Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Antioxidants (Basel) ; 12(8)2023 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-37627565

RESUMO

Hydrogen sulfide (H2S), originally known as toxic gas, has now attracted attention as one of the gasotransmitters involved in many reactions in the human body. H2S has been assumed to play a role in the pathogenesis of many chronic diseases, of which the exact pathogenesis remains unknown. One of them is inflammatory bowel disease (IBD), a chronic intestinal disease subclassified as Crohn's disease (CD) and ulcerative colitis (UC). Any change in the amount of H2S seems to be linked to inflammation in this illness. These changes can be brought about by alterations in the microbiota, in the endogenous metabolism of H2S and in the diet. As both too little and too much H2S drive inflammation, a balanced level is needed for intestinal health. The aim of this review is to summarize the available literature published until June 2023 in order to provide an overview of the current knowledge of the connection between H2S and IBD.

2.
Inflamm Bowel Dis ; 28(9): 1443-1450, 2022 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-35247048

RESUMO

Inflammatory bowel disease (IBD) is a chronic recurring inflammation of the intestine which can be debilitating for those with intractable disease. However, the etiopathogenesis of inflammatory bowel disorders remains to be solved. The hypothesis that mitochondrial dysfunction is a crucial factor in the disease process is being validated by an increasing number of recent studies. Thus mitochondrial alteration in conjunction with previously identified genetic predisposition, changes in the immune response, altered gut microbiota, and environmental factors (eg, diet, smoking, and lifestyle) are all posited to contribute to IBD. The implicated factors seem to affect mitochondrial function or are influenced by mitochondrial dysfunction, which explains many of the hallmarks of the disease. This review summarizes the results of studies reporting links between mitochondria and IBD that were available on PubMed through March 2021. The aim of this review is to give an overview of the current understanding of the role of mitochondria in the pathogenesis of IBD.


We address the effect of energy metabolism and mitochondrial function on the pathogenesis of inflammatory bowel disease. Because many studies on this topic have been published recently, it is important to give an overview of the results of that work.


Assuntos
Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Dieta , Metabolismo Energético , Humanos , Inflamação/metabolismo , Mitocôndrias/metabolismo
3.
Life (Basel) ; 12(6)2022 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-35743870

RESUMO

Paediatric non-alcoholic fatty liver disease (NAFLD) has become the most common chronic liver disease in childhood. Obesity is the main risk factor. Nutrition and lifestyle are the key elements in preventing and treating NAFLD in the absence of approved drug therapy. Whilst recommendations and studies on macronutrients (carbohydrates, fat and protein) in adult NAFLD exist, the discussion of this topic in paediatric NAFLD remains contradictory. The purpose of this review is to provide state-of-the-art knowledge on the role of macronutrients in paediatric NAFLD regarding quality and quantity. PubMed was searched and original studies and review articles were included in this review. Fructose, sucrose, saturated fatty acids, trans-fatty acids and ω-6-fatty-acids are strongly associated with paediatric NAFLD. High consumption of fibre, diets with a low glycaemic index, mono-unsaturated-fatty-acids and ω-3-fatty-acids reduce the risk of childhood-onset NAFLD. Data regarding the role of dietary protein in NAFLD are contradictory. No single diet is superior in treating paediatric NAFLD, although the composition of macronutrients in the Mediterranean Diet appears beneficial. Moreover, the optimal proportions of total macronutrients in the diet of paediatric NAFLD patients are unknown. Maintaining a eucaloric diet and avoiding saturated fatty acids, simple sugars (mainly fructose) and a high-caloric Western Diet are supported by literature.

4.
Oxid Med Cell Longev ; 2022: 9151169, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35035669

RESUMO

INTRODUCTION: Inflammatory bowel disease (IBD), which includes Crohn's disease (CD) and ulcerative colitis (UC), is a multifactorial intestinal disorder but its precise etiology remains elusive. As the cells of the intestinal mucosa have high energy demands, mitochondria may play a role in IBD pathogenesis. The present study is aimed at evaluating the expression levels of mitochondrial oxidative phosphorylation (OXPHOS) complexes in IBD. Material and Methods. 286 intestinal biopsy samples from the terminal ileum, ascending colon, and rectum from 124 probands (34 CD, 33 UC, and 57 controls) were stained immunohistochemically for all five OXPHOS complexes and the voltage-dependent anion-selective channel 1 protein (VDAC1 or porin). Expression levels were compared in multivariate models including disease stage (CD and UC compared to controls) and age (pediatric/adult). RESULTS: Analysis of the terminal ileum of CD patients revealed a significant reduction of complex II compared to controls, and a trend to lower levels was evident for VDAC1 and the other OXPHOS complexes except complex III. A similar pattern was found in the rectum of UC patients: VDAC1, complex I, complex II, and complex IV were all significantly reduced, and complex III and V showed a trend to lower levels. Reductions were more prominent in older patients compared to pediatric patients and more marked in UC than CD. CONCLUSION: A reduced mitochondrial mass is present in UC and CD compared to controls. This is potentially a result of alterations of mitochondrial biogenesis or mitophagy. Reductions were more pronounced in older patients compared to pediatric patients, and more prominent in UC than CD. Complex I and II are more severely compromised than the other OXPHOS complexes. This has potential therapeutic implications, since treatments boosting biogenesis or influencing mitophagy could be beneficial for IBD treatment. Additionally, substances specifically stimulating complex I activity should be tested in IBD treatment.


Assuntos
Doenças Inflamatórias Intestinais/genética , Mitocôndrias/metabolismo , Fosforilação Oxidativa , Adulto , Criança , Pré-Escolar , Feminino , Humanos , Doenças Inflamatórias Intestinais/patologia , Masculino
5.
Front Endocrinol (Lausanne) ; 13: 1061682, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36686477

RESUMO

Until recently, glucagon was considered a mere antagonist to insulin, protecting the body from hypoglycemia. This notion changed with the discovery of the liver-alpha cell axis (LACA) as a feedback loop. The LACA describes how glucagon secretion and pancreatic alpha cell proliferation are stimulated by circulating amino acids. Glucagon in turn leads to an upregulation of amino acid metabolism and ureagenesis in the liver. Several increasingly common diseases (e.g., non-alcoholic fatty liver disease, type 2 diabetes, obesity) disrupt this feedback loop. It is important for clinicians and researchers alike to understand the liver-alpha cell axis and the metabolic sequelae of these diseases. While most of previous studies have focused on fasting concentrations of glucagon and amino acids, there is limited knowledge of their dynamics after glucose administration. The authors of this systematic review applied PRISMA guidelines and conducted PubMed searches to provide results of 8078 articles (screened and if relevant, studied in full). This systematic review aims to provide better insight into the LACA and its mediators (amino acids and glucagon), focusing on the relationship between glucose and the LACA in adult and pediatric subjects.


Assuntos
Diabetes Mellitus Tipo 2 , Células Secretoras de Glucagon , Adulto , Humanos , Criança , Glucose/metabolismo , Glucagon/metabolismo , Células Secretoras de Glucagon/metabolismo , Diabetes Mellitus Tipo 2/metabolismo , Fígado/metabolismo , Aminoácidos/metabolismo
6.
Antioxidants (Basel) ; 11(11)2022 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-36421421

RESUMO

Hydrogen sulfide (H2S) is a toxic gas that has important regulatory functions. In the colon, H2S can be produced and detoxified endogenously. Both too little and too much H2S exposure are associated with inflammatory bowel disease (IBD), a chronic intestinal disease mainly classified as Crohn's disease (CD) and ulcerative colitis (UC). As the pathogenesis of IBD remains elusive, this study's aim was to investigate potential differences in the expression of H2S-metabolizing enzymes in normal aging and IBD. Intestinal mucosal biopsies of 25 adults and 22 children with IBD along with those of 26 healthy controls were stained immunohistochemically for cystathionine-γ-lyase (CSE), 3-mercapto-sulfurtransferase (3-MST), ethylmalonic encephalopathy 1 protein (ETHE1), sulfide:quinone oxidoreductase (SQOR) and thiosulfate sulfurtransferase (TST). Expression levels were calculated by multiplication of the staining intensity and percentage of positively stained cells. Healthy adults showed an overall trend towards lower expression of H2S-metabolizing enzymes than healthy children. Adults with IBD also tended to have lower expression compared to controls. A similar trend was seen in the enzyme expression of children with IBD compared to controls. These results indicate an age-related decrease in the expression of H2S-metabolizing enzymes and a dysfunctional H2S metabolism in IBD, which was less pronounced in children.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA