RESUMO
For anaerobic mixed cultures performing microbial chain elongation, it is unclear how pH alterations affect the abundance of key players, microbial interactions, and community functioning in terms of medium-chain carboxylate yields. We explored pH effects on mixed cultures enriched in continuous anaerobic bioreactors representing closed model ecosystems. Gradual pH increase from 5.5 to 6.5 induced dramatic shifts in community composition, whereas product range and yields returned to previous states after transient fluctuations. To understand community responses to pH perturbations over long-term reactor operation, we applied Aitchison PCA clustering, linear mixed-effects models, and random forest classification on 16S rRNA gene amplicon sequencing and process data. Different pH preferences of two key chain elongation speciesâone Clostridium IV species related to Ruminococcaceae bacterium CPB6 and one Clostridium sensu stricto species related to Clostridium luticellariiâwere determined. Network analysis revealed positive correlations of Clostridium IV with lactic acid bacteria, which switched from Olsenella to Lactobacillus along the pH increase, illustrating the plasticity of the food web in chain elongation communities. Despite long-term cultivation in closed systems over the pH shift experiment, the communities retained functional redundancy in fermentation pathways, reflected by the emergence of rare species and concomitant recovery of chain elongation functions.
Assuntos
Resiliência Psicológica , RNA Ribossômico 16S , Ecossistema , Reatores Biológicos/microbiologia , Fermentação , Concentração de Íons de HidrogênioRESUMO
BACKGROUND: The carboxylate platform is a promising technology for substituting petrochemicals in the provision of specific platform chemicals and liquid fuels. It includes the chain elongation process that exploits reverse ß-oxidation to elongate short-chain fatty acids and forms the more valuable medium-chain variants. The pH value influences this process through multiple mechanisms and is central to effective product formation. Its influence on the microbiome dynamics was investigated during anaerobic fermentation of maize silage by combining flow cytometric short interval monitoring, cell sorting and 16S rRNA gene amplicon sequencing. RESULTS: Caproate and caprylate titres of up to 6.12 g L-1 and 1.83 g L-1, respectively, were achieved in a continuous stirred-tank reactor operated for 241 days. Caproate production was optimal at pH 5.5 and connected to lactate-based chain elongation, while caprylate production was optimal at pH 6.25 and linked to ethanol utilisation. Flow cytometry recorded 31 sub-communities with cell abundances varying over 89 time points. It revealed a highly dynamic community, whereas the sequencing analysis displayed a mostly unchanged core community. Eight key sub-communities were linked to caproate or caprylate production (rS > | ± 0.7|). Amongst other insights, sorting and subsequently sequencing these sub-communities revealed the central role of Bifidobacterium and Olsenella, two genera of lactic acid bacteria that drove chain elongation by providing additional lactate, serving as electron donor. CONCLUSIONS: High-titre medium-chain fatty acid production in a well-established reactor design is possible using complex substrate without the addition of external electron donors. This will greatly ease scaling and profitable implementation of the process. The pH value influenced the substrate utilisation and product spectrum by shaping the microbial community. Flow cytometric single cell analysis enabled fast, short interval analysis of this community and was coupled with 16S rRNA gene amplicon sequencing to reveal the major role of lactate-producing bacteria.
Assuntos
Ácidos Acíclicos/metabolismo , Reatores Biológicos , Ácidos Graxos/biossíntese , Ácido Láctico/metabolismo , Microbiota , Fermentação , Microbiota/genética , Microbiota/fisiologia , RNA Ribossômico 16S , Análise de Célula ÚnicaRESUMO
Syngas fermentation has been successfully implemented in commercial-scale plants and can enable the biochemical conversion of the driest fractions of biomass through synthesis gas (H2, CO2, and CO). The process relies on optimized acetogenic strains able to reach and maintain high productivity of ethanol and acetate. In parallel, microbial communities have shown to be the best choice for the production of valuable medium-chain carboxylates through anaerobic fermentation of biomass, demanding low technical complexity and being able to realize simultaneous hydrolysis of the substrate. Each of the two technologies benefits from different strong points and has different challenges to overcome. This review discusses the rationales for merging these two seemingly disparate technologies by analyzing previous studies and drawing opinions based on the lessons learned from such studies. For keeping the technical demands of the resulting process low, a case is built for using microbial communities instead of pure strains. For that to occur, a shift from conventional syngas-based to "syngas-aided" anaerobic fermentation is suggested. Strategies for tackling the intricacies of working simultaneously with communities and syngas, such as competing pathways, and thermodynamic aspects are discussed as well as the stoichiometry and economic feasibility of the concept. Overall, syngas-aided anaerobic fermentation seems to be a promising concept for the biorefinery of the future. However, the effects of process parameters on microbial interactions have to be understood in greater detail, in order to achieve and sustain feasible medium-chain carboxylate and alcohol productivity.
Assuntos
Acetatos/metabolismo , Bactérias Anaeróbias/metabolismo , Reatores Biológicos/microbiologia , Ácidos Carboxílicos/metabolismo , Etanol/metabolismo , Anaerobiose , Monóxido de Carbono/metabolismo , Fermentação/fisiologia , MicrobiotaRESUMO
Coumarins are widely found in plants as natural constituents having antimicrobial activity. When considering plants that are rich in coumarins for biogas production, adverse effects on microorganisms driving the anaerobic digestion process are expected. Furthermore, coumarin derivatives, like warfarin, which are used as anticoagulating medicines, are found in wastewater, affecting its treatment. Coumarin, the structure common to all coumarins, inhibits the anaerobic digestion process. However, the details of this inhibition are still elusive. Here, we studied the impact of coumarin on acetogenesis and methanogenesis. First, coumarin was applied at four concentrations between 0.25 and 1 g · liter-1 to pure cultures of the methanogens Methanosarcina barkeri and Methanospirillum hungatei, which resulted in up to 25% less methane production. Acetate production of syntrophic propionate- and butyrate-degrading cultures of Syntrophobacter fumaroxidans and Syntrophomonas wolfei was inhibited by 72% at a coumarin concentration of 1 g · liter-1 Coumarin also inhibited acetogenesis and acetoclastic methanogenesis in a complex biogas reactor microbiome. When a coumarin-adapted microbiome was used, acetogenesis and methanogenesis were not inhibited. According to amplicon sequencing of bacterial 16S rRNA genes and mcrA genes, the communities of the two microbiomes were similar, although Methanoculleus was more abundant and Methanobacterium less abundant in the coumarin-adapted than in the nonadapted microbiome. Our results suggest that well-dosed feeding with coumarin-rich feedstocks to full-scale biogas reactors while keeping the coumarin concentrations below 0.5 g · liter-1 will allow adaptation to coumarins by structural and functional community reorganization and coumarin degradation.IMPORTANCE Coumarins from natural and anthropogenic sources have an inhibitory impact on the anaerobic digestion process. Here, we studied in detail the adverse effects of the model compound coumarin on acetogenesis and methanogenesis, which are two important steps of the anaerobic digestion process. Coumarin concentrations lower than 0.5 g · liter-1 had only a minor impact. Even though similar inhibitory effects can be assumed for coumarin derivatives, little effects on the anaerobic treatment of wastewater are expected where concentrations of coumarin derivatives are lower than 0.5 g · liter-1 However, when full-scale reactors are fed with coumarin-rich feedstocks, the biogas processes might be inhibited. Hence, these feedstocks should be utilized in a well-dosed manner or after adaptation of the microbial community.
Assuntos
Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Biocombustíveis/análise , Cumarínicos/farmacologia , Ácidos Graxos/metabolismo , Metano/metabolismo , Microbiota/efeitos dos fármacos , Acetatos/metabolismo , Bactérias/classificação , Bactérias/genética , Reatores Biológicos/microbiologia , Oxirredução/efeitos dos fármacosRESUMO
As many plant secondary metabolites have antimicrobial activity, microorganisms of the anaerobic digestion process might be affected when plant material rich in these compounds is digested. Hitherto, the effects of plant secondary metabolites on the anaerobic digestion process are poorly investigated. In this study, the alkaloid gramine, a constituent of reed canary grass, was added daily to a continuous co-digestion of grass silage and cow manure. A transient decrease of the methane yield by 17 % and a subsequent recovery was observed, but no effect on other process parameters. When gramine was infrequently spiked in higher amounts, the observed inhibitory effect was even more pronounced including a 53 % decrease of the methane yield and an increase of acetic acid concentrations up to 96 mM. However, the process recovered and the process parameters were finally at initial values (methane yield around 255 LN CH4 per gram volatile solids of substrate and acetic acid concentration lower than 2 mM). The bacterial communities of the reactors remained stable upon gramine addition. In contrast, the methanogenic community changed from a well-balanced mixture of five phylotypes towards a strong dominance of Methanosarcina (more than two thirds of the methanogenic community) while Methanosaeta disappeared. Batch inhibition assays revealed that acetic acid was only converted to methane via acetoclastic methanogenesis which was more strongly affected by gramine than hydrogenotrophic methanogenesis and acetogenesis. Hence, when acetoclastic methanogenesis is the dominant pathway, a shift of the methanogenic community is necessary to digest gramine-rich plant material.
Assuntos
Alcaloides/química , Biocombustíveis/microbiologia , Esterco/microbiologia , Metano/metabolismo , Methanosarcina/metabolismo , Silagem/microbiologia , Ácido Acético/metabolismo , Anaerobiose , Animais , Reatores Biológicos/microbiologia , Ácido Butírico/metabolismo , Bovinos , Alcaloides Indólicos , Poaceae/metabolismo , Poaceae/microbiologia , Propionatos/metabolismoRESUMO
Two-phasic anaerobic digestion processes (hydrolysis/acidogenesis separated from acetogenesis/methanogenesis) can be used for biogas production on demand or a combined chemicals/bioenergy production. For an effective process control, detailed knowledge about the microbial catalysts and their correlation to process conditions is crucial. In this study, maize silage was digested in a two-phase process and interrelationships between process parameters and microbial communities were revealed. In the first-phase reactor, alternating metabolic periods were observed which emerged independently from the feeding frequency. During the L-period, up to 11.8 g L(-1) lactic acid was produced which significantly correlated to lactic acid bacteria of the genus Lactobacillus as the most abundant community members. During the alternating G-period, the production of volatile fatty acids (up to 5.3, 4.0 and 3.1 g L(-1) for propionic, n-butyric and n-caproic acid, respectively) dominated accompanied by a high gas production containing up to 28 % hydrogen. The relative abundance of various Clostridiales increased during this metabolic period. In the second-phase reactor, the metabolic fluctuations of the first phase were smoothed out resulting in a stable biogas production as well as stable bacterial and methanogenic communities. However, the biogas composition followed the metabolic dynamics of the first phase: the hydrogen content increased during the L-period whereas highest CH4/CO2 ratios (up to 2.8) were reached during the G-period. Aceticlastic Methanosaeta as well as hydrogenotrophic Methanoculleus and Methanobacteriaceae were identified as dominant methanogens. Consequently, a directed control of the first-phase stabilizing desired metabolic states can lead to an enhanced productivity regarding chemicals and bioenergy.
Assuntos
Biocombustíveis , Biota , Metano/metabolismo , Silagem , Zea mays/metabolismo , Anaerobiose , Archaea/crescimento & desenvolvimento , Archaea/metabolismo , Bactérias/crescimento & desenvolvimento , Bactérias/metabolismo , Ácido Láctico/metabolismo , Compostos Orgânicos Voláteis/metabolismoRESUMO
BACKGROUND: The need for addition of external electron donors such as ethanol or lactate impairs the economic viability of chain elongation (CE) processes for the production of medium-chain carboxylates (MCC). However, using feedstocks with inherent electron donors such as silages of waste biomass can improve the economics. Moreover, the use of an appropriate inoculum is critical to the overall efficiency of the CE process, as the production of a desired MCC can significantly be influenced by the presence or absence of specific microorganisms and their metabolic interactions. Beyond, it is necessary to generate data that can be used for reactor design, simulation and optimization of a given CE process. Such data can be obtained using appropriate mathematical models to predict the dynamics of the CE process. RESULTS: In batch experiments using silages of sugar beet leaves, cassava leaves, and Elodea/wheat straw as substrates, caproate was the only MCC produced with maximum yields of 1.97, 3.48, and 0.88 g/kgVS, respectively. The MCC concentrations were accurately predicted with the modified Gompertz model. In a semi-continuous fermentation with ensiled sugar beet leaves as substrate and digestate from a biogas reactor as the sole inoculum, a prolonged lag phase of 7 days was observed for the production of MCC (C6-C8). The lag phase was significantly shortened by at least 4 days when an enriched inoculum was added to the system. With the enriched inoculum, an MCC yield of 93.67 g/kgVS and a productivity of 2.05 gMCC/L/d were achieved. Without the enriched inoculum, MCC yield and productivity were 43.30 g/kgVS and 0.95 gMCC/L/d, respectively. The higher MCC production was accompanied by higher relative abundances of Lachnospiraceae and Eubacteriaceae. CONCLUSIONS: Ensiled waste biomass is a suitable substrate for MCC production using CE. For an enhanced production of MCC from ensiled sugar beet leaves, the use of an enriched inoculum is recommended for a fast process start and high production performance.
RESUMO
This study aimed to examine the bacterial, methanogenic archaeal, and eukaryotic community structure in both the midgut and hindgut of Pachnoda marginata larvae using an amplicon sequencing approach. The goal was to investigate how various diets and the soil affect the composition of these three-domain microbial communities within the gut of insect larvae. The results indicated a notable variation in the microbial community composition among the gut compartments. The majority of the bacterial community in the hindgut was composed of Ruminococcaceae and Christensenellaceae. Nocardiaceae, Microbacteriaceae, and Lachnospiraceae were detected in midgut samples from larvae feeding on the leaf diet, whereas Sphingomonadaceae, Rhodobacteraceae, and Promicromonasporaceae dominated the bacterial community of midgut of larvae feeding on the straw diet. The diet was a significant factor that influenced the methanogenic archaeal and eukaryotic community patterns. The methanogenic communities in the two gut compartments significantly differed from each other, with the midgut communities being more similar to those in the soil. A higher diversity of methanogens was observed in the midgut samples of both diets compared to the hindgut. Overall, the microbiota of the hindgut was more host-specific, while the assembly of the midgut was more influenced by the environmental microorganisms.
Assuntos
Archaea , Bactérias , Microbioma Gastrointestinal , Larva , Animais , Larva/microbiologia , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Trato Gastrointestinal/microbiologia , Eucariotos/classificação , Eucariotos/genética , Eucariotos/isolamento & purificação , Filogenia , Microbiota , RNA Ribossômico 16S/genéticaRESUMO
BACKGROUND: Production of monocarboxylates using microbial communities is highly dependent on local and degradable biomass feedstocks. Syngas or different mixtures of H2, CO, and CO2 can be sourced from biomass gasification, excess renewable electricity, industrial off-gases, and carbon capture plants and co-fed to a fermenter to alleviate dependence on local biomass. To understand the effects of adding these gases during anaerobic fermentation of plant biomass, a series of batch experiments was carried out with different syngas compositions and corn silage (pH 6.0, 32 °C). RESULTS: Co-fermentation of syngas with corn silage increased the overall carboxylate yield per gram of volatile solids (VS) by up to 29% (0.47 ± 0.07 g gVS-1; in comparison to 0.37 ± 0.02 g gVS-1 with a N2/CO2 headspace), despite slowing down biomass degradation. Ethylene and CO exerted a synergistic effect in preventing methanogenesis, leading to net carbon fixation. Less than 12% of the electrons were misrouted to CH4 when either 15 kPa CO or 5 kPa CO + 1.5 kPa ethylene was used. CO increased the selectivity to acetate and propionate, which accounted for 85% (electron equivalents) of all products at 49 kPa CO, by favoring lactic acid bacteria and actinobacteria over n-butyrate and n-caproate producers. Inhibition of n-butyrate and n-caproate production by CO happened even when an inoculum preacclimatized to syngas and lactate was used. Intriguingly, the effect of CO on n-butyrate and n-caproate production was reversed when formate was present in the broth. CONCLUSIONS: The concept of co-fermenting syngas and plant biomass shows promise in three aspects: by making anaerobic fermentation a carbon-fixing process, by increasing the yields of short-chain carboxylates (propionate and acetate), and by minimizing electron losses to CH4. Moreover, a model was proposed for how formate can alleviate CO inhibition in certain acidogenic bacteria. Testing the fermentation of syngas and plant biomass in a continuous process could potentially improve selectivity to n-butyrate and n-caproate by enriching chain-elongating bacteria adapted to CO and complex biomass.
RESUMO
Feeding microbial communities with both organic and inorganic substrates can improve sustainability and feasibility of chain elongation processes. Sustainably produced H2 , CO2 , and CO can be co-fed to microorganisms as a source for acetyl-CoA, while a small amount of an ATP-generating organic substrate helps overcome the kinetic hindrances associated with autotrophic carboxylate production. Here, we operated two semi-continuous bioreactor systems with continuous recirculation of H2 , CO2 , and CO while co-feeding an organic model feedstock (lactate and acetate) to understand how a mixotrophic community is shaped during carboxylate production. Contrary to the assumption that H2 , CO2 , and CO support chain elongation via ethanol production in open cultures, significant correlations (p < 0.01) indicated that relatives of Clostridium luticellarii and Eubacterium aggregans produced carboxylates (acetate to n-caproate) while consuming H2 , CO2 , CO, and lactate themselves. After 100 days, the enriched community was dominated by these two bacteria coexisting in cyclic dynamics shaped by the CO partial pressure. Homoacetogenesis was strongest when the acetate concentration was low (3.2 g L-1 ), while heterotrophs had the following roles: Pseudoramibacter, Oscillibacter, and Colidextribacter contributed to n-caproate production and Clostridium tyrobutyricum and Acidipropionibacterium spp. grew opportunistically producing n-butyrate and propionate, respectively. The mixotrophic chain elongation community was more efficient in carboxylate production compared with the heterotrophic one and maintained average carbon fixation rates between 0.088 and 1.4 g CO2 equivalents L-1 days-1 . The extra H2 and CO consumed routed 82% more electrons to carboxylates and 50% more electrons to carboxylates longer than acetate. This study shows for the first time long-term, stable production of short- and medium-chain carboxylates with a mixotrophic community.
Assuntos
Caproatos , Ácido Láctico , Fermentação , Elétrons , Dióxido de Carbono , Ácidos Carboxílicos , Acetatos , ClostridialesRESUMO
Anoxic microsites arising in fungal biofilms may foster the presence of obligate anaerobes. Here, we analyzed whether and to which degree hyphae of Coprinopsis cinerea thriving in oxic habitats enable the germination, growth, and dispersal of the obligate anaerobic soil bacterium Clostridium acetobutylicum. Time-resolved optical oxygen mapping, microscopy, and metabolite analysis revealed the formation and persistence of anoxic circum hyphal niches, allowing for spore germination, growth, and fermentative activity of the obligate anaerobe in an otherwise inhabitable environment. Hypoxic liquid films containing 80% ± 10% of atmospheric oxygen saturation around single air-exposed hyphae thereby allowed for efficient clostridial dispersal amid spatially separated (>0.5 cm) anoxic sites. Hyphae hence may serve as good networks for the activity and spatial organization of obligate anaerobic bacteria in oxygenated heterogeneous environments such as soil. IMPORTANCE Although a few studies have reported on the presence of anoxic microniches in fungal biofilms, knowledge of the effects of fungal oxygen consumption on bacterial-fungal interactions is limited. Here, we demonstrate the existence and persistence of oxygen-free zones in air-exposed mycelia enabling spore germination, growth, fermentative activity, and dispersal of the obligate anaerobe. Our study points out a previously overlooked role of aerobic fungi in creating and bridging anoxic microniches in ambient oxic habitats. Air-exposed hyphae hence may act as a scaffold for activity and dispersal of strictly anaerobic microbes. Given the short-term tolerance of strict anaerobes to oxygen and reduced oxygen content in the mycosphere, hyphae can promote spatial organization of both obligate anaerobic and aerobic bacteria. Such finding may be important for a better understanding of previously observed co-occurrences of aerobes and anaerobes in well-aerated habitats such as upland soils.
Assuntos
Bactérias Anaeróbias , Clostridium acetobutylicum , Ecossistema , Hifas , SoloRESUMO
[This corrects the article DOI: 10.3389/fbioe.2021.725578.].
RESUMO
BACKGROUND: The ability to quantitatively predict ecophysiological functions of microbial communities provides an important step to engineer microbiota for desired functions related to specific biochemical conversions. Here, we present the quantitative prediction of medium-chain carboxylate production in two continuous anaerobic bioreactors from 16S rRNA gene dynamics in enriched communities. RESULTS: By progressively shortening the hydraulic retention time (HRT) from 8 to 2 days with different temporal schemes in two bioreactors operated for 211 days, we achieved higher productivities and yields of the target products n-caproate and n-caprylate. The datasets generated from each bioreactor were applied independently for training and testing machine learning algorithms using 16S rRNA genes to predict n-caproate and n-caprylate productivities. Our dataset consisted of 14 and 40 samples from HRT of 8 and 2 days, respectively. Because of the size and balance of our dataset, we compared linear regression, support vector machine and random forest regression algorithms using the original and balanced datasets generated using synthetic minority oversampling. Further, we performed cross-validation to estimate model stability. The random forest regression was the best algorithm producing more consistent results with median of error rates below 8%. More than 90% accuracy in the prediction of n-caproate and n-caprylate productivities was achieved. Four inferred bioindicators belonging to the genera Olsenella, Lactobacillus, Syntrophococcus and Clostridium IV suggest their relevance to the higher carboxylate productivity at shorter HRT. The recovery of metagenome-assembled genomes of these bioindicators confirmed their genetic potential to perform key steps of medium-chain carboxylate production. CONCLUSIONS: Shortening the hydraulic retention time of the continuous bioreactor systems allows to shape the communities with desired chain elongation functions. Using machine learning, we demonstrated that 16S rRNA amplicon sequencing data can be used to predict bioreactor process performance quantitatively and accurately. Characterizing and harnessing bioindicators holds promise to manage reactor microbiota towards selection of the target processes. Our mathematical framework is transferrable to other ecosystem processes and microbial systems where community dynamics is linked to key functions. The general methodology used here can be adapted to data types of other functional categories such as genes, transcripts, proteins or metabolites. Video Abstract.
Assuntos
Caproatos , Microbiota , Anaerobiose , Reatores Biológicos , Caprilatos , Biomarcadores Ambientais , Aprendizado de Máquina , Microbiota/genética , RNA Ribossômico 16S/genéticaRESUMO
Electron donor scarcity is seen as one of the major issues limiting economic production of medium-chain carboxylates from waste streams. Previous studies suggest that co-fermentation of hydrogen in microbial communities that realize chain elongation relieves this limitation. To better understand how hydrogen co-feeding can support chain elongation, we enriched three different microbial communities from anaerobic reactors (A, B, and C with ascending levels of diversity) for their ability to produce medium-chain carboxylates from conventional electron donors (lactate or ethanol) or from hydrogen. In the presence of abundant acetate and CO2, the effects of different abiotic parameters (pH values in acidic to neutral range, initial acetate concentration, and presence of chemical methanogenesis inhibitors) were tested along with the enrichment. The presence of hydrogen facilitated production of butyrate by all communities and improved production of i-butyrate and caproate by the two most diverse communities (B and C), accompanied by consumption of acetate, hydrogen, and lactate/ethanol (when available). Under optimal conditions, hydrogen increased the selectivity of conventional electron donors to caproate from 0.23 ± 0.01 mol e-/mol e- to 0.67 ± 0.15 mol e-/mol e- with a peak caproate concentration of 4.0 g L-1. As a trade-off, the best-performing communities also showed hydrogenotrophic methanogenesis activity by Methanobacterium even at high concentrations of undissociated acetic acid of 2.9 g L-1 and at low pH of 4.8. According to 16S rRNA amplicon sequencing, the suspected caproate producers were assigned to the family Anaerovoracaceae (Peptostreptococcales) and the genera Megasphaera (99.8% similarity to M. elsdenii), Caproiciproducens, and Clostridium sensu stricto 12 (97-100% similarity to C. luticellarii). Non-methanogenic hydrogen consumption correlated to the abundance of Clostridium sensu stricto 12 taxa (p < 0.01). If a robust methanogenesis inhibition strategy can be found, hydrogen co-feeding along with conventional electron donors can greatly improve selectivity to caproate in complex communities. The lessons learned can help design continuous hydrogen-aided chain elongation bioprocesses.
RESUMO
Mixed microbial cultures have become a preferred choice of biocatalyst for chain elongation systems due to their ability to convert complex substrates into medium-chain carboxylates. However, the complexity of the effects of process parameters on the microbial metabolic networks is a drawback that makes the task of optimizing product selectivity challenging. Here, we studied the effects of small air contaminations on the microbial community dynamics and the product formation in anaerobic bioreactors fed with lactate, acetate and H2/CO2. Two stirred tank reactors and two bubble column reactors were operated with H2/CO2 gas recirculation for 139 and 116 days, respectively, at pH 6.0 and 32°C with a hydraulic retention time of 14 days. One reactor of each type had periods with air contamination (between 97 ± 28 and 474 ± 33 mL O2 L-1 d-1, lasting from 4 to 32 days), while the control reactors were kept anoxic. During air contamination, production of n-caproate and CH4 was strongly inhibited, whereas no clear effect on n-butyrate production was observed. In a period with detectable O2 concentrations that went up to 18%, facultative anaerobes of the genus Rummeliibacillus became predominant and only n-butyrate was produced. However, at low air contamination rates and with O2 below the detection level, Coriobacteriia and Actinobacteria gained a competitive advantage over Clostridia and Methanobacteria, and propionate production rates increased to 0.8-1.8 mmol L-1 d-1 depending on the reactor (control reactors 0.1-0.8 mmol L-1 d-1). Moreover, i-butyrate production was observed, but only when Methanobacteria abundances were low and, consequently, H2 availability was high. After air contamination stopped completely, production of n-caproate and CH4 recovered, with n-caproate production rates of 1.4-1.8 mmol L-1 d-1 (control 0.7-2.1 mmol L-1 d-1). The results underline the importance of keeping strictly anaerobic conditions in fermenters when consistent n-caproate production is the goal. Beyond that, micro-aeration should be further tested as a controllable process parameter to shape the reactor microbiome. When odd-chain carboxylates are desired, further studies can develop strategies for their targeted production by applying micro-aerobic conditions.
RESUMO
Production of caproic and caprylic acid through anaerobic fermentation of crops or residual and waste biomass has been regarded as an alternative to the conventional ways, where plant oils and animal fats are mostly used. The downstream processing of the fermentation broth is a particular challenge since the broth has a highly complex composition and low concentrations of the target products. In this study, the proof-of-principle for a separation cascade for caproic (C6) and caprylic acid (C8) produced in a maize silage-based fermentation process was demonstrated. For clarification of the fermentation broth, a filter press and a ceramic ultrafiltration membrane was used to remove coarse solids and to separate suspended particles and macromolecules from the fermentation broth, respectively. With both techniques, the dry matter content was reduced from 6.8 to 2.3% and a particle-free product solution was obtained. Subsequently, the carboxylic acids were extracted with oleyl alcohol by liquid-liquid extraction with an extraction efficiency of 85% for C6 and 97% for C8. Over the whole cascade, 58% of caproic acid and 66% of caprylic acid were recovered from the fermentation broth into the extract. Among all separation steps, solid-liquid separation with the filter press caused the major part of the product loss of 21% of each carboxylic acid. By using separation equipment with a better solid separation efficiency such as decanter centrifuges or belt filter presses this loss could be minimized.
RESUMO
Single cell techniques like flow cytometry combined with viability staining can help to obtain information on viability states of bacteria. Many fluorescent dyes are available for this purpose and can be chosen according to the available excitation source, the species used, and the background of scientific questions and relevant specifications. Within this short overview, we focus on two diverse groups of bacteria: the gram- Escherichia coli and representatives of the gram+ Mycobacterium to demonstrate differences and similarities in dye uptake principles, processing and binding. We call for attention to possible diverse responses of different species to various viability assays. The cell surface structure of bacteria and the chemical properties of fluorescent probes considerably determine the success of a certain staining practice. Particular focus was drawn on analysis of membrane integrity, uptake of substrates and transformation of fluorogenic substrates.
Assuntos
Escherichia coli/fisiologia , Citometria de Fluxo/métodos , Corantes Fluorescentes/metabolismo , Viabilidade Microbiana , Mycobacterium/fisiologia , Membrana Celular/metabolismo , Parede Celular/metabolismo , Metabolismo Energético , Escherichia coli/citologia , Escherichia coli/metabolismo , Corantes Fluorescentes/química , Estrutura Molecular , Mycobacterium/citologia , Mycobacterium/metabolismoRESUMO
Silage, the fermented product from anaerobic storage of forage crops with high water contents (50%-70%), is normally used as animal feed but also for the production of biofuels and value-added products. To improve the utilization of plant fibers during ensiling, previous attempts have aimed at breaking linkages between lignin and hemicellulose by use of Lactobacillus buchneri LN 4017 (ATCC PTA-6138), a feruloyl esterase (FAE)-producing strain, but results have been inconsistent. Normally, there are sufficient amounts of readily available substrates for bacterial growth in silage. We thus hypothesized that the inconsistent effect of L. buchneri LN 4017 on the digestibility of silage fibers is due to the catabolic repression of FAE activity by substrates present in silage (e.g., glucose). To test this hypothesis, we analyzed the effect of glucose on the de-esterification of methyl ferulate (MF), a model substrate used for FAE activity assays. At three glucose:MF ratios (0:1, 1:1, and 13:1), the bacteria continued hydrolyzing MF with increasing glucose:MF ratios, indicating that the de-esterification reaction was not repressed by glucose. We therefore conclude that the de-esterification activity of L. buchneri LN 4017 is not repressed by silage substrates during ensiling.
Assuntos
Ácidos Cafeicos/metabolismo , Glucose/metabolismo , Lactobacillus/metabolismo , EsterificaçãoRESUMO
Hitherto, few species have been reported to convert lactate to n-caproate. Here, we report the high-quality draft genomes of three Clostridia strains isolated on lactate as the sole carbon source. The genomes were assembled using a hybrid short- and long-read sequencing approach. The genes involved in lactate-based chain elongation were identified.
RESUMO
Medium-chain carboxylates such as n-caproate and n-caprylate are valuable chemicals, which can be produced from renewable feedstock by anaerobic fermentation and lactate-based microbial chain elongation. Acidogenic microbiota involved in lactate-based chain elongation and their interplay with lactic acid bacteria have not been characterized in detail yet. Here, the metabolic and community dynamics were studied in a continuous bioreactor with xylan and lactate as sole carbon sources. Four succession stages were observed during 148 days of operation. After an adaptation period of 36 days, a relatively stable period of 28 days (stage I) was reached with n-butyrate, n-caproate and n-caprylate productivities of 7.2, 8.2 and 1.8 gCOD L-1 d-1, respectively. After a transition period, the process changed to another period (stage II), during which 46% more n-butyrate, 51% less n-caproate and 67% less n-caprylate were produced. Co-occurrence networks of species based on 16S rRNA amplicon sequences and correlations with process parameters were analyzed to infer ecological interactions and potential metabolic functions. Diverse functions including hydrolysis of xylan, primary fermentation of xylose to acids (e.g., to acetate by Syntrophococcus, to n-butyrate by Lachnospiraceae, and to lactate by Lactobacillus) and chain-elongation with lactate (by Ruminiclostridium 5 and Pseudoramibacter) were inferred from the metabolic network. In stage I, the sub-network characterized by strongest positive correlations was mainly related to the production of n-caproate and n-caprylate. Lactic acid bacteria of the genus Olsenella co-occurred with potentially chain-elongating bacteria of the genus Pseudoramibacter, and their abundance was positively correlated with n-caproate and n-caprylate concentrations. A new sub-network appeared in stage II, which was mainly related to n-butyrate production and revealed a network of different lactic acid bacteria (Bifidobacterium) and potential n-butyrate producers (Clostridium sensu stricto 12). The synergy effects between lactate-producing and lactate-consuming bacteria constitute a division of labor cooperation of mutual benefit. Besides cooperation, competition between different taxa determined the bacterial community assembly over the four succession stages in this resource-limited system. During long-term reactor operation under constant conditions, chain-elongating bacteria were outcompeted by butyrate-producing bacteria, leading to the increase of n-butyrate yield at the cost of medium-chain carboxylate yields in this closed model system.