Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 292
Filtrar
1.
Nat Immunol ; 20(10): 1405, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31388150

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Mol Ther ; 32(2): 503-526, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38155568

RESUMO

Multiple myeloma (MM) is a rarely curable malignancy of plasma cells. MM expresses B cell maturation antigen (BCMA). We developed a fully human anti-BCMA chimeric antigen receptor (CAR) with a heavy-chain-only antigen-recognition domain, a 4-1BB domain, and a CD3ζ domain. The CAR was designated FHVH33-CD8BBZ. We conducted the first-in-humans clinical trial of T cells expressing FHVH33-CD8BBZ (FHVH-T). Twenty-five patients with relapsed MM were treated. The stringent complete response rate (sCR) was 52%. Median progression-free survival (PFS) was 78 weeks. Of 24 evaluable patients, 6 (25%) had a maximum cytokine-release syndrome (CRS) grade of 3; no patients had CRS of greater than grade 3. Most anti-MM activity occurred within 2-4 weeks of FHVH-T infusion as shown by decreases in the rapidly changing MM markers serum free light chains, urine light chains, and bone marrow plasma cells. Blood CAR+ cell levels peaked during the time that MM elimination was occurring, between 7 and 15 days after FHVH-T infusion. C-C chemokine receptor type 7 (CCR7) expression on infusion CD4+ FHVH-T correlated with peak blood FHVH-T levels. Single-cell RNA sequencing revealed a shift toward more differentiated FHVH-T after infusion. Anti-CAR antibody responses were detected in 4 of 12 patients assessed. FHVH-T has powerful, rapid, and durable anti-MM activity.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Mieloma Múltiplo/genética , Receptores de Antígenos Quiméricos/metabolismo , Linfócitos T , Imunoterapia Adotiva , Medula Óssea/metabolismo
4.
J Transl Med ; 22(1): 181, 2024 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-38374090

RESUMO

The clinical application of cell therapies is becoming increasingly important for the treatment of cancer, congenital immune deficiencies, and hemoglobinopathies. These therapies have been primarily manufactured and used at academic medical centers. However, cell therapies are now increasingly being produced in centralized manufacturing facilities and shipped to medical centers for administration. Typically, these cell therapies are produced from a patient's own cells, which are the critical starting material. For these therapies to achieve their full potential, more medical centers must develop the infrastructure to collect, label, cryopreserve, test, and ship these cells to the centralized laboratories where these cell therapies are manufactured. Medical centers must also develop systems to receive, store, and infuse the finished cell therapy products. Since most cell therapies are cryopreserved for shipment and storage, medical centers using these therapies will require access to liquid nitrogen product storage tanks and develop procedures to thaw cell therapies. These services could be provided by the hospital pharmacy or transfusion service, but the latter is likely most appropriate. Another barrier to implementing these services is the variability among providers of these cell therapies in the processes related to handling cell therapies. The provision of these services by medical centers would be facilitated by establishing a national coordinating center and a network of apheresis centers to collect and cryopreserve the cells needed to begin the manufacturing process and cell therapy laboratories to store and issue the cells. In addition to organizing cell collections, the coordinating center could establish uniform practices for collecting, labeling, shipping, receiving, thawing, and infusing the cell therapy.


Assuntos
Centros Médicos Acadêmicos , Terapia Baseada em Transplante de Células e Tecidos , Humanos
5.
J Transl Med ; 22(1): 384, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38659083

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T-cells have demonstrated significant efficacy in targeting hematological malignancies, and their use continues to expand. Despite substantial efforts spent on the optimization of protocols for CAR T-cell manufacturing, critical parameters of cell culture such as pH or oxygenation are rarely actively monitored during cGMP CAR T-cell generation. A comprehensive understanding of the role that these factors play in manufacturing may help in optimizing patient-specific CAR T-cell therapy with maximum benefits and minimal toxicity. METHODS: This retrospective study examined cell culture supernatants from the manufacture of CAR T-cells for 20 patients with B-cell malignancies enrolled in a phase 1/2 clinical trial of anti-CD22 CAR T-cells. MetaFLEX was used to measure supernatant pH, oxygenation, and metabolites, and a Bio-Plex assay was used to assess protein levels. Correlations were assessed between the pH of cell culture media throughout manufacturing and cell proliferation as well as clinical outcomes. Next-generation sequencing was conducted to examine gene expression profiles of the final CAR T-cell products. RESULTS: A pH level at the lower range of normal at the beginning of the manufacturing process significantly correlated with measures of T-cell expansion and metabolism. Stable or rising pH during the manufacturing process was associated with clinical response, whereas a drop in pH was associated with non-response. CONCLUSIONS: pH has potential to serve as an informative factor in predicting CAR T-cell quality and clinical outcomes. Thus, its active monitoring during manufacturing may ensure a more effective CAR T-cell product.


Assuntos
Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico , Linfócitos T , Humanos , Concentração de Íons de Hidrogênio , Linfócitos T/imunologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/metabolismo , Receptores de Antígenos Quiméricos/metabolismo , Proliferação de Células , Técnicas de Cultura de Células
6.
Clin Chem ; 70(1): 116-127, 2024 01 04.
Artigo em Inglês | MEDLINE | ID: mdl-38175598

RESUMO

BACKGROUND: Chimeric antigen receptor (CAR) T-cell therapy has revolutionized treatment of hematologic malignancies and holds promise for solid tumors. While responses to CAR T-cell therapy have surpassed other available options for patients with refractory malignancies, not all patients respond the same way. The reason for this variability is not currently understood. Therefore, there is a strong need to identify characteristics of patients as well as cellular products that lead to an effective response to CAR T-cell therapy. CONTENT: In this review, we discuss potential biomarkers that may predict clinical outcomes of CAR T-cell therapy. Based on correlative findings from clinical trials of both commercially available and early-phase products, we classify biomarkers into categories of pre- and post-infusion as well as patient and product-related markers. Among the biomarkers that have been explored, measures of disease burden both pre- and post-infusion, as well as CAR T-cell persistence post-infusion, are repeatedly identified as predictors of disease response. Higher proportions of early memory T cells at infusion appear to be favorable, and tracking T-cell subsets throughout treatment will likely be critical. SUMMARY: There are a growing number of promising biomarkers of CAR T-cell efficacy described in the research setting, however, none of these have been validated for clinical use. Some potentially important predictors of response may be difficult to obtain routinely under the current CAR T-cell therapy workflow. A collaborative approach is needed to select biomarkers that can be validated in large cohorts and incorporated into clinical practice.


Assuntos
Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Biomarcadores , Efeitos Psicossociais da Doença , Terapia Baseada em Transplante de Células e Tecidos
7.
Blood ; 140(5): 451-463, 2022 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-35605184

RESUMO

Remission durability following single-antigen targeted chimeric antigen receptor (CAR) T-cells is limited by antigen modulation, which may be overcome with combinatorial targeting. Building upon our experiences targeting CD19 and CD22 in B-cell acute lymphoblastic leukemia (B-ALL), we report on our phase 1 dose-escalation study of a novel murine stem cell virus (MSCV)-CD19/CD22-4-1BB bivalent CAR T-cell (CD19.22.BBζ) for children and young adults (CAYA) with B-cell malignancies. Primary objectives included toxicity and dose finding. Secondary objectives included response rates and relapse-free survival (RFS). Biologic correlatives included laboratory investigations, CAR T-cell expansion and cytokine profiling. Twenty patients, ages 5.4 to 34.6 years, with B-ALL received CD19.22.BBζ. The complete response (CR) rate was 60% (12 of 20) in the full cohort and 71.4% (10 of 14) in CAR-naïve patients. Ten (50%) developed cytokine release syndrome (CRS), with 3 (15%) having ≥ grade 3 CRS and only 1 experiencing neurotoxicity (grade 3). The 6- and 12-month RFS in those achieving CR was 80.8% (95% confidence interval [CI]: 42.4%-94.9%) and 57.7% (95% CI: 22.1%-81.9%), respectively. Limited CAR T-cell expansion and persistence of MSCV-CD19.22.BBζ compared with EF1α-CD22.BBζ prompted laboratory investigations comparing EF1α vs MSCV promoters, which did not reveal major differences. Limited CD22 targeting with CD19.22.BBζ, as evaluated by ex vivo cytokine secretion and leukemia eradication in humanized mice, led to development of a novel bicistronic CD19.28ζ/CD22.BBζ construct with enhanced cytokine production against CD22. With demonstrated safety and efficacy of CD19.22.BBζ in a heavily pretreated CAYA B-ALL cohort, further optimization of combinatorial antigen targeting serves to overcome identified limitations (www.clinicaltrials.gov #NCT03448393).


Assuntos
Linfoma de Burkitt , Linfoma de Células B , Leucemia-Linfoma Linfoblástico de Células Precursoras , Receptores de Antígenos Quiméricos , Animais , Antígenos CD19 , Síndrome da Liberação de Citocina , Citocinas , Humanos , Imunoterapia Adotiva/efeitos adversos , Imunoterapia Adotiva/métodos , Camundongos , Receptores de Antígenos de Linfócitos T/genética , Receptores de Antígenos Quiméricos/genética , Recidiva , Linfócitos T
8.
Cytotherapy ; 26(2): 201-209, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38085197

RESUMO

BACKGROUND AIMS: Accurate assessment of cell viability is crucial in cellular product manufacturing, yet selecting the appropriate viability assay presents challenges due to various factors. This study compares and evaluates different viability assays on fresh and cryopreserved cellular products, including peripheral blood stem cell (PBSC) and peripheral blood mononuclear cell (PBMC) apheresis products, purified PBMCs and cultured chimeric antigen receptor and T-cell receptor-engineered T-cell products. METHODS: Viability assays, including manual Trypan Blue exclusion, flow cytometry-based assays using 7-aminoactinomycin D (7-AAD) or propidium iodide (PI) direct staining or cell surface marker staining in conjunction with 7-AAD, Cellometer (Nexcelom Bioscience LLC, Lawrence, MA, USA) Acridine Orange/PI staining and Vi-CELL BLU Cell Viability Analyzer (Beckman Coulter, Inc, Brea, CA, USA), were evaluated. A viability standard was established using live and dead cell mixtures to assess the accuracy of these assays. Furthermore, precision assessment was conducted to determine the reproducibility of the viability assays. Additionally, the viability of individual cell populations from cryopreserved PBSC and PBMC apheresis products was examined. RESULTS: All methods provided accurate viability measurements and generated consistent and reproducible viability data. The assessed viability assays were demonstrated to be reliable alternatives when evaluating the viability of fresh cellular products. However, cryopreserved products exhibited variability among the tested assays. Additionally, analyzing the viability of each subset of the cryopreserved PBSC and PBMC apheresis products revealed that T cells and granulocytes were more susceptible to the freeze-thaw process, showing decreased viability. CONCLUSIONS: The study demonstrates the importance of careful assay selection, validation and standardization, particularly for assessing the viability of cryopreserved products. Given the complexity of cellular products, choosing a fit-for-purpose viability assay is essential.


Assuntos
Leucócitos Mononucleares , Azul Tripano , Reprodutibilidade dos Testes , Sobrevivência Celular , Criopreservação/métodos , Citometria de Fluxo/métodos
9.
Cytotherapy ; 26(7): 757-768, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38625071

RESUMO

With investigators looking to expand engineered T cell therapies such as CAR-T to new tumor targets and patient populations, a variety of cell manufacturing platforms have been developed to scale manufacturing capacity using closed and/or automated systems. Such platforms are particularly useful for solid tumor targets, which typically require higher CAR-T cell doses. Although T cell phenotype and function are key attributes that often correlate with therapeutic efficacy, how manufacturing platforms influence the final CAR-T cell product is currently unknown. We compared 4 commonly used T cell manufacturing platforms (CliniMACS Prodigy, Xuri W25 rocking platform, G-Rex gas-permeable bioreactor, static bag culture) using identical media, stimulation, culture length, and donor starting material. Selected CD4+CD8+ cells were transduced with lentiviral vector incorporating a CAR targeting FGFR4, a promising target for pediatric sarcoma. We observed significant differences in overall expansion over the 14-day culture; bag cultures had the highest capacity for expansion while the Prodigy had the lowest (481-fold versus 84-fold, respectively). Strikingly, we also observed considerable differences in the phenotype of the final product, with the Prodigy significantly enriched for CCR7+CD45RA+ naïve/stem central memory (Tn/scm)-like cells at 46% compared to bag and G-Rex with 16% and 13%, respectively. Gene expression analysis also showed that Prodigy CAR-Ts are more naïve, less cytotoxic and less exhausted than bag, G-Rex, and Xuri CAR-Ts, and pointed to differences in cell metabolism that were confirmed via metabolic assays. We hypothesized that dissolved oxygen level, which decreased substantially during the final 3 days of the Prodigy culture, may contribute to the observed differences in T cell phenotype. By culturing bag and G-Rex cultures in 1% O2 from day 5 onward, we could generate >60% Tn/scm-like cells, with longer time in hypoxia correlating with a higher percentage of Tn/scm-like cells. Intriguingly, our results suggest that oxygenation is responsible, at least in part, for observed differences in T cell phenotype among bioreactors and suggest hypoxic culture as a potential strategy prevent T cell differentiation during expansion. Ultimately, our study demonstrates that selection of bioreactor system may have profound effects not only on the capacity for expansion, but also on the differentiation state of the resulting CAR-T cells.


Assuntos
Diferenciação Celular , Imunoterapia Adotiva , Receptores de Antígenos Quiméricos , Humanos , Imunoterapia Adotiva/métodos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/metabolismo , Proliferação de Células , Linfócitos T/metabolismo , Linfócitos T/citologia , Reatores Biológicos , Técnicas de Cultura de Células/métodos , Linfócitos T CD8-Positivos/imunologia
10.
Transfusion ; 64(2): 357-366, 2024 02.
Artigo em Inglês | MEDLINE | ID: mdl-38173340

RESUMO

BACKGROUND: Healthcare center-based cell therapy laboratories (HC CTLs) evolved from solely processing hematopoietic stem cells for transplantation to manufacturing various advanced cellular therapies. With increasing interest in cellular therapy applications, off-site manufactured products are becoming more common. HC CTLs play a critical role in supporting these products by shipping out cellular starting material (CSM) for further manufacturing and/or receiving, storing, and distributing final products. The experiences and challenges encountered by a single academic HC CTL in supporting these products are presented. METHODS: All off-site manufacturing protocols supported before 2023 were reviewed. Collected data included protocol characteristics (treatment indication, product type), process logistics (shipping, receiving, storage, thawing, distribution, documentation), and product handling volumes (CSM shipping and final product infusions). RESULTS: Between 2012 and 2022, 15 off-site manufactured cellular therapy early-phase, single- and multicenter clinical trials were supported. Trials were sponsored by academic/research and commercial entities. The number of protocols supported annually increased each year, with few ending. Products included cancer immunotherapies and gene therapies. Autologous CSM was collected and shipped, while autologous and allogeneic final products were received, stored, thawed, and distributed. Process differences among protocols included CSM shipping conditions, laboratory analyses, final product thaw conditions and procedures, number of treatments, and documentation. DISCUSSION: HC CTLs must contend with several challenges in supporting off-site manufacturing protocols. As demand for cellular therapies increases, stakeholders should collaborate from the early phases of clinical trials to streamline processes and standardize procedures to increase value, improve safety, and reduce the burden on HC CTLs.


Assuntos
Células-Tronco Hematopoéticas , Laboratórios , Humanos , Terapia Baseada em Transplante de Células e Tecidos , Imunoterapia , Atenção à Saúde
11.
Blood ; 138(24): 2469-2484, 2021 12 16.
Artigo em Inglês | MEDLINE | ID: mdl-34525183

RESUMO

Chimeric antigen receptor (CAR) T-cell toxicities resembling hemophagocytic lymphohistiocytosis (HLH) occur in a subset of patients with cytokine release syndrome (CRS). As a variant of conventional CRS, a comprehensive characterization of CAR T-cell-associated HLH (carHLH) and investigations into associated risk factors are lacking. In the context of 59 patients infused with CD22 CAR T cells where a substantial proportion developed carHLH, we comprehensively describe the manifestations and timing of carHLH as a CRS variant and explore factors associated with this clinical profile. Among 52 subjects with CRS, 21 (40.4%) developed carHLH. Clinical features of carHLH included hyperferritinemia, hypertriglyceridemia, hypofibrinogenemia, coagulopathy, hepatic transaminitis, hyperbilirubinemia, severe neutropenia, elevated lactate dehydrogenase, and occasionally hemophagocytosis. Development of carHLH was associated with preinfusion natural killer(NK) cell lymphopenia and higher bone marrow T-cell:NK cell ratio, which was further amplified with CAR T-cell expansion. Following CRS, more robust CAR T-cell and CD8 T-cell expansion in concert with pronounced NK cell lymphopenia amplified preinfusion differences in those with carHLH without evidence for defects in NK cell mediated cytotoxicity. CarHLH was further characterized by persistent elevation of HLH-associated inflammatory cytokines, which contrasted with declining levels in those without carHLH. In the setting of CAR T-cell mediated expansion, clinical manifestations and immunophenotypic profiling in those with carHLH overlap with features of secondary HLH, prompting consideration of an alternative framework for identification and management of this toxicity profile to optimize outcomes following CAR T-cell infusion.


Assuntos
Síndrome da Liberação de Citocina/etiologia , Imunoterapia Adotiva/efeitos adversos , Linfo-Histiocitose Hemofagocítica/etiologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Adulto , Linfócitos T CD8-Positivos/imunologia , Síndrome da Liberação de Citocina/diagnóstico , Síndrome da Liberação de Citocina/imunologia , Feminino , Humanos , Imunoterapia Adotiva/métodos , Células Matadoras Naturais/imunologia , Linfo-Histiocitose Hemofagocítica/diagnóstico , Linfo-Histiocitose Hemofagocítica/imunologia , Masculino , Estudos Retrospectivos
12.
Cytotherapy ; 25(4): 442-450, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36710226

RESUMO

BACKGROUND AIMS: Hematopoietic stem cell transplantation using bone marrow as the graft source is a common treatment for hematopoietic malignancies and disorders. For allogeneic transplants, processing of bone marrow requires the depletion of ABO-mismatched red blood cells (RBCs) to avoid transfusion reactions. Here the authors tested the use of an automated closed system for depleting RBCs from bone marrow and compared the results to a semi-automated platform that is more commonly used in transplant centers today. The authors found that fully automated processing using the Sepax instrument (Cytiva, Marlborough, MA, USA) resulted in depletion of RBCs and total mononuclear cell recovery that were comparable to that achieved with the COBE 2991 (Terumo BCT, Lakewood, CO, USA) semi-automated process. METHODS: The authors optimized the fully automated and closed Sepax SmartRedux (Cytiva) protocol. Three reduction folds (10×, 12× and 15×) were tested on the Sepax. Each run was compared with the standard processing performed in the authors' center on the COBE 2991. Given that bone marrow is difficult to acquire for these purposes, the authors opted to create a surrogate that is more easily obtainable, which consisted of cryopreserved peripheral blood stem cells that were thawed and mixed with RBCs and supplemented with Plasma-Lyte A (Baxter, Deerfield, IL, USA) and 4% human serum albumin (Baxalta, Westlake Village, CA, USA). This "bone marrow-like" product was split into two starting products of approximately 600 mL, and these were loaded onto the COBE and Sepax for direct comparison testing. Samples were taken from the final products for cell counts and flow cytometry. The authors also tested a 10× Sepax reduction using human bone marrow supplemented with human liquid plasma and RBCs. RESULTS: RBC reduction increased as the Sepax reduction rate increased, with an average of 86.06% (range of 70.85-96.39%) in the 10×, 98.80% (range of 98.1-99.5%) in the 12× and 98.89% (range of 98.80-98.89%) in the 15×. The reduction rate on the COBE ranged an average of 69.0-93.15%. However, white blood cell (WBC) recovery decreased as the Sepax reduction rate increased, with an average of 47.65% (range of 38.9-62.35%) in the 10×, 14.56% (range of 14.34-14.78%) in the 12× and 27.97% (range of 24.7-31.23%) in the 15×. COBE WBC recovery ranged an average of 53.17-76.12%. Testing a supplemented human bone marrow sample using a 10× Sepax reduction resulted in an average RBC reduction of 84.22% (range of 84.0-84.36%) and WBC recovery of 43.37% (range of 37.48-49.26%). Flow cytometry analysis also showed that 10× Sepax reduction resulted in higher purity and better recovery of CD34+, CD3+ and CD19+ cells compared with 12× and 15× reduction. Therefore, a 10× reduction rate was selected for the Sepax process. CONCLUSIONS: The fully automated and closed SmartRedux program on the Sepax was shown to be effective at reducing RBCs from "bone marrow-like" products and a supplemented bone marrow product using a 10× reduction rate.


Assuntos
Medula Óssea , Transplante de Células-Tronco Hematopoéticas , Humanos , Eritrócitos , Transplante de Células-Tronco Hematopoéticas/métodos , Transplante de Medula Óssea , Citometria de Fluxo
13.
Cytotherapy ; 25(6): 598-604, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36935289

RESUMO

BACKGROUND AIMS: Reference genes are an essential part of clinical assays such as droplet digital polymerase chain reaction (ddPCR), which measure the number of copies of vector integrated into genetically engineered cells and the loss of plasmids in reprogrammed cells used in clinical cell therapies. Care should be taken to select reference genes, because it has been discovered that there may be thousands of variations in copy number from genomic segments among different individuals. In addition, within the same person in the context of cancer and other proliferative disorders, substantial parts of the genome also can differ in copy number between cells from diseased and healthy people. The purpose of this study was to identify reference genes that could be used for copy number variation analysis of transduced chimeric antigen receptor T cells and for plasmid loss analysis in induced pluripotent stem cells using ddPCR. METHODS: We used The Cancer Genome Atlas (TCGA) to evaluate candidate reference genes. If TCGA found a candidate gene to have low copy number variance in cancer, ddPCR was used to measure the copy numbers of the potential reference gene in cells from healthy subjects, cancer cell lines and patients with acute lymphocytic leukemia, lymphoma, multiple myeloma and human papillomavirus-associated cancers. RESULTS: In addition to the rPP30 gene, which we have has been using in our copy number assays, three other candidate reference genes were evaluated using TCGA, and this analysis found that none of the four gene regions (AGO1, AP3B1, MKL2 and rPP30) were amplified or deleted in all of the cancer cell types that are currently being treated with cellular therapies by our facility. The number of copies of the genes AP3B1, AGO1, rPP30 and MKL2 measured by ddPCR was similar among cells from healthy subjects. We found that AGO1 had copy number alteration in some of the clinical samples, and the number of copies of the genes AP3B1, MKL2 and rPP30 measured by ddPCR was similar among cells from patients with the cancer cell types that are currently being treated with genetically engineered T-cell therapies by our facility. CONCLUSIONS: Based on our current results, the three genes, AP3B1, MKL2 and rPP30, are suitable for use as reference genes for assays measuring vector copy number in chimeric antigen receptor T cells produced from patients with acute leukemia, lymphoma, multiple myeloma and human papillomavirus-associated cancers. We will continue to evaluate AGO1 on our future samples.


Assuntos
Mieloma Múltiplo , Receptores de Antígenos Quiméricos , Humanos , Variações do Número de Cópias de DNA/genética , Receptores de Antígenos Quiméricos/genética , Mieloma Múltiplo/genética , Mieloma Múltiplo/terapia , Linfócitos T , Reação em Cadeia da Polimerase/métodos
14.
Cytotherapy ; 2023 Dec 02.
Artigo em Inglês | MEDLINE | ID: mdl-38043052

RESUMO

BACKGROUND AIMS: Culture-derived mesenchymal stromal cells (MSCs) exhibit variable characteristics when manufactured using different methods, source material and culture media. The purpose of this multicenter study was to assess the impact on MSC expansion, gene expression and other characteristics when different laboratories expanded MSCs from cultures initiated with bone marrow-MSC aliquots derived from the same donor source material yet with different growth media. METHODS: Eight centers expanded MSCs using four human platelet lysate (HPL) and one fetal bovine serum (FBS) products as media supplements. The expanded cells were taken through two passages then assessed for cell count, viability, doubling time, immunophenotype, cell function, immunosuppression and gene expression. Results were analyzed by growth media and by center. RESULTS: Center methodologies varied by their local seeding density, feeding regimen, inoculation density, base media and other growth media features (antibiotics, glutamine, serum). Doubling times were more dependent on center than on media supplements. Two centers had appropriate immunophenotyping showing all MSC cultures were positive for CD105, CD73, CD90 and negative for CD34, CD45, CD14, HLA-DR. MSCs cultured in media supplemented with FBS compared with HPL featured greater T-cell inhibition potential. Gene expression analysis showed greater impact of the type of media supplement (HPL versus FBS) than the manufacturing center. Specifically, nine genes were decreased in expression and six increased when combining the four HPL-grown MSCs versus FBS (false discovery rate [FDR] <0.01), however, without significant difference between different sources of HPL (FDR <0.01). CONCLUSIONS: Local manufacturing process plays a critical role in MSC expansion while growth media may influence function and gene expression. All HPL and FBS products supported cell growth.

15.
Transfusion ; 63(4): 774-781, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36975826

RESUMO

BACKGROUND: Since the beginning of the COVID-19 pandemic, cryopreservation of hematopoietic progenitor cell (HPC) products has been increasingly used to ensure allogeneic donor graft availability prior to recipient conditioning for transplantation. However, in addition to variables such as graft transport duration and storage conditions, the cryopreservation process itself may adversely affect graft quality. Furthermore, the optimal methods to assess graft quality have not yet been determined. STUDY DESIGN AND METHODS: A retrospective review was performed on all cryopreserved HPCs processed and thawed at our facility from 2007 to 2020, including both those collected onsite and by the National Marrow Donor Program (NMDP). HPC viability studies were also performed on fresh products, retention vials, and corresponding final thawed products by staining for 7-AAD (flow cytometry), AO/PI (Cellometer), and trypan blue (manual microscopy). Comparisons were made using the Mann-Whitney test. RESULTS: For HPC products collected by apheresis (HPC(A)), pre-cryopreservation and post-thaw viabilities, as well as total nucleated cell recoveries were lower for products collected by the NMDP compared to those collected onsite. However, there were no differences seen in CD34+ cell recoveries. Greater variation in viability testing was observed using image-based assays compared to flow-based assays, and on cryo-thawed versus fresh samples. No significant differences were observed between viability measurements obtained on retention vials versus corresponding final thawed product bags. DISCUSSION: Our studies suggest extended transport may contribute to lower post-thaw viabilities, but without affecting CD34+ cell recoveries. To assess HPC viability prior to thaw, testing of retention vials offers predictive utility, particularly when automated analyzers are used.


Assuntos
COVID-19 , Transplante de Células-Tronco Hematopoéticas , Humanos , Transplante de Células-Tronco Hematopoéticas/métodos , Pandemias , Células-Tronco Hematopoéticas , Criopreservação/métodos , Antígenos CD34 , Sobrevivência Celular
16.
Int J Mol Sci ; 24(17)2023 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-37686058

RESUMO

Adoptive transfer of cultured BMSCs was shown to be immune-suppressive in various inflammatory settings. Many factors play a role in the process, but no master regulator of BMSC-driven immunomodulation was identified. Consequently, an assay that might predict BMSC product efficacy is still unavailable. Below, we show that BMSC donor variability can be monitored by IL-10 production of monocytes/macrophages using THP-1 cells (immortalized monocytic leukemia cells) co-cultured with BMSCs. Using a mixed lymphocyte reaction (MLR) assay, we also compared the ability of the different donor BMSCs to suppress T-cell proliferation, another measure of their immune-suppressive ability. We found that the BMSCs from a donor that induced the most IL-10 production were also the most efficient in suppressing T-cell proliferation. Transcriptome studies showed that the most potent BMSC batch also had higher expression of several known key immunomodulatory molecules such as hepatocyte growth factor (HGF), PDL1, and numerous members of the PGE2 pathway, including PTGS1 and TLR4. Multiplex ELISA experiments revealed higher expression of HGF and IL6 by the most potent BMSC donor. Based on these findings, we propose that THP-1 cells may be used to assess BMSC immunosuppressive activity as a product characterization assay.


Assuntos
Medula Óssea , Leucemia Monocítica Aguda , Humanos , Projetos Piloto , Interleucina-10 , Linhagem Celular , Células Estromais
17.
Br J Haematol ; 198(4): 740-744, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35737751

RESUMO

We adjusted haematopoietic stem and progenitor cell (HSPC) apheresis collection from patients with sickle cell disease (SCD) by targeting deep buffy coat collection using medium or low collection preference (CP), and by increasing anticoagulant-citrate-dextrose-solution A dosage. In 43 HSPC collections from plerixafor-mobilized adult patients with SCD, we increased the collection efficiency to 35.79% using medium CP and 82.23% using low CP. Deep buffy coat collection increased red blood cell contamination of the HSPC product, the product haematocrit was 4.7% with medium CP and 6.4% with low CP. These adjustments were well-tolerated and allowed efficient HSPC collection from SCD patients.


Assuntos
Anemia Falciforme , Remoção de Componentes Sanguíneos , Compostos Heterocíclicos , Adulto , Anemia Falciforme/terapia , Benzilaminas , Ciclamos , Mobilização de Células-Tronco Hematopoéticas , Células-Tronco Hematopoéticas , Humanos , Leucaférese
18.
J Virol ; 95(11)2021 05 10.
Artigo em Inglês | MEDLINE | ID: mdl-33731459

RESUMO

Potential mechanisms of poor CD4+ T cell reconstitution after viral suppression with antiretroviral therapy (ART) in HIV disease have been extensively investigated. We recently discovered that anti-CD4 autoantibody plays a role in impaired CD4+ T cell recovery from ART in HIV-infected individuals with viral suppression, which accounts for a mechanism specific for CD4+ T cell depletion. However, the mechanism of pathologic anti-CD4 autoantibody production in treated HIV disease remains unknown. Here we report that seasonal influenza vaccination induced IgG anti-CD4 autoantibodies, predominant IgG3 subclass, in some viral-suppressed ART-treated HIV+ subjects. To explore the mechanism of anti-CD4 antibody production in this population, we performed and analyzed gene profiles in isolated B cells using a gene microarray and plasma 32 cytokines. Notably, both gene expression and multiple cytokine analyses showed pre-vaccination plasma level of IL-23 was the key cytokine linked to IgG anti-CD4 antibody production in response to immunization in vivo Exogenous rIL-23 increased autoreactive IgG binding on CD4+ T cells from HIV+ subjects in vitro Results from this study may reveal a role of IL-23 in anti-CD4 autoantibody production in treated HIV.IMPORTANCEIn our published studies, we determine that pathological anti-CD4 IgGs from immunologic non-responders on virally-suppressive ART (CD4 cell counts < 350 cells/µL) mediated CD4+ T cell death via antibody-mediated cytotoxicity (ADCC), which play a role in poor CD4+ T cell recovery from ART. Up to 25% of HIV-infected individuals are non-responders and demonstrate increased morbidity and mortality. However, the mechanism of anti-CD4 autoantibody production in treated HIV remains unknown. In this study, we report that IL-23 may be the key cytokine to promote anti-CD4 autoantibody production after immunization in ART-treated HIV-infected individuals.

19.
J Transl Med ; 20(1): 184, 2022 04 25.
Artigo em Inglês | MEDLINE | ID: mdl-35468789

RESUMO

Cellular therapies have become an important part of clinical care. The treatment of patients with cell therapies often involves the collection of autologous cells at the medical center treating the patient, the shipment of these cells to a centralized manufacturing site, and the return of the cryopreserved clinical cell therapy to the medical center treating the patient for storage until infusion. As this activity grows, cell processing laboratories at many academic medical centers are involved with many different autologous products manufactured by several different centralized laboratories. The handling of these products by medical center-based cell therapy laboratories is complicated and resource-intensive since each centralized manufacturing laboratory has unique methods for labeling, storing, shipping, receiving, thawing, and infusing the cells. The field would benefit from the development of more uniform practices. The development of a coordinating center similar to those established to facilitate the collection, shipping, and transplantation of hematopoietic stem cells from unrelated donors would also be beneficial. In summary, the wide range of practices involved with labeling, shipping, freezing, thawing, and infusing centrally manufactured autologous cellular therapies lack efficiency and consistency and puts patients at risk. More uniform practices are needed.


Assuntos
Terapia Baseada em Transplante de Células e Tecidos , Transplante de Células-Tronco Hematopoéticas , Criopreservação/métodos , Células-Tronco Hematopoéticas , Humanos , Transplante Autólogo
20.
J Transl Med ; 20(1): 34, 2022 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-35033098

RESUMO

The use of cellular therapies to treat cancer, inherited immune deficiencies, hemoglobinopathies and viral infections is growing rapidly. The increased interest in cellular therapies has led to the development of reagents and closed-system automated instruments for the production of these therapies. For cellular therapy clinical trials involving multiple sites some people are advocating a decentralized model of manufacturing where patients are treated with cells produced using automated instruments at each participating center using a single, centrally held Investigational New Drug Application (IND). Many academic centers are purchasing these automated instruments for point-of-care manufacturing and participation in decentralized multiple center clinical trials. However, multiple site manufacturing requires harmonization of product testing and manufacturing in order to interpret the clinical trial results. Decentralized manufacturing is quite challenging since all centers should use the same manufacturing protocol, the same or comparable in-process and lot release assays and the quality programs from each center must work closely together. Consequently, manufacturing cellular therapies using a decentralized model is in many ways more difficult than manufacturing cells in a single centralized facility. Before an academic center decides to establish a point-of-care cell processing laboratory, they should consider all costs associated with such a program. For many academic cell processing centers, point-of-care manufacturing may not be a good investment.


Assuntos
Neoplasias , Sistemas Automatizados de Assistência Junto ao Leito , Terapia Baseada em Transplante de Células e Tecidos , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA