Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Total Environ ; 780: 146543, 2021 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-33773338

RESUMO

Identifying the presence of brominated flame retardants (BFRs) within individual polymer types prior to extrusion has given us a unique perspective on which polymers may be problematic in meeting European Union (EU) low persistent organic pollutant (POP) content limits (LPCLs) and the potential for mixed engineering plastics (MEP) to be used as a viable recycled product. Our findings suggest that careful management of the polymer types within the feed chips prior to extrusion could deliver extruded polymer pellets that meet the EU LPCL values for POP-BFRs (i.e. <1000 mg/kg). Within this study, three fractions of extruded polymer pellets ("light", "medium", and "heavy" MEP) were created using density separation. Each fraction was characterised for 28 legacy and novel BFRs with brominated diphenyl ether-209 (BDE-209) (68-37,000 mg/kg) and tetrabromobisphenol-A (TBBP-A) (17-120,000 mg/kg) both predominant and ubiquitous. Portable X-ray fluorescence (XRF) was utilised to measure Br in 120 individual MEP chips of various polymer types. Those chips that XRF flagged as having high Br concentrations (>2500 mg/kg) were subjected to further evaluation for BFR content via mass spectrometry analysis and the results compared with the XRF Br data. This revealed that in 22% of the 120 chips studied, XRF incorrectly identified the LPCL to be exceeded. Our data also identifies the presence of the novel BFRs decabromodiphenyl ethane (DBDPE) and 1,2-bis(2,4,6-tribromophenoxy) ethane (BTBPE) in plastics derived from waste electronic and electrical equipment (WEEE). While the "light-MEP" samples contained POP-BFR concentrations below LPCLs, the "medium-MEP" and "heavy-MEP" fractions exceeded such limits. Management of the polymer chips by colour sorting resulted in significant reductions in concentrations of all BFRs in the clear polymers such that LPCL limits were not exceeded; however, concentration reductions in white polymers were insufficient to meet LPCLs.

2.
Environ Pollut ; 238: 1056-1068, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29703676

RESUMO

We assessed exposure to 39 brominated and 16 organophosphate ester flame retardants (FRs) from both dust and indoor air at seven childcare centres in Seattle, USA, and investigated the importance of nap mats as a source of these chemicals. Many childcare centres serving young children use polyurethane foam mats for the children's naptime. Until recently, the vast majority of these mats sold in the United States contained flame-retarded polyurethane foam to meet California Technical Bulletin 117 (TB117) requirements. With the 2013 update of TB117, allowing manufacturers to meet flammability standards without adding FRs to filling materials, FR-free nap mats have become widely available. We conducted an intervention study by actively switching out FR-treated nap mats with FR-free nap mats and measuring FR levels in indoor air and dust before and after the switch-out. The predominant FRs found in dust and indoor air were 2-ethylhexyl tetrabromobenzoate (EHTBB) and tris(1-chloro-2-propyl) phosphate (TCIPP), respectively. Nap mat samples analysed from four of the six centres contained a Firemaster® mixture, while one mat was predominantly treated with tris(1,3-dichloroisopropyl) phosphate (TDCIPP) and the other contained no detectable target FRs. After replacement, there was a significant decrease (p = 0.03-0.09) in median dust concentrations for bis(2-ethylhexyl) tetrabromophthalate (BEHTBP), EHTBB, tris(4-butylphenyl) phosphate (TBPP), and TDCIPP with reductions of 90%, 79%, 65%, and 42%, respectively. These findings suggest that the nap mats were an important source of these FRs to dust in the investigated childcare environments and that a campaign of swapping out flame-retarded mats for FR-free ones would reduce exposure to these chemicals. While calculated exposure estimates to the investigated FRs via inhalation, dust ingestion, and dermal absorption were below established reference dose values, they are likely underestimated when considering the toddlers' direct contact to the mats and personal cloud effects.


Assuntos
Poluição do Ar em Ambientes Fechados/análise , Roupas de Cama, Mesa e Banho , Cuidado da Criança , Exposição Ambiental/estatística & dados numéricos , Retardadores de Chama/análise , Compostos Organofosforados/análise , Poluição do Ar em Ambientes Fechados/estatística & dados numéricos , California , Criança , Pré-Escolar , Poeira/análise , Éteres Difenil Halogenados/análise , Halogenação , Humanos , Organofosfatos/análise , Fosfatos/análise , Poliuretanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA