RESUMO
Small molecule inhibitors of the p53-MDM2 protein complex are under intense investigation in clinical trials as anti-cancer agents, including our first generation inhibitor NVP-CGM097. We recently described the rational design of a novel pyrazolopyrrolidinone core as a new lead structure and now we report on the synthesis and optimization of this to provide a highly potent lead compound. This new compound displayed excellent oral efficacy in our preclinical mechanistic in vivo model and marked a significant milestone towards the identification of our second generation clinical candidate NVP-HDM201.
Assuntos
Antineoplásicos/farmacologia , Multimerização Proteica/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Pirazóis/farmacologia , Pirrolidinonas/farmacologia , Proteína Supressora de Tumor p53/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Cães , Haplorrinos , Humanos , Masculino , Camundongos , Microssomos Hepáticos/metabolismo , Pirazóis/síntese química , Pirazóis/química , Pirazóis/farmacocinética , Pirrolidinonas/síntese química , Pirrolidinonas/química , Pirrolidinonas/farmacocinética , Ratos Sprague-Dawley , EstereoisomerismoRESUMO
The p53-MDM2 interaction is an anticancer drug target under investigation in the clinic. Our compound NVP-CGM097 is one of the small molecule inhibitors of this protein-protein interaction currently evaluated in cancer patients. As part of our effort to identify new classes of p53-MDM2 inhibitors that could lead to additional clinical candidates, we report here the design of highly potent inhibitors having a pyrazolopyrrolidinone core structure. The conception of these new inhibitors originated in a consideration on the MDM2 bound conformation of the dihydroisoquinolinone class of inhibitors to which NVP-CGM097 belongs. This work forms the foundation of the discovery of HDM201, a second generation p53-MDM2 inhibitor that recently entered phase I clinical trial.
Assuntos
Descoberta de Drogas , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteína Supressora de Tumor p53/antagonistas & inibidores , Cristalografia por Raios X , Transferência Ressonante de Energia de Fluorescência , Conformação Molecular , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteína Supressora de Tumor p53/metabolismoRESUMO
Taking the pyrrolopyrimidine derived IGF-1R inhibitor NVP-AEW541 as the starting point, the benzyl ether back-pocket binding moiety was replaced with a series of 2-cyclic ether methyl ethers leading to the identification of novel achiral [2.2.1]-bicyclic ether methyl ether containing analogues with improved IGF-1R activities and kinase selectivities. Further exploration of the series, including a fluorine scan of the 5-phenyl substituent, and optimisation of the sugar-pocket binding moiety identified compound 33 containing (S)-2-tetrahydrofuran methyl ether 6-fluorophenyl ether back-pocket, and cis-N-Ac-Pip sugar-pocket binding groups. Compound 33 showed improved selectivity and pharmacokinetics compared to NVP-AEW541, and produced comparable in vivo efficacy to linsitinib in inhibiting the growth of an IGF-1R dependent tumour xenograft model in the mouse.
Assuntos
Antineoplásicos/farmacologia , Imidazóis/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Pirazinas/farmacologia , Pirimidinas/farmacologia , Pirróis/farmacologia , Receptor IGF Tipo 1/antagonistas & inibidores , Animais , Antineoplásicos/síntese química , Antineoplásicos/química , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Humanos , Imidazóis/síntese química , Imidazóis/química , Camundongos , Camundongos Nus , Estrutura Molecular , Células NIH 3T3 , Neoplasias Experimentais/tratamento farmacológico , Neoplasias Experimentais/patologia , Inibidores de Proteínas Quinases/síntese química , Inibidores de Proteínas Quinases/química , Pirazinas/síntese química , Pirazinas/química , Pirimidinas/síntese química , Pirimidinas/química , Pirróis/síntese química , Pirróis/química , Receptor IGF Tipo 1/metabolismo , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Hdm2 (human MDM2, human double minuteâ 2 homologue) counteracts p53 function by direct binding to p53 and by ubiquitin-dependent p53 protein degradation. Activation of p53 by inhibitors of the p53-Hdm2 interaction is being pursued as a therapeutic strategy in p53 wild-type cancers. In addition, HdmX (human MDMX, human MDM4) was also identified as an important therapeutic target to efficiently reactivate p53, and it is likely that dual inhibition of Hdm2 and HdmX is beneficial. Herein we report four new X-ray structures for Hdm2 and five new X-ray structures for HdmX complexes, involving different classes of synthetic compounds (including the worldwide highest resolutions for Hdm2 and HdmX, at 1.13 and 1.20â Å, respectively). We also reveal the key additive 18-crown-ether, which we discovered to enable HdmX crystallization and show its stabilization of various Lys residues. In addition, we report the previously unpublished details of X-ray structure determinations for eight further Hdm2 complexes, including the clinical trial compounds NVP-CGM097 and NVP-HDM201. An analysis of all compound binding modes reveals new and deepened insight into the possible adaptations and structural states of Hdm2 (e.g., flip of F55, flip of Y67, reorientation of H96) and HdmX (e.g., flip of H55, dimer induction), enabling key binding interactions for different compound classes. To facilitate comparisons, we used the same numbering for Hdm2 (as in Q00987) and HdmX (as in O15151, but minus 1). Taken together, these structural insights should prove useful for the design and optimization of further selective and/or dual Hdm2/HdmX inhibitors.
Assuntos
Proteínas de Ciclo Celular/metabolismo , Compostos Heterocíclicos/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Sítios de Ligação , Proteínas de Ciclo Celular/química , Cristalografia por Raios X , Compostos Heterocíclicos/química , Humanos , Ligação Proteica , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas c-mdm2/químicaRESUMO
The action of renin is the rate-limiting step of the renin-angiotensin system (RAS), a key regulator of blood pressure. Effective renin inhibitors directly block the RAS entirely at source and, thus, may provide a vital weapon for hypertension therapy. Our efforts toward identifying novel small-molecule peptidomimetic renin inhibitors have resulted in the design of transition-state isosteres such as 1 bearing an all-carbon 8-phenyl-octanecarboxamide framework. Optimization of the extended P3 portion of 1 and extensive P2' modifications provided analogues with improved in vitro potencies in the presence of plasma. X-ray resolution of rh-renin/38a in the course of SAR work surprisingly unveiled the exploitation of a previously unexplored pocket (S3sp) important for strong binding affinities. Several inhibitors demonstrated oral efficacy in sodium-depleted marmosets. The most potent, 38a, induced dose-dependently a pronounced reduction in mean arterial blood pressure, paralleled by complete blockade of active plasma renin, up to 8 h post-dose. Oral bioavailability of 38a was 16% in marmosets.
Assuntos
Amidas/síntese química , Anisóis/síntese química , Anti-Hipertensivos/síntese química , Caprilatos/síntese química , Peptídeos/química , Renina/antagonistas & inibidores , Administração Oral , Amidas/química , Amidas/farmacologia , Animais , Anisóis/química , Anisóis/farmacologia , Anti-Hipertensivos/química , Anti-Hipertensivos/farmacologia , Disponibilidade Biológica , Pressão Sanguínea/efeitos dos fármacos , Callithrix , Caprilatos/química , Caprilatos/farmacologia , Cristalografia por Raios X , Frequência Cardíaca/efeitos dos fármacos , Humanos , Cinética , Modelos Moleculares , Mimetismo Molecular , Estrutura Molecular , Ligação Proteica , Renina/sangue , Estereoisomerismo , Relação Estrutura-AtividadeRESUMO
Due to its function in the rate limiting initial step of the renin-angiotensin system, renin is a particularly promising target for drugs designed to control hypertension, a growing risk to health worldwide. Despite vast efforts over more than two decades, no orally efficacious renin inhibitor had reached the market. As a result of a structure-based topological design approach, we have identified a novel class of small-molecule inhibitors with good oral blood-pressure lowering effects in primates. Further lead optimization aimed for improvement of in vivo potency and duration of action, mainly by P2' modifications at the hydroxyethylene transition-state isostere. These efforts resulted in the discovery of aliskiren (46, CGP060536B, SPP100), a highly potent, selective inhibitor of renin, demonstrating excellent efficacy in sodium-depleted marmosets after oral administration, with sustained duration of action in reducing dose-dependently mean arterial blood pressure. Aliskiren has recently received regulatory approval by the U.S. Food and Drug Administration for the treatment of hypertension.
Assuntos
Amidas/síntese química , Anti-Hipertensivos/síntese química , Caprilatos/síntese química , Fumaratos/síntese química , Renina/antagonistas & inibidores , Administração Oral , Amidas/química , Amidas/farmacologia , Animais , Anti-Hipertensivos/química , Anti-Hipertensivos/farmacologia , Pressão Sanguínea/efeitos dos fármacos , Callithrix , Caprilatos/química , Caprilatos/farmacologia , Cristalografia por Raios X , Fumaratos/química , Fumaratos/farmacologia , Frequência Cardíaca/efeitos dos fármacos , Humanos , Cinética , Modelos Moleculares , Estrutura Molecular , Ligação Proteica , Renina/sangue , Estereoisomerismo , Relação Estrutura-AtividadeRESUMO
As a result of our efforts to discover novel p53:MDM2 protein-protein interaction inhibitors useful for treating cancer, the potent and selective MDM2 inhibitor NVP-CGM097 (1) with an excellent in vivo profile was selected as a clinical candidate and is currently in phase 1 clinical development. This article provides an overview of the discovery of this new clinical p53:MDM2 inhibitor. The following aspects are addressed: mechanism of action, scientific rationale, binding mode, medicinal chemistry, pharmacokinetic and pharmacodynamic properties, and in vivo pharmacology/toxicology in preclinical species.
Assuntos
Antineoplásicos/síntese química , Antineoplásicos/farmacologia , Isoquinolinas/síntese química , Isoquinolinas/farmacologia , Piperazinas/síntese química , Piperazinas/farmacologia , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteína Supressora de Tumor p53/genética , Animais , Antineoplásicos/farmacocinética , Linhagem Celular Tumoral , Ensaios Clínicos Fase I como Assunto , Descoberta de Drogas , Humanos , Isoquinolinas/farmacocinética , Piperazinas/farmacocinética , Ratos , Relação Estrutura-Atividade , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
Synchrotron infrared sources have become popular mainly because of their excellent broadband brilliance, which enables spectroscopically resolved spatial-mapping of stationary objects at the diffraction limit. In this article we focus on an often-neglected further advantage of such sources - their unique time-structure - to bring such broadband spectroscopy to the time domain, for studying dynamic phenomenon down to the 100 ps limit. We describe the ultra-broadband (12.5 to 1.1 µm) Fourier transform pump-probe setup, for condensed matter transmission- and reflection-spectroscopy, installed at the X01DC infrared beam-line of the Swiss Light Source (SLS). The optical pump consists of a widely tuneable 100 ps 1 kHz laser system, covering 94% of the 16 to 1.1 µm range. A thorough description of the system is given, including (i) the vector-modulator providing purely electronic tuning of the pump-probe overlap up to 1 ms with sub-ps time resolution, (ii) the 500 MHz data acquisition system interfaced with the experimental physics and industrial control system (EPICS) based SLS control system for consecutive pulse sampling, and (iii) the step-scan time-slice Fourier transform scheme for simultaneous recording of the dual-channel pumped, un-pumped, and difference spectra. The typical signal/noise ratio of a single interferogram in a 100 ps time slice is 300 (measured during one single 140 s TopUp period). This signal/noise ratio is comparable to that of existing gated Globar pump-probe Fourier transform spectroscopy, but brings up to four orders of magnitude better time resolution. To showcase the utility of broadband pump-probe spectroscopy, we investigate a Ge-on-Si material system similar to that in which optically pumped direct-gap lasing was recently reported. We show that the mid-infrared reflection-spectra can be used to determine the optically injected carrier density, while the mid- and near-infrared transmission-spectra can be used to separate the strong pump-induced absorption and inversion processes present at the direct-gap energy.
RESUMO
In a continuation of our efforts to simplify the structure of our neurokinin antagonists, a series of substituted biphenyl derivatives has been prepared. Several compounds exhibit potent affinities for both the NK(1) receptor (<10nM) and for the NK(2) receptor (<50 nM). Details on the design, synthesis, biological activities, SAR and conformational analysis of this new class of dual NK(1)/NK(2) receptor antagonists are presented.
Assuntos
Compostos de Bifenilo/química , Compostos de Bifenilo/farmacologia , Antagonistas dos Receptores de Neurocinina-1 , Receptores da Neurocinina-2/antagonistas & inibidores , Animais , Broncoconstrição/efeitos dos fármacos , Células CHO , Cricetinae , Cobaias , Humanos , Conformação Molecular , Estrutura Molecular , Relação Estrutura-AtividadeRESUMO
Hypertension is a major risk factor for cardiovascular diseases such as stroke, myocardial infarction, and heart failure, the leading causes of death in the Western world. Inhibitors of the renin-angiotensin system (RAS) have proven to be successful treatments for hypertension. As renin specifically catalyses the rate-limiting step of the RAS, it represents the optimal target for RAS inhibition. Several peptide-like renin inhibitors have been synthesized previously, but poor pharmacokinetic properties meant that these compounds were not clinically useful. We employed a combination of molecular modelling and crystallographic structure analysis to design renin inhibitors lacking the extended peptide-like backbone of earlier inhibitors, for improved pharmacokinetic properties. This led to the discovery of aliskiren, a highly potent and selective inhibitor of human renin in vitro, and in vivo; once-daily oral doses of aliskiren inhibit renin and lower blood pressure in sodium-depleted marmosets and hypertensive human patients. Aliskiren represents the first in a novel class of renin inhibitors with the potential for treatment of hypertension and related cardiovascular diseases.