Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 6: 19779, 2016 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-26891989

RESUMO

Animals have developed the ability to sense the water content in their habitats, including hygrosensation (sensing humidity in the air) and hydrosensation (sensing the water content in other microenvironments), and they display preferences for specific water contents that influence their mating, reproduction and geographic distribution. We developed and employed four quantitative behavioural test paradigms to investigate the molecular and cellular mechanisms underlying sensing the water content in an agar substrate (hydrosensation) and hydrotaxis in Caenorhabditis elegans. By combining a reverse genetic screen with genetic manipulation, optogenetic neuronal manipulation and in vivo Ca(2+) imaging, we demonstrate that adult worms avoid the wetter areas of agar plates and hypo-osmotic water droplets. We found that the cGMP signalling pathway in ciliated sensory neurons is involved in hydrosensation and hydrotaxis in Caenorhabditis elegans.


Assuntos
Caenorhabditis elegans/fisiologia , GMP Cíclico/metabolismo , Sensação , Transdução de Sinais , Água , Animais , Comportamento Animal , Receptores Acoplados a Proteínas G/metabolismo , Células Receptoras Sensoriais/fisiologia
2.
Nat Commun ; 6: 5655, 2015 Jan 13.
Artigo em Inglês | MEDLINE | ID: mdl-25585042

RESUMO

Sensory modulation is essential for animal sensations, behaviours and survival. Peripheral modulations of nociceptive sensations and aversive behaviours are poorly understood. Here we identify a biased cross-inhibitory neural circuit between ASH and ASI sensory neurons. This inhibition is essential to drive normal adaptive avoidance of a CuSO4 (Cu(2+)) challenge in Caenorhabditis elegans. In the circuit, ASHs respond to Cu(2+) robustly and suppress ASIs via electro-synaptically exciting octopaminergic RIC interneurons, which release octopamine (OA), and neuroendocrinally inhibit ASI by acting on the SER-3 receptor. In addition, ASIs sense Cu(2+) and permit a rapid onset of Cu(2+)-evoked responses in Cu(2+)-sensitive ADF neurons via neuropeptides possibly, to inhibit ASHs. ADFs function as interneurons to mediate ASI inhibition of ASHs by releasing serotonin (5-HT) that binds with the SER-5 receptor on ASHs. This elaborate modulation among sensory neurons via reciprocal inhibition fine-tunes the nociception and avoidance behaviour.


Assuntos
Aprendizagem da Esquiva , Caenorhabditis elegans/fisiologia , Interneurônios/fisiologia , Neurônios/fisiologia , Nociceptividade/fisiologia , Transdução de Sinais/fisiologia , Animais , Comportamento Animal , Fenômenos Biomecânicos , Proteínas de Caenorhabditis elegans/metabolismo , Cálcio/metabolismo , Cobre/química , Sulfato de Cobre/química , Genótipo , Microscopia Confocal , Mutação , Neuropeptídeos/química , Nociceptores/metabolismo , Octopamina/química , Células Receptoras Sensoriais/fisiologia , Serotonina/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA