Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
1.
Microb Cell Fact ; 23(1): 103, 2024 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-38584273

RESUMO

BACKGROUND: The macrolide antibiotic avermectin, a natural product derived from Streptomyces avermitilis, finds extensive applications in agriculture, animal husbandry and medicine. The mtrA (sav_5063) gene functions as a transcriptional regulator belonging to the OmpR family. As a pleiotropic regulator, mtrA not only influences the growth, development, and morphological differentiation of strains but also modulates genes associated with primary metabolism. However, the regulatory role of MtrA in avermectin biosynthesis remains to be elucidated. RESULTS: In this study, we demonstrated that MtrA, a novel OmpR-family transcriptional regulator in S. avermitilis, exerts global regulator effects by negatively regulating avermectin biosynthesis and cell growth while positively controlling morphological differentiation. The deletion of the mtrA gene resulted in an increase in avermectin production, accompanied by a reduction in biomass and a delay in the formation of aerial hyphae and spores. The Electrophoretic Mobility Shift Assay (EMSA) revealed that MtrA exhibited binding affinity towards the upstream region of aveR, the intergenic region between aveA1 and aveA2 genes, as well as the upstream region of aveBVIII in vitro. These findings suggest that MtrA exerts a negative regulatory effect on avermectin biosynthesis by modulating the expression of avermectin biosynthesis cluster genes. Transcriptome sequencing and fluorescence quantitative PCR analysis showed that mtrA deletion increased the transcript levels of the cluster genes aveR, aveA1, aveA2, aveC, aveE, aveA4 and orf-1, which explains the observed increase in avermectin production in the knockout strain. Furthermore, our findings demonstrate that MtrA positively regulates the cell division and differentiation genes bldM and ssgC, while exerting a negative regulatory effect on bldD, thereby modulating the primary metabolic processes associated with cell division, differentiation and growth in S. avermitilis, consequently impacting avermectin biosynthesis. CONCLUSIONS: In this study, we investigated the negative regulatory effect of the global regulator MtrA on avermectin biosynthesis and its effects on morphological differentiation and cell growth, and elucidated its transcriptional regulatory mechanism. Our findings indicate that MtrA plays crucial roles not only in the biosynthesis of avermectin but also in coordinating intricate physiological processes in S. avermitilis. These findings provide insights into the synthesis of avermectin and shed light on the primary and secondary metabolism of S. avermitilis mediated by OmpR-family regulators.


Assuntos
Ivermectina , Ivermectina/análogos & derivados , Streptomyces , Ivermectina/metabolismo , Streptomyces/metabolismo , Macrolídeos/metabolismo , Regulação Bacteriana da Expressão Gênica , Proteínas de Bactérias/metabolismo
2.
Appl Microbiol Biotechnol ; 108(1): 373, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38878095

RESUMO

The lincoamide antibiotic lincomycin, derived from Streptomyces lincolnensis, is widely used for the treatment of infections caused by gram-positive bacteria. As a common global regulatory factor of GntR family, DasR usually exists as a regulatory factor that negatively regulates antibiotic synthesis in Streptomyces. However, the regulatory effect of DasR on lincomycin biosynthesis in S. lincolnensis has not been thoroughly investigated. The present study demonstrates that DasR functions as a positive regulator of lincomycin biosynthesis in S. lincolnensis, and its overexpression strain OdasR exhibits a remarkable 7.97-fold increase in lincomycin production compared to the wild-type strain. The effects of DasR overexpression could be attenuated by the addition of GlcNAc in the medium in S. lincolnensis. Combined with transcriptome sequencing and RT-qPCR results, it was found that most structural genes in GlcNAc metabolism and central carbon metabolism were up-regulated, but the lincomycin biosynthetic gene cluster (lmb) were down-regulated after dasR knock-out. However, DasR binding were detected with the DasR responsive elements (dre) of genes involved in GlcNAc metabolism pathway through electrophoretic mobility shift assay, while they were not observed in the lmb. These findings will provide novel insights for the genetic manipulation of S. lincolnensis to enhance lincomycin production. KEY POINTS: • DasR is a positive regulator that promotes lincomycin synthesis and does not affect spore production • DasR promotes lincomycin production through indirect regulation • DasR correlates with nutrient perception in S. lincolnensis.


Assuntos
Antibacterianos , Regulação Bacteriana da Expressão Gênica , Lincomicina , Streptomyces , Lincomicina/farmacologia , Lincomicina/biossíntese , Streptomyces/genética , Streptomyces/metabolismo , Streptomyces/efeitos dos fármacos , Antibacterianos/biossíntese , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Família Multigênica , Acetilglucosamina/metabolismo , Vias Biossintéticas/genética , Perfilação da Expressão Gênica
3.
Biochem Genet ; 2024 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-38554199

RESUMO

D-borneol is a double-loop monoterpene with a wide use in the pharmaceutical, food, and cosmetics industries. Natural D-borneol can be extracted from branches and leaves of D-borneol resource plants. With the widespread use of natural D-borneol, the identification of D-borneol resource plants and the protection of germplasm resources have become the focus of research. In this study, plant leaf morphology, chemical composition, and simple sequence repeat (SSR) molecular marker analysis were used to analyze and cluster 5 species of D-borneol resource plants and their closely related species. It was found that all three analysis methods could distinguish and cluster these D-borneol resource plants to some degree. The result of SSR analysis using capillary electrophoresis was the best, and it could distinguish Mei Pian tree from Yin Xiang as well as Longnao Zhang from An Zhang. The correlation analysis between SSR similarity matrix and leaf morphology analysis and between SSR similarity matrix and chemical composition similarity matrix revealed that they both had significant correlations (P < 0.0001) and the correlation (r = 0.588) between SSR and leaf morphology was a little higher than that (r = 0.519) between SSR and chemical composition. This indicated that the environment had a greater impact on the chemical composition than on leaf morphology. The research findings will offer efficient techniques to cluster natural D-borneol resource plants and establish a theoretical basis for their future development and utilization.

4.
Sensors (Basel) ; 24(13)2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-39000962

RESUMO

As one of the important lakes in the "One Lake and Two Seas" of the Inner Mongolia Autonomous Region, the monitoring of water quality in Lake Daihai has attracted increasing attention, and the concentration of chlorophyll-a directly affects the water quality, making the monitoring of chlorophyll-a concentration in Lake Daihai particularly crucial. Traditional methods of monitoring chlorophyll-a concentration are not only inefficient but also require significant human and material resources. Remote sensing technology has the advantages of wide coverage and short update cycles. For lakes such as Daihai with a high salinity content, salinity is considered a key factor when inverting the concentration of chlorophyll-a. In this study, machine learning models, including model stacking from ensemble learning, a ridge regression model, and a random forest model, were constructed. After comparing the training accuracy of the three models on Zhuhai-1 satellite data, the random forest model, which had the highest accuracy, was selected as the final training model. By comparing the accuracy changes before and after adding salinity factors to the random forest model, a high-precision model for inverting chlorophyll-a concentration in hypersaline lakes was obtained. The research results show that, without considering the salinity factor, the root mean square error (RMSE) of the model was 0.056, and the coefficient of determination (R2) was 0.64, indicating moderate model performance. After adding the salinity factor, the model accuracy significantly improved: the RMSE decreased to 0.047, and the R2 increased to 0.92. This study provides a solid basis for the application of remote sensing technology in hypersaline aquatic environments, confirming the importance of considering salinity when estimating chlorophyll-a concentration in hypersaline waters. This research helps us gain a deeper understanding of the water quality and ecosystem evolution in Daihai Lake.

5.
BMC Biotechnol ; 23(1): 53, 2023 12 11.
Artigo em Inglês | MEDLINE | ID: mdl-38082291

RESUMO

BACKGROUND: Vitamin B12 (VB12) has a wide range of applications and high economic value. In this study, a new strain with high VB12 production potential, Ensifer adhaerens S305, was identified in sewage. Because E. adhaerens strains have become the main strains for VB12 production via fermentation in recent years, the directional modification of the S305 strain to obtain a strain suitable for the industrial production of VB12 has great potential and commercial value. RESULTS: 16S rRNA and genome-wide phylogenetic tree analysis combined with average nucleotide identity (ANI) analysis showed that the high-yielding VB12 strain was a E. adhaerens strain and that its VB12 synthesis pathway genes were highly similar to related genes of strains of this and other species, including E. adhaerens Casida A, Pseudomonas denitrificans SC 510, and E. adhaerens Corn53. High-pressure liquid chromatography (HPLC) results indicated that the VB12 yields of the S305 strain were more than double those of the Casida A strain under different medium components. Multiple genes with significantly upregulated and downregulated transcription were identified by comparing the transcription intensity of different genes through transcriptome sequencing. KEGG enrichment analysis of the porphyrin metabolism pathway identified 9 significantly upregulated and downregulated differentially expressed genes (DEGs) in the VB12 synthesis pathway, including 7 transcriptionally upregulated genes (cobA, cobT, hemA, cobJ, cobN, cobR, and cobP) that were episomally overexpressed in the Casida A strain. The results showed that the VB12 yield of the overexpressed strain was higher than that of the wild-type strain. Notably, the strains overexpressing the cobA and cobT genes exhibited the most significant increases in VB12 yield, i.e., 31.4% and 24.8%, respectively. The VB12 yield of the S305 strain in shake-flask culture was improved from 176.6 ± 8.21 mg/L to 245.6 ± 4.36 mg/L by integrating the cobA and cobT genes into the strain. CONCLUSION: Phylogenetic tree and ANI analysis showed that the Ensifer and Sinorhizobium strains were quite different at the genome level; the overexpression and integrated expression of significantly upregulated genes in the VB12 synthesis pathway could increase the yield of VB12, further improving the VB12 yield of the E. adhaerens S305 strain.


Assuntos
Perfilação da Expressão Gênica , Genômica , Filogenia , RNA Ribossômico 16S/genética
6.
Ecotoxicol Environ Saf ; 263: 115367, 2023 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-37586197

RESUMO

Both heavy metals and antibiotics exert selection pressure on bacterial resistance, and as they are commonly co-contaminated in the environment, they may play a larger role in bacterial resistance. This study examined how breeding cycles affect antibiotic resistance genes (ARGs) in chicken manure and the surrounding topsoils at 20, 50, 100, 200, and 300 m from twelve typical laying hen farms in the Ningxia Hui Autonomous Region of northwest China. Six antibiotics, seven heavy metals, ten mobile genetic elements (MGEs), and microbial community affected the ARGs profile in chicken dung and soil samples. Tetracycline antibiotic residues were prevalent in chicken manure, as were relatively high content of aureomycin during each culture period. Zinc (Zn) content was highest among the seven heavy metals in chicken feces. Chicken dung also enriched aminoglycosides, MLSB, and tetracycline ARGs, notably during brooding and high production. The farm had a minimal influence on antibiotics in the surrounding soil, but its effect on ARGs and MGEs closer to the farm (50 m) was stronger, and several ARGs and MGEs increased with distance. Manure microbial composition differed dramatically throughout breeding cycles and sampling distances. ARGs were more strongly related with antibiotics and heavy metals in manure than soil, whereas MGEs were the reverse. Antibiotics, heavy metals, MGEs, and bacteria in manure accounted 12.28%, 22.25%, 0.74%, and 0.19% of ARGs composition variance, respectively, according to RDA and VPA. Bacteria (2.89%) and MGEs (2.82%) only affected soil ARGs composition. These findings showed that heavy metals and antibiotics are the main factors affecting faecal ARGs and bacteria and MGEs soil ARGs. This paper includes antibiotic resistance data for large-scale laying hen husbandry in northwest China and a theoretical framework for decreasing antibiotic resistance.


Assuntos
Clortetraciclina , Metais Pesados , Animais , Feminino , Antibacterianos/farmacologia , Galinhas/genética , Esterco/microbiologia , Solo/química , Genes Bacterianos , Metais Pesados/análise , Resistência Microbiana a Medicamentos/genética , Bactérias/genética , Microbiologia do Solo
7.
Bioprocess Biosyst Eng ; 46(12): 1825-1835, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37930436

RESUMO

To block and weaken the bacterial branched VB12 synthetic metabolic pathway, homologous recombination technology was used to knock out the sirohaem synthase gene cysG located in the chromosome and the endogenous A plasmid of the Ensifer adhaerens Casida A strain, and the expression of the uroporphyrinogen III decarboxylase gene hemE was weakened by weak promoter substitution. The growth of the engineered strains and the production of VB12 and haem were analysed and measured in the engineered strains, aiming to provide a new strategy for enhancement of VB12 biosynthesis. The results showed that the chromosomal cysG gene knockout strain ΔcysG, endogenous A plasmid cysG gene knockout strain ΔpAcysG and cysG gene double knockout strain ΔcysGΔpAcysG grew normally, with VB12 yield increases of 19.9%, 11.2%, and 27.4% compared to the starting strain, respectively. In the background of the cysG gene knockout strain, the expression of the hemE gene was weakened, resulting in the generation of the strain ΔcysGΔpAcysG-E-pdnaD, and the VB12 yield of ΔcysGΔpA cysG-E-pdnaD reached 114.17 ± 5.77 mg L-1, an increase of 45.1% compared to the yield of the original strain. The above results indicate that the strategy of increasing VB12 production by knocking out the haem synthesis pathway and weakening the haem synthesis pathway is effective.


Assuntos
Heme , Vitamina B 12 , Heme/metabolismo , Vitaminas
8.
Curr Issues Mol Biol ; 44(9): 4197-4215, 2022 Sep 12.
Artigo em Inglês | MEDLINE | ID: mdl-36135200

RESUMO

Cinnamomum burmannii is a cinnamomum plant rich in natural D-borneol. Natural D-borneol is a bicycle monoterpenoid compound widely used in the food, pharmaceutical, and cosmetic industries. Therefore, analyzing the biosynthesis mechanism of natural D-borneol in C. burmannii at the molecular level is helpful for directional breeding in the future and further development and utilization of C. burmannii and its related gene resources. In our study, 76 genes related to terpene metabolism were analyzed through third-generation sequencing and second-generation sequencing. Of these genes, 57 were associated with the synthesis of the terpenoid skeleton, and 19 belonged to terpenoid synthase, including four monoterpenoid synthases, seven sesquiterpenoid synthases, and eight diterpenoid synthases. Two genes in diterpenoid synthase were differentially expressed in high D-borneol and low D-borneol plants. It was speculated that these two genes might be related to D-borneol synthesis. How these two genes participate in the synthesis of D-borneol needs further study.

9.
Foodborne Pathog Dis ; 17(4): 269-275, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31794255

RESUMO

In recent years, the food poisoning incidents from school canteens have aroused widespread concern in China. Microbial contamination to the foods is the main factor responsible for these food poisoning events. In this study, identification of microbial pathogens including Salmonella spp., Escherichia coli, and Staphylococcus aureus in samples (frozen pork, fresh pork, fresh chicken, and different fresh vegetables) of a school canteen in China during 2017 to 2018 was performed. The antibiotic susceptibility pattern, class 1 integron, and biofilm formation ability of the isolated pathogens were also investigated. In total, 96 strains were isolated (32 Salmonella spp., 32 E. coli, and 32 S. aureus). The antibiogram study results demonstrated that 61.5% strains were found resistant to at least one type of antibiotics, and 17.7% were resistant to three or more antibiotics. In addition, 31.3% strains possessed class 1 integron. Among the integron-positive isolates, 38.9% Salmonella spp. and 87.5% E. coli contained ∼800 or/and 1500 bp size gene cassette within the integrons. However, four S. aureus strains possessing class 1 integron without gene cassette were found. Although none of the isolated strains were found strong biofilm producer, 44.8% were found to have weak or moderate biofilm formation ability. Despite biofilm formation ability or not, the Salmonella spp. containing positive class 1 integron showed significant resistance to cefazolin and gentamicin. In addition, class 1 integron-positive E. coli isolates having the biofilm formation ability hardly showed sensitive to four antibiotics, such as amikacin, amoxicillin-clavulanate, cefazolin, and gentamicin. Therefore, it is necessary to reduce the prevalence of antibiotic resistance gene cassettes containing antibiotic resistance genes by the prudent use of antibiotics in livestock farms, and the improvement of food processing and storage environment.


Assuntos
Escherichia coli/isolamento & purificação , Contaminação de Alimentos/análise , Microbiologia de Alimentos , Salmonella/isolamento & purificação , Staphylococcus aureus/isolamento & purificação , Animais , Antibacterianos , Biofilmes/crescimento & desenvolvimento , Galinhas , China/epidemiologia , Farmacorresistência Bacteriana , Escherichia coli/efeitos dos fármacos , Escherichia coli/fisiologia , Serviços de Alimentação , Doenças Transmitidas por Alimentos/epidemiologia , Doenças Transmitidas por Alimentos/microbiologia , Humanos , Incidência , Integrons , Carne/microbiologia , Testes de Sensibilidade Microbiana , Salmonella/efeitos dos fármacos , Salmonella/fisiologia , Serviços de Saúde Escolar , Instituições Acadêmicas , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/fisiologia , Suínos , Verduras/microbiologia
10.
Microb Pathog ; 125: 246-251, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30243550

RESUMO

As a typical Gram-positive microorganism, S. aureus was recognized as common foodborne pathogenic bacteria in food industry. To study their individuality and pathogenicity mechanism, thirty-three Staphylococci strains were applied to the investigation with the identification of MRSA by PCR targeting on S. aureus specific 16S rRNA and femA genes as well as methicillin-resistant mecA and orfX elements by multiplex-PCR assay. Fingerprinting mapping was then employed using three typing systems (KZ/M13, IS256 and ERIC2) to genotype 33 MRSA strains. As the result indicated, all 33 Staphylococci strains were identified as MRSA. However, diversity occurred among different fingerprinting system results. KZ/M13 system and IS256 system both typed 10 genotypes while ERIC2 system had 8 genotypes. Based on the genotyping results, a discussion was performed in typing ability, discriminatory ability and accordance ratio. Given the above studies, a novel rapid detection method for MRSA was conducted with multiplex-PCR, which possessed rapidity and accuracy. Meanwhile, three fingerprinting systems showed high sensitivity, resolution and classification ratio in MRSA typing. These methods have a broad application prospect in food safety and epidemiology in the future.


Assuntos
Impressões Digitais de DNA/métodos , Variação Genética , Técnicas de Genotipagem/métodos , Staphylococcus aureus Resistente à Meticilina/classificação , Staphylococcus aureus Resistente à Meticilina/genética , Tipagem Molecular/métodos , Proteínas de Bactérias/genética , Genótipo , Reação em Cadeia da Polimerase Multiplex , RNA Ribossômico 16S/genética
11.
Molecules ; 23(10)2018 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-30309003

RESUMO

Bladder cancer has become the most common malignant urinary carcinoma. Studies have shown that significant antioxidant and bladder cancer-fighting properties of several plant-based diets like Psidium guajava, ginger and amomum, are associated with their high kaempferol content. In this paper, we evaluated the antioxidant and anticancer activities of kaempferol and its mechanism of induction to apoptosis on bladder cancer cells. Our findings demonstrated that kaempferol showed an obvious radical scavenging activity in erythrocytes damaged by oxygen. Kaempferol promoted antioxidant enzymes, inhibited ROS generation and lipid peroxidation and finally prevented the occurrence of hemolysis. Additionally, kaempferol exhibited a strong inhibitory effect on bladder cancer cells and high safety on normal bladder cells. At the molecular level, kaempferol suppressed EJ bladder cancer cell proliferation by inhibiting the function of phosphorylated AKT (p-AKT), CyclinD1, CDK4, Bid, Mcl-1 and Bcl-xL, and promoting p-BRCA1, p-ATM, p53, p21, p38, Bax and Bid expression, and finally triggering apoptosis and S phase arrest. We found that Kaempferol exhibited strong anti-oxidant activity on erythrocyte and inhibitory effects on the growth of cancerous bladder cells through inducing apoptosis and S phase arrest. These findings suggested that kaempferol might be regarded as a bioactive food ingredient to prevent oxidative damage and treat bladder cancer.


Assuntos
Apoptose/efeitos dos fármacos , Hemólise/efeitos dos fármacos , Quempferóis/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Neoplasias da Bexiga Urinária/patologia , Amidinas/química , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Eritrócitos/efeitos dos fármacos , Eritrócitos/metabolismo , Eritrócitos/ultraestrutura , Humanos , Quempferóis/química , Modelos Biológicos , Estresse Oxidativo/efeitos dos fármacos , Substâncias Protetoras/farmacologia , Fase S/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos
12.
BMC Biotechnol ; 14: 8, 2014 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-24456841

RESUMO

BACKGROUND: Methicillin-resistant Staphylococcus aureus (MRSA) has become one of the most prevalent pathogens responsible for nosocomial infections throughout the world. As clinical MRSA diagnosis is concerned, current diagnostic methodologies are restricted by significant drawbacks and novel methods are required for MRSA detection. This study aimed at developing a simple loop-mediated isothermal amplification (LAMP) assay targeting on orfX for the rapid detection of methicillin-resistance Staphylococcus aureus (MRSA). RESULTS: The protocol was designed by targeting orfX, a highly conserved open reading frame in S. aureus. One hundred and sixteen reference strains, including 52 Gram-positive and 64 Gram-negative isolates, were included for evaluation and optimization of the orfX-LAMP assay. This assay had been further performed on 667 Staphylococcus (566 MRSA, 25 MSSA, 53 MRCNS and 23 MSCNS) strains and were comparatively validated by PCR assay using primers F3 and B3, with rapid template DNA processing, simple equipments (water bath) and direct result determination (both naked eye and under UV light) applied. The indispensability of each primer had been confirmed, and the optimal amplification was obtained under 65°C for 45 min. The 25 µl reactant was found to be the most cost-efficient volume, and the detection limit was determined to be 10 DNA copies and 10 CFU/reaction. High specificity was observed when orfX-LAMP assay was subjected to 116 reference strains. For application, 557 (98.4%, 557/566) and 519 (91.7%, 519/566) tested strains had been detected positive by LAMP and PCR assays. The detection rate, positive predictive value (PPV) and negative predictive value (NPV) of orfX-LAMP were 98.4%, 100% and 92.7% respectively. CONCLUSIONS: The established orfX-LAMP assay had been demonstrated to be a valid and rapid detection method on MRSA.


Assuntos
Staphylococcus aureus Resistente à Meticilina/isolamento & purificação , Técnicas de Amplificação de Ácido Nucleico/métodos , Fases de Leitura Aberta , Primers do DNA/genética , Limite de Detecção , Reação em Cadeia da Polimerase , Sensibilidade e Especificidade
13.
PLoS One ; 19(5): e0301714, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38713679

RESUMO

The development of intelligent education has led to the emergence of knowledge tracing as a fundamental task in the learning process. Traditionally, the knowledge state of each student has been determined by assessing their performance in previous learning activities. In recent years, Deep Learning approaches have shown promising results in capturing complex representations of human learning activities. However, the interpretability of these models is often compromised due to the end-to-end training strategy they employ. To address this challenge, we draw inspiration from advancements in graph neural networks and propose a novel model called GELT (Graph Embeddings based Lite-Transformer). The purpose of this model is to uncover and understand the relationships between skills and questions. Additionally, we introduce an energy-saving attention mechanism for predicting knowledge states that is both simple and effective. This approach maintains high prediction accuracy while significantly reducing computational costs compared to conventional attention mechanisms. Extensive experimental results demonstrate the superior performance of our proposed model compared to other state-of-the-art baselines on three publicly available real-world datasets for knowledge tracking.


Assuntos
Conhecimento , Redes Neurais de Computação , Humanos , Aprendizado Profundo , Algoritmos
14.
Microorganisms ; 12(6)2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38930507

RESUMO

Stevioside is a secondary metabolite of diterpenoid glycoside production in plants. It has been used as a natural sweetener in various foods because of its high sweetness and low-calorie content. In this study, we constructed a Saccharomyces cerevisiae strain for the complete synthesis of stevioside using a metabolic engineering strategy. Firstly, the synthesis pathway of steviol was modularly constructed in S. cerevisiae BY4742, and the precursor pathway was strengthened. The yield of steviol was used as an indicator to investigate the expression effect of different sources of diterpene synthases under different combinations, and the strains with further improved steviol yield were screened. Secondly, glycosyltransferases were heterologously expressed in this strain to produce stevioside, the sequence of glycosyltransferase expression was optimized, and the uridine diphosphate-glucose (UDP-Glc) supply was enhanced. Finally, the results showed that the strain SST-302III-ST2 produced 164.89 mg/L of stevioside in a shake flask experiment, and the yield of stevioside reached 1104.49 mg/L in an experiment employing a 10 L bioreactor with batch feeding, which was the highest yield reported. We constructed strains with a high production of stevioside, thus laying the foundation for the production of other classes of steviol glycosides and holding good prospects for application and promotion.

15.
ACS Appl Mater Interfaces ; 16(8): 9839-9853, 2024 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-38372569

RESUMO

Magnetoelectric stimulation is a promising therapy for various disorders due to its high efficacy and safety. To explore its potential in chronic skin wound treatment, we developed a magnetoelectric dressing, CFO@CTAB/PVDF (CCP), by electrospinning cetyltrimethylammonium bromide-modified CoFe2O4 (CFO) particles with polyvinylidene fluoride. Cetyltrimethylammonium bromide (CTAB) serves as a dispersion surfactant for CFO, with its quaternary ammonium cations imparting antibacterial and hydrophilic properties to the dressing. Electrospinning polarizes polyvinylidene fluoride (PVDF) molecules and forms a fibrous membrane with flexibility and breathability. With a wearable electromagnetic induction device, a dynamic magnetic field is established to induce magnetostrictive deformation of CFO nanoparticles. Consequently, a piezoelectric potential is generated on the surface of PVDF nanofibers to enhance the endogenous electrical field in the wound, achieving a cascade coupling of electric-magnetic-mechanical-electric effects. Bacteria and cell cultures show that 2% CTAB effectively balances antibacterial property and fibroblast activity. Under dynamic magnetoelectric stimulation, the CCP dressing demonstrates significant upregulation of TGF-ß, FGF, and VEGF, promoting L929 cell adhesion and proliferation. Moreover, it facilitates the healing of diabetic rat skin wounds infected with Staphylococcus aureus within 2 weeks. Histological and molecular biology evaluations confirm the anti-inflammatory effect of CTAB and the accelerated formation of collagen and vessel by electrical stimulation. This work provides insights into the application of magnetoelectric stimulation in the healing of chronic wounds.


Assuntos
Antibacterianos , Polímeros de Fluorcarboneto , Polivinil , Cicatrização , Ratos , Animais , Cetrimônio , Antibacterianos/farmacologia , Bandagens
16.
ACS Appl Mater Interfaces ; 16(10): 12417-12427, 2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38427325

RESUMO

Transportation-induced damage to fresh produce is a big challenge in logistics. Current acceleration and pressure sensors for collision monitoring face issues of power dependency, high cost, and environmental concerns. Here, a self-powered and environmentally friendly triboelectric sensor has been developed to monitor fruit collisions in transportation packaging. Microcrystalline cellulose/chitosan and sodium alginate films were prepared as positive and negative tribo-layers to assemble a natural polysaccharide film-based triboelectric nanogenerator (NP-TENG). The NP-TENG's electrical output was proportional to the structure parameters (contact surface roughness and separation gap of the tribo-layers) and the vibration factors (force and frequency) and exhibited excellent stability and durability (over 100,000 cycles under 13 N at 10 Hz). The high mechanical-to-electrical conversion efficiency (instantaneous areal power density of 9.6 mW/m2) and force sensitivity (2.2 V/N) enabled the NP-TENG to be a potential sensor for monitoring fresh produce collisions in packaging during logistics. Transportation simulation measurements of kiwifruits verified that the sensor's electrical outputs increased with the vibration frequency and stacking layer while varying at different packaging locations. This study suggests that the NP-TENG can effectively monitor collision damage during fruit transportation, providing new insights into developing intelligent food packaging systems to reduce postharvest supply chain losses.

17.
J Photochem Photobiol B ; 253: 112875, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38430681

RESUMO

Candida albicans (C. albicans), a major opportunistic pathogenic fungus, is known to cause superficial skin infections. Unfortunately, the misuse of antibiotics has led to the emergence of drug resistance in fungi. Antimicrobial photodynamic therapy (aPDT), a non-antibiotic alternative, has shown potential in treating drug-resistant fungal infections. Curcumin is a photodynamically active phytochemical whose photodynamic fungicidal efficacy is largely dependent on its intracellular accumulation. However, curcumin faces challenges in penetrating the cytoplasm due to its poor water solubility and the fungal cell wall. Borneol, another monoterpenoid phytochemical, is known for its ability to enhance drug absorption. In this study, we showed that borneol improved the cellular uptake of curcumin, thereby enhancing its photodynamic fungicidal efficacy against C. albicans. This effect was attributed to borneol's ability to increase cell permeability. Transcriptomic analysis further confirmed that borneol disrupted the normal structure and function of the C. albicans cell wall and membrane, resulting in dysregulated mRNA expression of related genes and ultimately increased cell permeability. As a result, the excessive accumulation of curcumin in C. albicans triggered the overproduction of intracellular ROS upon exposure to blue light. These excessive intracellular ROS disrupted various cellular structures, interfered with essential cellular processes, inhibited biofilm formation and reduced virulence. Remarkably, borneol was also found to enhance curcumin uptake by C. albicans within biofilms, further enhancing the anti-biofilm efficacy of curcumin-mediated aPDT (Cur-aPDT). In conclusion, the results of this study strongly support the potential of borneol as an adjuvant agent to Cur-aPDT in treating superficial cutaneous fungal infections.


Assuntos
Anti-Infecciosos , Canfanos , Curcumina , Micoses , Fotoquimioterapia , Humanos , Candida albicans , Curcumina/farmacologia , Espécies Reativas de Oxigênio/farmacologia , Fotoquimioterapia/métodos , Anti-Infecciosos/farmacologia , Adjuvantes Imunológicos/farmacologia , Compostos Fitoquímicos , Biofilmes , Fármacos Fotossensibilizantes/farmacologia
18.
Lipids Health Dis ; 12: 65, 2013 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-23656739

RESUMO

BACKGROUND: Pure 1, 3-diacylglycerols (1, 3-DAG) have been considered to be significant surfactants in food, cosmetics and pharmaceutical industries, as well as the effect on obesity prevention. METHODS: In this study, a vacuum-driven air bubbling operation mode was developed and evaluated for the enzymatic synthesis of 1, 3-DAG of saturated fatty acids, by direct esterification of glycerol with fatty acids in a solvent-free system. The employed vacuum-driven air bubbling operation mode was comparable to vacuum-driven N2 bubbling protocol, in terms of lauric acid conversion and 1, 3-dilaurin content. RESULTS: Some operation parameters were optimized, and 95.3% of lauric acid conversion and 80.3% of 1, 3-dilaurin content was obtained after 3-h reaction at 50°C, with 5 wt% of Lipozyme RM IM (based on reactants) amount. Of the lipases studied, both Lipozyme RM IM and Novozym 435 exhibited good performance in terms of lauric acid conversion. Lipozyme TL IM, however, showed low activity. Lipozyme RM IM showed good operational stability in this operation protocol, 80.2% of the original catalytic activity remained after 10 consecutive batch applications. Some other 1, 3-DAG were prepared and high content was obtained after purification: 98.5% for 1, 3-dicaprylin, 99.2% for 1, 3-dicaprin, 99.1% for 1, 3-dilaurin, 99.5 for 1, 3-dipalmitin and 99.4% for 1, 3-disterin. CONCLUSION: The established vacuum-driven air bubbling operation protocol had been demonstrated to be a simple-operating, cost-effective, application practical and efficient methodology for 1, 3-DAG preparation.


Assuntos
Diglicerídeos/síntese química , Ácidos Graxos/química , Glicerol/química , Ar , Técnicas de Química Sintética , Diglicerídeos/química , Enzimas Imobilizadas , Esterificação , Proteínas Fúngicas , Ácidos Láuricos/química , Lipase/química , Nitrogênio/química , Solventes
19.
Molecules ; 18(10): 12415-25, 2013 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-24108402

RESUMO

The aims of this study were to prepare a thermosensitive composite hydrogel (TCH) by mixing 24% (w/v) poloxamer 407 (P407), 16% (w/v) poloxamer 188 (P188) and 0.1% (w/v) carbopol 940 (C940), and to determine the effect of natural borneol/ (2-hydroxypropyl)-ß-cyclodextrin (NB/HP-ß-CD) inclusion complex on the phase transition temperature, mechanical, rheological properties, and release behaviors of the TCH using the tube inversion method, a texture analyzer, a rheometer, and in vitro release , respectively. The results showed that as the concentration of NB/HP-ß-CD increased, the phase transition temperature of the TCH was increased from 37.26 to 38.34 °C and the mechanical properties of the TCH showed that the hardness, cohesiveness, strength, and adhesiveness were increased from 0.025 to 0.064 kg, 0.022 to 0.064 kg, 0.110 to 0.307 kg and 0.036 to 0.105 kg, respectively, but the rheological properties of the TCH showed that G', G'' and η were decreased from 7,760 to 157.50 Pa, 1,274 to 36.28 Pa and 1,252 to 25.37 Pas, respectively. The in vitro release showed that an increasing NB/HP-ß-CD concentration decreased the release rate of NB from the TCH, but the amount of NB released was more than 96% at 60 min, which showed the TCH had good release behavior.


Assuntos
Resinas Acrílicas/química , Poloxâmero/química , Adesividade , Canfanos/química , Elasticidade , Dureza , Hidrogéis , Reologia , Temperatura de Transição , Viscosidade , beta-Ciclodextrinas/química
20.
Molecules ; 18(1): 1036-52, 2013 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-23322068

RESUMO

Thermal behavior of palm stearin (PS) and palm olein (PO) was explored by monitoring peak temperature transitions by differential scanning calorimetry (DSC). The fatty acid composition (FAC), isothermal crystallization kinetics studied by pulsed Nuclear Magnetic Resonance (pNMR) and isothermal microstructure were also compared. The results indicated that the fatty acid composition had an important influence on the crystallization process. PS and PO both exhibited more multiple endotherms than exotherms which showed irregular peak shapes. An increasing in cooling rate, generally, was associated with an increase in peak size. Application of the Avaimi equation to isothermal crystallization of PS and PO revealed different nucleation and growth mechanisms based on the Avrami exponents. PS quickly reached the end of crystallization because of more saturated triacylglycerol (TAG). The Avrami index of PS were the same as PO under the same isothermal condition at lower temperatrue, indicating that the crystallization mechanism of the two samples based on super-cooling state were the same. According to the polarized light microscope (PLM) images, crystal morphology of PS and PO was different. With the temperature increased, the structure of crystal network of both PS and PO gradually loosened.


Assuntos
Ácidos Graxos/química , Óleos de Plantas/química , Varredura Diferencial de Calorimetria , Cristalização , Cinética , Extração Líquido-Líquido , Espectroscopia de Ressonância Magnética , Óleo de Palmeira , Transição de Fase , Temperatura de Transição
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA