism and the effects of recombinant N-methionylleptin (rLeptin) were evaluated. We provide evidence that rLeptin exerts diverse pro-inflammatory effects on immune cell differentiation and function, including the metabolic reprogramming of immune cells and the induction of TNFα, ultimately aggravating Crohn's disease in the AGLCD patient, which can be reversed by anti-TNFα therapy. Our results indicate that leptin is required for human immune homeostasis and contributes to autoimmunity in a TNFα-dependent manner.


Assuntos
Inflamação/tratamento farmacológico , Leptina/uso terapêutico , Lipodistrofia Generalizada Congênita/complicações , Linhagem Celular , Doença de Crohn/complicações , Doença de Crohn/patologia , Humanos , Células Matadoras Naturais , Masculino , Fenótipo , Linfócitos T/citologia , Fator de Necrose Tumoral alfa/metabolismo , Cicatrização/efeitos dos fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA