Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
1.
Nature ; 620(7976): 1109-1116, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37612506

RESUMO

Dominant optic atrophy is one of the leading causes of childhood blindness. Around 60-80% of cases1 are caused by mutations of the gene that encodes optic atrophy protein 1 (OPA1), a protein that has a key role in inner mitochondrial membrane fusion and remodelling of cristae and is crucial for the dynamic organization and regulation of mitochondria2. Mutations in OPA1 result in the dysregulation of the GTPase-mediated fusion process of the mitochondrial inner and outer membranes3. Here we used cryo-electron microscopy methods to solve helical structures of OPA1 assembled on lipid membrane tubes, in the presence and absence of nucleotide. These helical assemblies organize into densely packed protein rungs with minimal inter-rung connectivity, and exhibit nucleotide-dependent dimerization of the GTPase domains-a hallmark of the dynamin superfamily of proteins4. OPA1 also contains several unique secondary structures in the paddle domain that strengthen its membrane association, including membrane-inserting helices. The structural features identified in this study shed light on the effects of pathogenic point mutations on protein folding, inter-protein assembly and membrane interactions. Furthermore, mutations that disrupt the assembly interfaces and membrane binding of OPA1 cause mitochondrial fragmentation in cell-based assays, providing evidence of the biological relevance of these interactions.


Assuntos
Microscopia Crioeletrônica , GTP Fosfo-Hidrolases , Mitocôndrias , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , GTP Fosfo-Hidrolases/metabolismo , GTP Fosfo-Hidrolases/ultraestrutura , Fusão de Membrana , Mitocôndrias/enzimologia , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Dinâmica Mitocondrial , Membranas Mitocondriais/metabolismo , Mutação , Nucleotídeos/metabolismo , Ligação Proteica/genética , Domínios Proteicos , Dobramento de Proteína , Multimerização Proteica , Estrutura Secundária de Proteína , Humanos
2.
EMBO J ; 42(22): e113491, 2023 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-37621214

RESUMO

Nix is a membrane-anchored outer mitochondrial protein that induces mitophagy. While Nix has an LC3-interacting (LIR) motif that binds to ATG8 proteins, it also contains a minimal essential region (MER) that induces mitophagy through an unknown mechanism. We used chemically induced dimerization (CID) to probe the mechanism of Nix-mediated mitophagy and found that both the LIR and MER are required for robust mitophagy. We find that the Nix MER interacts with the autophagy effector WIPI2 and recruits WIPI2 to mitochondria. The Nix LIR motif is also required for robust mitophagy and converts a homogeneous WIPI2 distribution on the surface of the mitochondria into puncta, even in the absence of ATG8s. Together, this work reveals unanticipated mechanisms in Nix-induced mitophagy and the elusive role of the MER, while also describing an interesting example of autophagy induction that acts downstream of the canonical initiation complexes.


Assuntos
Autofagia , Mitofagia , Mitocôndrias/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Família da Proteína 8 Relacionada à Autofagia/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo
3.
J Biol Chem ; 299(2): 102901, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36642186

RESUMO

The HECT domain of HECT E3 ligases consists of flexibly linked N- and C-terminal lobes, with a ubiquitin (Ub) donor site on the C-lobe that is directly involved in substrate modification. HECT ligases also possess a secondary Ub binding site in the N-lobe, which is thought to play a role in processivity, specificity, or regulation. Here, we report the use of paramagnetic solution NMR to characterize a complex formed between the isolated HECT domain of neural precursor cell-expressed developmentally downregulated 4-1 and the ubiquitin E2 variant (UEV) domain of tumor susceptibility gene 101 (Tsg101). Both proteins are involved in endosomal trafficking, a process driven by Ub signaling, and are hijacked by viral pathogens for particle assembly; however, a direct interaction between them has not been described, and the mechanism by which the HECT E3 ligase contributes to pathogen formation has not been elucidated. We provide evidence for their association, consisting of multiple sites on the neural precursor cell-expressed developmentally downregulated 4-1 HECT domain and elements of the Tsg101 UEV domain involved in noncovalent ubiquitin binding. Furthermore, we show using an established reporter assay that HECT residues perturbed by UEV proximity define determinants of viral maturation and infectivity. These results suggest the UEV interaction is a determinant of HECT activity in Ub signaling. As the endosomal trafficking pathway is hijacked by several human pathogens for egress, the HECT-UEV interaction could represent a potential novel target for therapeutic intervention.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Infecções por HIV , HIV-1 , Ubiquitina , Humanos , Sítios de Ligação , Complexos Endossomais de Distribuição Requeridos para Transporte/metabolismo , HIV-1/metabolismo , Ubiquitina/metabolismo , Ubiquitina-Proteína Ligases/metabolismo , Infecções por HIV/metabolismo , Infecções por HIV/virologia
4.
Nature ; 560(7717): 258-262, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-30069048

RESUMO

Membrane fission is a fundamental process in the regulation and remodelling of cell membranes. Dynamin, a large GTPase, mediates membrane fission by assembling around, constricting and cleaving the necks of budding vesicles1. Here we report a 3.75 Å resolution cryo-electron microscopy structure of the membrane-associated helical polymer of human dynamin-1 in the GMPPCP-bound state. The structure defines the helical symmetry of the dynamin polymer and the positions of its oligomeric interfaces, which were validated by cell-based endocytosis assays. Compared to the lipid-free tetramer form2, membrane-associated dynamin binds to the lipid bilayer with its pleckstrin homology domain (PHD) and self-assembles across the helical rungs via its guanine nucleotide-binding (GTPase) domain3. Notably, interaction with the membrane and helical assembly are accommodated by a severely bent bundle signalling element (BSE), which connects the GTPase domain to the rest of the protein. The BSE conformation is asymmetric across the inter-rung GTPase interface, and is unique compared to all known nucleotide-bound states of dynamin. The structure suggests that the BSE bends as a result of forces generated from the GTPase dimer interaction that are transferred across the stalk to the PHD and lipid membrane. Mutations that disrupted the BSE kink impaired endocytosis. We also report a 10.1 Å resolution cryo-electron microscopy map of a super-constricted dynamin polymer showing localized conformational changes at the BSE and GTPase domains, induced by GTP hydrolysis, that drive membrane constriction. Together, our results provide a structural basis for the mechanism of action of dynamin on the lipid membrane.


Assuntos
Biopolímeros/química , Biopolímeros/metabolismo , Membrana Celular/metabolismo , Membrana Celular/ultraestrutura , Microscopia Crioeletrônica , Dinamina I/metabolismo , Dinamina I/ultraestrutura , Biopolímeros/genética , Membrana Celular/química , Dinamina I/química , Dinamina I/genética , Endocitose/genética , Guanosina Trifosfato/análogos & derivados , Guanosina Trifosfato/química , Guanosina Trifosfato/metabolismo , Humanos , Hidrólise , Modelos Moleculares , Proteínas Mutantes/química , Proteínas Mutantes/genética , Proteínas Mutantes/metabolismo , Proteínas Mutantes/ultraestrutura , Mutação , Domínios Proteicos , Multimerização Proteica
5.
Nature ; 564(7734): E6, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30377313

RESUMO

In Figs. 2b and 3d of this Letter, the labels 'Dynamin 1' and 'Overlay' were inadvertently swapped. This has been corrected online.

6.
Biochemistry ; 62(22): 3222-3233, 2023 11 21.
Artigo em Inglês | MEDLINE | ID: mdl-37917797

RESUMO

The varying conformational states of amyloid-forming protein monomers can determine their fibrillation outcome. In this study, we utilize solution NMR and the paramagnetic relaxation enhancement (PRE) effect to observe monomer properties of the repeat domain (RPT) from a human functional amyloid, premelanosomal protein, Pmel17. After excision from the full-length protein, RPT can self-assemble into amyloid fibrils, functioning as a scaffold for melanin deposition. Here, we report possible conformational states of the short RPT (sRPT) isoform, which has been demonstrated to be a fibrillation nucleator. NMR experiments were performed to determine conformational differences in sRPT by comparing aggregation-prone vs nonaggregating solution conditions. We observed significant chemical shift perturbations localized to residues near the C-terminus, demonstrating that the local chemical environment of the amyloid core region is highly sensitive to changes in pH. Next, we introduced cysteine point mutations for the covalent attachment of PRE ligands to sRPT to facilitate the observation of intramolecular interactions. We also utilized solvent PRE molecules with opposing charges to measure changes in the electrostatic potential of sRPT in different pH environments. These observed PRE effects offer insight into initial molecular events that might promote intermolecular interactions, which can trigger fibrillation. Taken together, our results show that sRPT monomers adopt a conformation inconsistent with a fully random coil at neutral pH and undergo conformational changes at lower pH values. These observations highlight regulatory mechanisms via organelle-associated pH conditions that can affect the fibrillation activity of proteins like RPT.


Assuntos
Amiloide , Proteínas Amiloidogênicas , Humanos , Amiloide/química , Isoformas de Proteínas , Espectroscopia de Ressonância Magnética , Concentração de Íons de Hidrogênio
7.
J Biol Chem ; 294(50): 19055-19065, 2019 12 13.
Artigo em Inglês | MEDLINE | ID: mdl-31690630

RESUMO

The mitochondrial, or intrinsic, apoptosis pathway is regulated mainly by members of the B-cell lymphoma 2 (BCL-2) protein family. BCL-2-associated X apoptosis regulator (BAX) plays a pivotal role in the initiation of mitochondria-mediated apoptosis as one of the factors causing mitochondrial outer-membrane permeabilization (MOMP). Of current interest are endogenous BAX ligands that inhibit its MOMP activity. Mitochondrial-derived peptides (MDPs) are a recently identified class of mitochondrial retrograde signaling molecules and are reported to be potent apoptosis inhibitors. Among them, humanin (HN) has been shown to suppress apoptosis by inhibiting BAX translocation to the mitochondrial outer membrane, but the molecular mechanism of this interaction is unknown. Here, using recombinant protein expression, along with light-scattering, CD, and fluorescence spectroscopy, we report that HN and BAX can form fibers together in vitro Results from negative stain EM experiments suggest that BAX undergoes secondary and tertiary structural rearrangements and incorporates into the fibers, and that its membrane-associating C-terminal helix is important for the fibrillation process. Additionally, HN mutations known to alter its anti-apoptotic activity affect fiber morphology. Our findings reveal for the first time a potential mechanism by which BAX can be sequestered by fibril formation, which can prevent it from initiating MOMP and committing the cell to apoptosis.


Assuntos
Apoptose , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Membranas Mitocondriais/metabolismo , Peptídeos/metabolismo , Proteína X Associada a bcl-2/metabolismo , Permeabilidade da Membrana Celular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Mutação , Peptídeos/química , Conformação Proteica , Proteína X Associada a bcl-2/química , Proteína X Associada a bcl-2/genética
8.
J Biol Chem ; 293(28): 11195-11205, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29853639

RESUMO

Membrane association of α-synuclein (α-syn), a neuronal protein associated with Parkinson's disease (PD), is involved in α-syn function and pathology. Most previous studies on α-syn-membrane interactions have not used the physiologically relevant N-terminally acetylated (N-acetyl) α-syn form nor the most naturally abundant cellular lipid, i.e. phosphatidylcholine (PC). Here, we report on how PC membrane fluidity affects the conformation and aggregation propensity of N-acetyl α-syn. It is well established that upon membrane binding, α-syn adopts an α-helical structure. Using CD spectroscopy, we show that N-acetyl α-syn transitions from α-helical to disordered at the lipid melting temperature (Tm ). We found that this fluidity sensing is a robust characteristic, unaffected by acyl chain length (Tm = 34-55 °C) and preserved in its homologs ß- and γ-syn. Interestingly, both N-acetyl α-syn membrane binding and amyloid formation trended with lipid order (1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC) > 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC)/sphingomyelin/cholesterol (2:2:1) ≥ DOPC), with gel-phase vesicles shortening aggregation kinetics and promoting fibril formation compared to fluid membranes. Furthermore, we found that acetylation enhances binding to PC micelles and small unilamellar vesicles with high curvature (r ∼16-20 nm) and that DPPC binding is reduced in the presence of cholesterol. These results confirmed that the exposure of hydrocarbon chains (i.e. packing defects) is essential for binding to zwitterionic gel membranes. Collectively, our in vitro results suggest that N-acetyl α-syn localizes to highly curved, ordered membranes inside a cell. We propose that age-related changes in membrane fluidity can promote the formation of amyloid fibrils, insoluble materials associated with PD.


Assuntos
Amiloide/química , Bicamadas Lipídicas/química , Fluidez de Membrana , Proteínas de Neoplasias/química , Fosfatidilcolinas/química , alfa-Sinucleína/química , beta-Sinucleína/química , gama-Sinucleína/química , Acetilação , Sequência de Aminoácidos , Amiloide/metabolismo , Colesterol/metabolismo , Humanos , Bicamadas Lipídicas/metabolismo , Micelas , Proteínas de Neoplasias/metabolismo , Fosfatidilcolinas/metabolismo , Ligação Proteica , Conformação Proteica , Homologia de Sequência , alfa-Sinucleína/metabolismo , beta-Sinucleína/metabolismo , gama-Sinucleína/metabolismo
9.
J Am Chem Soc ; 141(4): 1430-1434, 2019 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-30652860

RESUMO

NMR has provided a wealth of structural and dynamical information for RNA molecules of up to ∼50 nucleotides, but its application to larger RNAs has been hampered in part by difficulties establishing global structural features. A potential solution involves measurement of NMR perturbations after site-specific paramagnetic labeling. Although the approach works well for proteins, the inability to place the label at specific sites has prevented its application to larger RNAs transcribed in vitro. Here, we present a strategy in which RNA loop residues are modified to promote binding to a paramagnetically tagged reporter protein. Lanthanide-induced pseudocontact shifts are demonstrated for a 232-nucleotide RNA bound to tagged derivatives of the spliceosomal U1A RNA-binding domain. Further, the method is validated with a 36-nucleotide RNA for which measured NMR values agreed with predictions based on the previously known protein and RNA structures. The ability to readily insert U1A binding sites into ubiquitous hairpin and/or loop structures should make this approach broadly applicable for the atomic-level study of large RNAs.


Assuntos
Fenômenos Magnéticos , RNA/química , Ribonucleoproteína Nuclear Pequena U1/química , Ribonucleoproteína Nuclear Pequena U1/metabolismo , Sequência de Bases , Modelos Moleculares , Conformação de Ácido Nucleico , RNA/genética , RNA/metabolismo
10.
Methods ; 105: 119-27, 2016 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-27131595

RESUMO

Magnetic tweezers is a versatile and easy to implement single-molecule technique that has become increasingly prevalent in the study of nucleic acid based molecular motors. Here, we provide a description of the magnetic tweezers instrument and guidelines for measuring and analyzing DNA helicase activity. Along with experimental methods, we describe a robust method of single-molecule trajectory analysis based on the Student's t-test that accommodates continuous transitions in addition to the discrete transitions assumed in most widely employed analysis routines. To illustrate the single-molecule unwinding assay and the analysis routine, we provide DNA unwinding measurements of Escherichia coli RecQ helicase under a variety of conditions (Na+, ATP, temperature, and DNA substrate geometry). These examples reveal that DNA unwinding measurements under various conditions can aid in elucidating the unwinding mechanism of DNA helicase but also emphasize that environmental effects on DNA helicase activity must be considered in relation to in vivo activity and mechanism.


Assuntos
DNA de Cadeia Simples/química , RecQ Helicases/isolamento & purificação , Imagem Individual de Molécula/métodos , Trifosfato de Adenosina/química , DNA de Cadeia Simples/genética , Escherichia coli/enzimologia , Conformação de Ácido Nucleico , Pinças Ópticas , RecQ Helicases/genética
11.
Proc Natl Acad Sci U S A ; 111(34): 12390-5, 2014 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-25114250

RESUMO

Unconventional myosin 15 is a molecular motor expressed in inner ear hair cells that transports protein cargos within developing mechanosensory stereocilia. Mutations of myosin 15 cause profound hearing loss in humans and mice; however, the properties of this motor and its regulation within the stereocilia organelle are unknown. To address these questions, we expressed a subfragment 1-like (S1) truncation of mouse myosin 15, comprising the predicted motor domain plus three light-chain binding sites. Following unsuccessful attempts to express functional myosin 15-S1 using the Spodoptera frugiperda (Sf9)-baculovirus system, we discovered that coexpression of the muscle-myosin-specific chaperone UNC45B, in addition to the chaperone heat-shock protein 90 (HSP90) significantly increased the yield of functional protein. Surprisingly, myosin 15-S1 did not bind calmodulin with high affinity. Instead, the IQ domains bound essential and regulatory light chains that are normally associated with class II myosins. We show that myosin 15-S1 is a barbed-end-directed motor that moves actin filaments in a gliding assay (∼ 430 nm · s(-1) at 30 °C), using a power stroke of 7.9 nm. The maximum ATPase rate (k(cat) ∼ 6 s(-1)) was similar to the actin-detachment rate (k(det) = 6.2 s(-1)) determined in single molecule optical trapping experiments, indicating that myosin 15-S1 was rate limited by transit through strongly actin-bound states, similar to other processive myosin motors. Our data further indicate that in addition to folding muscle myosin, UNC45B facilitates maturation of an unconventional myosin. We speculate that chaperone coexpression may be a simple method to optimize the purification of other myosin motors from Sf9 insect cells.


Assuntos
Miosinas/isolamento & purificação , Miosinas/metabolismo , Estereocílios/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Calmodulina/metabolismo , Proteínas de Choque Térmico HSP90/genética , Proteínas de Choque Térmico HSP90/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/genética , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Camundongos , Chaperonas Moleculares , Dados de Sequência Molecular , Cadeias Leves de Miosina/metabolismo , Subfragmentos de Miosina/genética , Subfragmentos de Miosina/isolamento & purificação , Subfragmentos de Miosina/metabolismo , Miosinas/genética , Pinças Ópticas , Dobramento de Proteína , Transporte Proteico , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/isolamento & purificação , Proteínas Recombinantes de Fusão/metabolismo , Homologia de Sequência de Aminoácidos , Células Sf9 , Spodoptera
12.
J Biomol NMR ; 66(2): 125-139, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27659040

RESUMO

Lanthanide complexes based on the DOTA (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) cage are commonly used as phase contrast agents in magnetic resonance imaging, but can also be utilized in structural NMR applications due to their ability to induce either paramagnetic relaxation enhancement or a pseudocontact shift (PCS) depending on the choice of the lanthanide. The size and sign of the PCS for any given atom is determined by its coordinates relative to the metal center, and the characteristics of the lanthanide's magnetic susceptibility tensor. Using a polymethylated DOTA tag (Ln-M8-SPy) conjugated to ubiquitin, we calculated the position of the metal center and characterized the susceptibility tensor for a number of lanthanides (dysprosium, thulium, and ytterbium) under a range of pH and temperature conditions. We found that there was a difference in temperature sensitivity for each of the complexes studied, which depended on the size of the lanthanide ion as well as the isomeric state of the cage. Using 17O-NMR, we confirmed that the temperature sensitivity of the compounds was enhanced by the presence of an apically bound water molecule. Since amide-containing lanthanide complexes are known to be pH sensitive and can be used as probes of physiological pH, we also investigated the effect of pH on the Ln-M8-SPy susceptibility tensor, but we found that the changes in this pH range (5.0-7.4) were not significant.


Assuntos
Compostos Heterocíclicos com 1 Anel/química , Elementos da Série dos Lantanídeos/química , Espectroscopia de Ressonância Magnética , Concentração de Íons de Hidrogênio , Espectroscopia de Ressonância Magnética/métodos , Metais/química , Metilação , Modelos Moleculares , Conformação Molecular , Estrutura Molecular , Temperatura
13.
J Biol Chem ; 289(51): 35111-23, 2014 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-25342746

RESUMO

Chaperone-mediated autophagy (CMA) is a highly regulated cellular process that mediates the degradation of a selective subset of cytosolic proteins in lysosomes. Increasing CMA activity is one way for a cell to respond to stress, and it leads to enhanced turnover of non-critical cytosolic proteins into sources of energy or clearance of unwanted or damaged proteins from the cytosol. The lysosome-associated membrane protein type 2a (LAMP-2A) together with a complex of chaperones and co-chaperones are key regulators of CMA. LAMP-2A is a transmembrane protein component for protein translocation to the lysosome. Here we present a study of the structure and dynamics of the transmembrane domain of human LAMP-2A in n-dodecylphosphocholine micelles by nuclear magnetic resonance (NMR). We showed that LAMP-2A exists as a homotrimer in which the membrane-spanning helices wrap around each other to form a parallel coiled coil conformation, whereas its cytosolic tail is flexible and exposed to the cytosol. This cytosolic tail of LAMP-2A interacts with chaperone Hsc70 and a CMA substrate RNase A with comparable affinity but not with Hsp40 and RNase S peptide. Because the substrates and the chaperone complex can bind at the same time, thus creating a bimodal interaction, we propose that substrate recognition by chaperones and targeting to the lysosomal membrane by LAMP-2A are coupled. This can increase substrate affinity and specificity as well as prevent substrate aggregation, assist in the unfolding of the substrate, and promote the formation of the higher order complex of LAMP-2A required for translocation.


Assuntos
Autofagia , Proteína 2 de Membrana Associada ao Lisossomo/química , Proteína 2 de Membrana Associada ao Lisossomo/metabolismo , Chaperonas Moleculares/metabolismo , Estrutura Terciária de Proteína , Sequência de Aminoácidos , Proteínas de Choque Térmico HSC70/metabolismo , Humanos , Cinética , Proteína 2 de Membrana Associada ao Lisossomo/genética , Espectroscopia de Ressonância Magnética/métodos , Micelas , Modelos Moleculares , Dados de Sequência Molecular , Fosforilcolina/análogos & derivados , Fosforilcolina/química , Ligação Proteica , Multimerização Proteica , Estrutura Secundária de Proteína , Especificidade por Substrato
14.
Nucleic Acids Res ; 41(8): 4640-9, 2013 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-23460205

RESUMO

Type II topoisomerases are essential enzymes that regulate DNA topology through a strand-passage mechanism. Some type II topoisomerases relax supercoils, unknot and decatenate DNA to below thermodynamic equilibrium. Several models of this non-equilibrium topology simplification phenomenon have been proposed. The kinetic proofreading (KPR) model postulates that strand passage requires a DNA-bound topoisomerase to collide twice in rapid succession with a second DNA segment, implying a quadratic relationship between DNA collision frequency and relaxation rate. To test this model, we used a single-molecule assay to measure the unlinking rate as a function of DNA collision frequency for Escherichia coli topoisomerase IV (topo IV) that displays efficient non-equilibrium topology simplification activity, and for E. coli topoisomerase III (topo III), a type IA topoisomerase that unlinks and unknots DNA to equilibrium levels. Contrary to the predictions of the KPR model, topo IV and topo III unlinking rates were linearly related to the DNA collision frequency. Furthermore, topo III exhibited decatenation activity comparable with that of topo IV, supporting proposed roles for topo III in DNA segregation. This study enables us to rule out the KPR model for non-equilibrium topology simplification. More generally, we establish an experimental approach to systematically control DNA collision frequency.


Assuntos
DNA Topoisomerase IV/metabolismo , DNA Topoisomerases Tipo I/metabolismo , DNA Catenado/metabolismo , Proteínas de Escherichia coli/metabolismo , Escherichia coli/enzimologia , DNA Topoisomerase IV/química , DNA Topoisomerases Tipo I/química , DNA Topoisomerases Tipo I/genética , DNA Catenado/química , Proteínas de Escherichia coli/genética
15.
Biochemistry ; 53(34): 5558-67, 2014 Sep 02.
Artigo em Inglês | MEDLINE | ID: mdl-25115926

RESUMO

Although quinolones have been in clinical use for decades, the mechanism underlying drug activity and resistance has remained elusive. However, recent studies indicate that clinically relevant quinolones interact with Bacillus anthracis (Gram-positive) topoisomerase IV through a critical water-metal ion bridge and that the most common quinolone resistance mutations decrease drug activity by disrupting this bridge. As a first step toward determining whether the water-metal ion bridge is a general mechanism of quinolone-topoisomerase interaction, we characterized drug interactions with wild-type Escherichia coli (Gram-negative) topoisomerase IV and a series of ParC enzymes with mutations (S80L, S80I, S80F, and E84K) in the predicted bridge-anchoring residues. Results strongly suggest that the water-metal ion bridge is essential for quinolone activity against E. coli topoisomerase IV. Although the bridge represents a common and critical mechanism that underlies broad-spectrum quinolone function, it appears to play different roles in B. anthracis and E. coli topoisomerase IV. The water-metal ion bridge is the most important binding contact of clinically relevant quinolones with the Gram-positive enzyme. However, it primarily acts to properly align clinically relevant quinolones with E. coli topoisomerase IV. Finally, even though ciprofloxacin is unable to increase levels of DNA cleavage mediated by several of the Ser80 and Glu84 mutant E. coli enzymes, the drug still retains the ability to inhibit the overall catalytic activity of these topoisomerase IV proteins. Inhibition parallels drug binding, suggesting that the presence of the drug in the active site is sufficient to diminish DNA relaxation rates.


Assuntos
Ciprofloxacina/metabolismo , DNA Topoisomerase IV/metabolismo , Escherichia coli/enzimologia , Metais/química , Água/química , Biocatálise , DNA/química
16.
Mol Biol Cell ; : mbcE24050226, 2024 Sep 18.
Artigo em Inglês | MEDLINE | ID: mdl-39292879

RESUMO

Cellular communication is regulated at the plasma membrane by the interactions of receptor, adhesion, signaling, and endocytic proteins. Yet, the composition and control of these complexes in response to external cues remain unclear. We use high-resolution and high-throughput fluorescence imaging to map the localization of growth factor receptors and related proteins at single clathrin-coated structures in human squamous HSC3 cells. We find distinct protein signatures between control cells and cells stimulated with growth factors. Clathrin sites at the plasma membrane are preloaded with some receptors but not others. Stimulation with epidermal growth factor induces capture and concentration of epidermal growth factor-, fibroblast growth factor-, and low-density lipoprotein-receptors (EGFR, FGFR1, and LDLR). Regulatory proteins including ubiquitin ligase Cbl, the scaffold Grb2, and the mechanoenzyme dynamin2 are also recruited. Disrupting FGFR or EGFR activity with drugs prevents the recruitment of both EGFR and FGFR1. EGF was able to activate FGFR1 phosphorylation. Our data reveals novel co-clustering and activation of receptors and regulatory factors at clathrin-coated sites in response to stimulation by a single growth factor, EGF or FGF. This behavior integrates growth factor signaling and allows for complex responses to extracellular cues and drugs at the plasma membrane of human cells.

17.
bioRxiv ; 2024 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-38903101

RESUMO

Cellular communication is regulated at the plasma membrane by the interactions of receptor, adhesion, signaling, exocytic, and endocytic proteins. Yet, the composition and control of these nanoscale complexes in response to external cues remain unclear. Here, we use high-resolution and high-throughput fluorescence imaging to map the localization of growth factor receptors and related proteins at single clathrin-coated structures across the plasma membrane of human squamous HSC3 cells. We find distinct protein signatures between control cells and cells stimulated with ligands. Clathrin sites at the plasma membrane are preloaded with some receptors but not others. Stimulation with epidermal growth factor induces a capture and concentration of epidermal growth factor-, fibroblast growth factor-, and low-density lipoprotein-receptors (EGFR, FGFR, and LDLR). Regulatory proteins including ubiquitin ligase Cbl, the scaffold Grb2, and the mechanoenzyme dynamin2 are also recruited. Disrupting FGFR or EGFR individually with drugs prevents the recruitment of both EGFR and FGFR. Our data reveals novel crosstalk between multiple unrelated receptors and regulatory factors at clathrin-coated sites in response to stimulation by a single growth factor, EGF. This behavior integrates growth factor signaling and allows for complex responses to extracellular cues and drugs at the plasma membrane of human cells.

18.
Dev Cell ; 59(14): 1783-1793.e5, 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-38663399

RESUMO

Dynamin assembles as a helical polymer at the neck of budding endocytic vesicles, constricting the underlying membrane as it progresses through the GTPase cycle to sever vesicles from the plasma membrane. Although atomic models of the dynamin helical polymer bound to guanosine triphosphate (GTP) analogs define earlier stages of membrane constriction, there are no atomic models of the assembled state post-GTP hydrolysis. Here, we used cryo-EM methods to determine atomic structures of the dynamin helical polymer assembled on lipid tubules, akin to necks of budding endocytic vesicles, in a guanosine diphosphate (GDP)-bound, super-constricted state. In this state, dynamin is assembled as a 2-start helix with an inner lumen of 3.4 nm, primed for spontaneous fission. Additionally, by cryo-electron tomography, we trapped dynamin helical assemblies within HeLa cells using the GTPase-defective dynamin K44A mutant and observed diverse dynamin helices, demonstrating that dynamin can accommodate a range of assembled complexes in cells that likely precede membrane fission.


Assuntos
Membrana Celular , Microscopia Crioeletrônica , Dinaminas , Guanosina Trifosfato , Microscopia Crioeletrônica/métodos , Humanos , Membrana Celular/metabolismo , Células HeLa , Dinaminas/metabolismo , Dinaminas/química , Dinaminas/genética , Guanosina Trifosfato/metabolismo , Hidrólise , Guanosina Difosfato/metabolismo , Modelos Moleculares , Endocitose/fisiologia
19.
Nat Commun ; 14(1): 732, 2023 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-36759616

RESUMO

Conformational changes in endocytic proteins are regulators of clathrin-mediated endocytosis. Three clathrin heavy chains associated with clathrin light chains (CLC) assemble into triskelia that link into a geometric lattice that curves to drive endocytosis. Structural changes in CLC have been shown to regulate triskelia assembly in solution, yet the nature of these changes, and their effects on lattice growth, curvature, and endocytosis in cells are unknown. Here, we develop a new correlative fluorescence resonance energy transfer (FRET) and platinum replica electron microscopy method, named FRET-CLEM. With FRET-CLEM, we measure conformational changes in clathrin at thousands of individual morphologically distinct clathrin-coated structures. We discover that the N-terminus of CLC repositions away from the plasma membrane and triskelia vertex as coats curve. Preventing this conformational switch with chemical tools increases lattice sizes and inhibits endocytosis. Thus, a specific conformational switch in the light chain regulates lattice curvature and endocytosis in mammalian cells.


Assuntos
Cadeias Leves de Clatrina , Endocitose , Animais , Cadeias Leves de Clatrina/metabolismo , Membrana Celular/metabolismo , Clatrina/metabolismo , Cadeias Pesadas de Clatrina/metabolismo , Mamíferos/metabolismo
20.
Nat Commun ; 13(1): 905, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173166

RESUMO

The crosstalk between growth factor and adhesion receptors is key for cell growth and migration. In pathological settings, these receptors are drivers of cancer. Yet, how growth and adhesion signals are spatially organized and integrated is poorly understood. Here we use quantitative fluorescence and electron microscopy to reveal a mechanism where flat clathrin lattices partition and activate growth factor signals via a coordinated response that involves crosstalk between epidermal growth factor receptor (EGFR) and the adhesion receptor ß5-integrin. We show that ligand-activated EGFR, Grb2, Src, and ß5-integrin are captured by clathrin coated-structures at the plasma membrane. Clathrin structures dramatically grow in response to EGF into large flat plaques and provide a signaling platform that link EGFR and ß5-integrin through Src-mediated phosphorylation. Disrupting this EGFR/Src/ß5-integrin axis prevents both clathrin plaque growth and dampens receptor signaling. Our study reveals a reciprocal regulation between clathrin lattices and two different receptor systems to coordinate and enhance signaling. These findings have broad implications for the regulation of growth factor signaling, adhesion, and endocytosis.


Assuntos
Vesículas Revestidas por Clatrina/metabolismo , Clatrina/química , Proteína Adaptadora GRB2/metabolismo , Cadeias beta de Integrinas/metabolismo , Adesão Celular/fisiologia , Linhagem Celular Tumoral , Membrana Celular/metabolismo , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Endocitose , Receptores ErbB/metabolismo , Humanos , Microscopia Eletrônica , Transdução de Sinais/fisiologia , Quinases da Família src/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA