Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 98
Filtrar
1.
Appl Environ Microbiol ; 90(4): e0023924, 2024 Apr 17.
Artigo em Inglês | MEDLINE | ID: mdl-38483156

RESUMO

What is the effect of phyllosphere microorganisms on litter decomposition in the absence of colonization by soil microorganisms? Here, we simulated the litter standing decomposition stage in the field to study the differences in the composition and structure of the phyllosphere microbial community after the mixed decomposition of Populus × canadensis and Pinus sylvestris var. mongolica litter. After 15 months of mixed decomposition, we discovered that litters that were not in contact with soil had an antagonistic effect (the actual decomposition rate was 18.18%, which is lower than the expected decomposition rate) and the difference between the litters themselves resulted in a negative response to litter decomposition. In addition, there was no significant difference in bacterial and fungal community diversity after litter decomposition. The litter bacterial community was negatively responsive to litter properties and positively responsive to the fungal community. Importantly, we found that bacterial communities had a greater impact on litter decomposition than fungi. This study has enriched our understanding of the decomposition of litter itself and provided a theoretical basis for further exploring the "additive and non-additive effects" of litter decomposition and the mechanism of microbial drive. IMPORTANCE: The study of litter decomposition mechanism plays an important role in the material circulation of the global ecosystem. However, previous studies have often looked at contact with soil as the starting point for decomposition. But actually, standing litter is very common in forest ecosystems. Therefore, we used field simulation experiments to simulate the decomposition of litters without contact with soil for 15 months, to explore the combined and non-added benefits of the decomposition of mixed litters, and to study the influence of microbial community composition on the decomposition rate while comparing the differences of microbial communities.


Assuntos
Ecossistema , Microbiota , Solo/química , Microbiologia do Solo , Folhas de Planta , Florestas , Bactérias
2.
Brief Bioinform ; 22(1): 463-473, 2021 01 18.
Artigo em Inglês | MEDLINE | ID: mdl-31885040

RESUMO

Small noncoding RNAs (sRNA/sncRNAs) are generated from different genomic loci and play important roles in biological processes, such as cell proliferation and the regulation of gene expression. Next-generation sequencing (NGS) has provided an unprecedented opportunity to discover and quantify diverse kinds of sncRNA, such as tRFs (tRNA-derived small RNA fragments), phasiRNAs (phased, secondary, small-interfering RNAs), Piwi-interacting RNA (piRNAs) and plant-specific 24-nt short interfering RNAs (siRNAs). However, currently available web-based tools do not provide approaches to comprehensively analyze all of these diverse sncRNAs. This study presents a novel integrated platform, sRNAtools (https://bioinformatics.caf.ac.cn/sRNAtools), that can be used in conjunction with high-throughput sequencing to identify and functionally annotate sncRNAs, including profiling microRNAss, piRNAs, tRNAs, small nuclear RNAs, small nucleolar RNAs and rRNAs and discovering isomiRs, tRFs, phasiRNAs and plant-specific 24-nt siRNAs for up to 21 model organisms. Different modules, including single case, batch case, group case and target case, are developed to provide users with flexible ways of studying sncRNA. In addition, sRNAtools supports different ways of uploading small RNA sequencing data in a very interactive queue system, while local versions based on the program package/Docker/virtureBox are also available. We believe that sRNAtools will greatly benefit the scientific community as an integrated tool for studying sncRNAs.


Assuntos
Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Pequeno RNA não Traduzido/genética , Software , Animais , Bases de Dados Genéticas/normas , Humanos , Pequeno RNA não Traduzido/química
3.
Int J Mol Sci ; 24(3)2023 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-36768607

RESUMO

Circular RNAs (CircRNAs) regulate plant growth and development; however, their role in poplar heterosis is unclear. We identified 3722 circRNAs in poplar leaves, most of which were intergenic (57.2%) and exonic (40.2%). The expression of circRNAs in F1 hybrids with high growth potential was higher than that in those with low growth potential. Non-additive expression of circRNAs and single-parent expression of circRNAs (SPE-circRNAs) might regulate poplar heterosis through microRNA sponging and protein translation, respectively. DECs among F1 hybrids with different growth potentials might regulate the growth potential of poplar via microRNA sponging. Correlation analysis between circRNA expression and its parent gene expression showed that SPE-M circRNA (circRNAs expressed by male parent only) might regulate poplar heterosis by inhibiting parent gene expression, while other circRNAs might regulate poplar heterosis by enhancing parent gene expression. Weighted correlation network analysis of gene/circRNA expression showed that circRNAs mainly regulate poplar heterosis via carbohydrate metabolism, amino acid metabolism, energy metabolism, and material transport. In addition, we identified seven circRNAs that positively or negatively regulate poplar heterosis. Thus, non-additively expressed circRNAs and SPE circRNAs are involved in regulating poplar heterosis, and DECs among F1 hybrids with different growth potentials were involved in regulating poplar growth potential.


Assuntos
MicroRNAs , Populus , RNA Circular/genética , Vigor Híbrido/genética , Folhas de Planta/genética , MicroRNAs/genética
4.
BMC Med Imaging ; 22(1): 93, 2022 05 17.
Artigo em Inglês | MEDLINE | ID: mdl-35581563

RESUMO

BACKGROUND: To investigate the value of contrast-enhanced CT (CECT)-derived imaging features in predicting lymphovascular invasion (LVI) status in esophageal squamous cell carcinoma (ESCC) patients. METHODS: One hundred and ninety-seven patients with postoperative pathologically confirmed esophageal squamous cell carcinoma treated in our hospital between January 2017 and January 2019 were enrolled in our study, including fifty-nine patients with LVI and one hundred and thirty-eight patients without LVI. The CECT-derived imaging features of all patients were analyzed. The CECT-derived imaging features were divided into quantitative features and qualitative features. The quantitative features consisted of the CT attenuation value of the tumor (CTVTumor), the CT attenuation value of the normal esophageal wall (CTVNormal), the CT attenuation value ratio of the tumor-to-normal esophageal wall (TNR), the CT attenuation value difference between the tumor and normal esophageal wall (ΔTN), the maximum thickness of the tumor measured by CECT (Thickness), the maximum length of the tumor measured by CECT (Length), and the gross tumor volume measured by CECT (GTV). The qualitative features consisted of an enhancement pattern, tumor margin, enlarged blood supply or drainage vessels to the tumor (EVFDT), and tumor necrosis. For the clinicopathological characteristics and CECT-derived imaging feature analysis, the chi-squared test was used for categorical variables, the Mann-Whitney U test was used for continuous variables with a nonnormal distribution, and the independent sample t-test was used for the continuous variables with a normal distribution. The trend test was used for ordinal variables. The association between LVI status and CECT-derived imaging features was analyzed by univariable logistic analysis, followed by multivariable logistic regression and receiver operating characteristic (ROC) curve analysis. RESULTS: The CTVTumor, TNR, ΔTN, Thickness, Length, and GTV in the group with LVI were higher than those in the group without LVI (P < 0.05). A higher proportion of patients with heterogeneous enhancement pattern, irregular tumor margin, EVFDT, and tumor necrosis were present in the group with LVI (P < 0.05). As revealed by the univariable logistic analysis, the CECT-derived imaging features, including CTVTumor, TNR, ΔTN and enhancement pattern, Thickness, Length, GTV, tumor margin, EVFDT, and tumor necrosis were associated with LVI status (P < 0.05). Only the TNR (OR 8.655; 95% CI 2.125-37.776), Thickness (OR 6.531; 95% CI 2.410-20.608), and tumor margin (OR 4.384; 95% CI 2.004-9.717) were independent risk factors for LVI in the multivariable logistic regression analysis. The ROC curve analysis incorporating the above three CECT-derived imaging features showed that the area under the curve obtained by the multivariable logistic regression model was 0.820 (95% CI 0.754-0.885). CONCLUSION: The CECT-derived imaging features, including TNR, Thickness, tumor margin, and their combination, can be used as predictors of LVI status for patients with ESCC.


Assuntos
Neoplasias Esofágicas , Carcinoma de Células Escamosas do Esôfago , Neoplasias Esofágicas/diagnóstico por imagem , Neoplasias Esofágicas/patologia , Carcinoma de Células Escamosas do Esôfago/diagnóstico por imagem , Humanos , Margens de Excisão , Necrose , Estudos Retrospectivos , Tomografia Computadorizada por Raios X/métodos
5.
Int J Mol Sci ; 23(9)2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35562928

RESUMO

Lignin and cellulose are the most abundant natural organic polymers in nature. MiRNAs are a class of regulatory RNAs discovered in mammals, plants, viruses, and bacteria. Studies have shown that miRNAs play a role in lignin and cellulose biosynthesis by targeting key enzymes. However, the specific miRNAs functioning in the phloem and developing xylem of Populus deltoides are still unknown. In this study, a total of 134 miRNAs were identified via high-throughput small RNA sequencing, including 132 known and two novel miRNAs, six of which were only expressed in the phloem. A total of 58 differentially expressed miRNAs (DEmiRNAs) were identified between the developing xylem and the phloem. Among these miRNAs, 21 were significantly upregulated in the developing xylem in contrast to the phloem and 37 were significantly downregulated. A total of 2431 target genes of 134 miRNAs were obtained via high-throughput degradome sequencing. Most target genes of these miRNAs were transcription factors, including AP2, ARF, bHLH, bZIP, GRAS, GRF, MYB, NAC, TCP, and WRKY genes. Furthermore, 13 and nine miRNAs were involved in lignin and cellulose biosynthesis, respectively, and we validated the miRNAs via qRT-PCR. Our study explores these miRNAs and their regulatory networks in the phloem and developing xylem of P.deltoides and provides new insight into wood formation.


Assuntos
MicroRNAs , Populus , Celulose/metabolismo , Regulação da Expressão Gênica de Plantas , Sequenciamento de Nucleotídeos em Larga Escala , Lignina/genética , Lignina/metabolismo , MicroRNAs/genética , Floema/genética , Floema/metabolismo , Populus/genética , Populus/metabolismo , RNA Mensageiro , Xilema/genética , Xilema/metabolismo
6.
Can J Infect Dis Med Microbiol ; 2022: 5469236, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873363

RESUMO

Helicobacter pylori (H. pylori) is the main pathogenic factor of gastric cancer, chronic gastritis, and other gastric diseases. It has been found that Callicarpa nudiflora (CN) as an air-dried leaf extract has a broad-spectrum antibacterial effect. This study aims to examine the effect of CN on H. pylori-infected GES-1 cells in vitro and elucidate its underlying mechanism by extracting active ingredients from air-dried leaves. GES-1 cells were cocultured with HPSS1 at MOI = 100 : 1 and treated with different concentrations of CN (100 and 200 µg/ml). Results showed that CN can significantly reduce cellular LDH leakage and attenuate H. pylori-induced cell apoptosis and ROS production in GSE-1 cells, so as to protect gastric epithelial cells from damage by H. pylori. CN can also inhibit the secretion of inflammatory factors, such as TNF-α, IL-1ß, IL-6, and IL-8. After CN treatment, the expression levels of active caspase-1, PYCARD, and NLRP3 were remarkably decreased in the treatment groups compared with the model group. To sum up, CN is highly protective against H. pylori-induced cell damage and apoptosis; CN can depress NLRP3 inflammasome activation and ROS production via the ROS/NLRP3/caspase-1/IL-1ß signaling axis to suppress H. pylori-triggered inflammatory response and pyroptosis.

7.
BMC Genomics ; 22(1): 697, 2021 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-34579659

RESUMO

BACKGROUND: Nitrogen (N) is one of the main factors limiting the wood yield in poplar cultivation. Understanding the molecular mechanism of N utilization could play a guiding role in improving the nitrogen use efficiency (NUE) of poplar. RESULTS: In this study, three N-efficient genotypes (A1-A3) and three N-inefficient genotypes (C1-C3) of Populus deltoides were cultured under low N stress (5 µM NH4NO3) and normal N supply (750 µM NH4NO3). The dry matter mass, leaf morphology, and chlorophyll content of both genotypes decreased under N starvation. The low nitrogen adaptation coefficients of the leaves and stems biomass of group A were significantly higher than those of group C (p < 0.05). Interestingly, N starvation induced fine root growth in group A, but not in group C. Next, a detailed time-course analysis of enzyme activities and gene expression in leaves identified 2062 specifically differentially expressed genes (DEGs) in group A and 1118 in group C. Moreover, the sensitivity to N starvation of group A was weak, and DEGs related to hormone signal transduction and stimulus response played an important role in the low N response this group. Weighted gene co-expression network analysis identified genes related to membranes, catalytic activity, enzymatic activity, and response to stresses that might be critical for poplar's adaption to N starvation and these genes participated in the negative regulation of various biological processes. Finally, ten influential hub genes and twelve transcription factors were identified in the response to N starvation. Among them, four hub genes were related to programmed cell death and the defense response, and PodelWRKY18, with high connectivity, was involved in plant signal transduction. The expression of hub genes increased gradually with the extension of low N stress time, and the expression changes in group A were more obvious than those in group C. CONCLUSIONS: Under N starvation, group A showed stronger adaptability and better NUE than group C in terms of morphology and physiology. The discovery of hub genes and transcription factors might provide new information for the analysis of the molecular mechanism of NUE and its improvement in poplar.


Assuntos
Populus , Células Clonais/metabolismo , Regulação da Expressão Gênica de Plantas , Nitrogênio/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Populus/genética , Populus/metabolismo , Estresse Fisiológico/genética , Áreas Alagadas
8.
Nature ; 517(7536): 626-30, 2015 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-25409149

RESUMO

TP53 is commonly altered in human cancer, and Tp53 reactivation suppresses tumours in vivo in mice (TP53 and Tp53 are also known as p53). This strategy has proven difficult to implement therapeutically, and here we examine an alternative strategy by manipulating the p53 family members, Tp63 and Tp73 (also known as p63 and p73, respectively). The acidic transactivation-domain-bearing (TA) isoforms of p63 and p73 structurally and functionally resemble p53, whereas the ΔN isoforms (lacking the acidic transactivation domain) of p63 and p73 are frequently overexpressed in cancer and act primarily in a dominant-negative fashion against p53, TAp63 and TAp73 to inhibit their tumour-suppressive functions. The p53 family interacts extensively in cellular processes that promote tumour suppression, such as apoptosis and autophagy, thus a clear understanding of this interplay in cancer is needed to treat tumours with alterations in the p53 pathway. Here we show that deletion of the ΔN isoforms of p63 or p73 leads to metabolic reprogramming and regression of p53-deficient tumours through upregulation of IAPP, the gene that encodes amylin, a 37-amino-acid peptide co-secreted with insulin by the ß cells of the pancreas. We found that IAPP is causally involved in this tumour regression and that amylin functions through the calcitonin receptor (CalcR) and receptor activity modifying protein 3 (RAMP3) to inhibit glycolysis and induce reactive oxygen species and apoptosis. Pramlintide, a synthetic analogue of amylin that is currently used to treat type 1 and type 2 diabetes, caused rapid tumour regression in p53-deficient thymic lymphomas, representing a novel strategy to target p53-deficient cancers.


Assuntos
Polipeptídeo Amiloide das Ilhotas Pancreáticas/metabolismo , Linfoma/metabolismo , Linfoma/patologia , Proteína Supressora de Tumor p53/deficiência , Animais , Linhagem Celular Tumoral , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/patologia , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Feminino , Genes Supressores de Tumor , Humanos , Polipeptídeo Amiloide das Ilhotas Pancreáticas/farmacologia , Polipeptídeo Amiloide das Ilhotas Pancreáticas/uso terapêutico , Linfoma/tratamento farmacológico , Linfoma/genética , Masculino , Camundongos , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosfoproteínas/genética , Fosfoproteínas/metabolismo , Proteína 3 Modificadora da Atividade de Receptores/metabolismo , Receptores da Calcitonina/metabolismo , Timo/metabolismo , Timo/patologia , Transativadores/genética , Transativadores/metabolismo , Proteína Tumoral p73 , Proteína Supressora de Tumor p53/genética , Proteínas Supressoras de Tumor/genética , Proteínas Supressoras de Tumor/metabolismo
9.
BMC Genet ; 21(1): 2, 2020 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-31906843

RESUMO

BACKGROUND: Black cottonwood (Populus deltoides) is one of the keystone forest tree species, and has become the main breeding parents in poplar hybrid breeding. However, the genetic diversity and population structure of the introduced resources are not fully understood. RESULTS: In the present study, five loci containing null alleles were excluded and 15 pairs of SSR (simple sequence repeat) primers were used to analyze the genetic diversity and population structure of 384 individuals from six provenances (Missouri, Iowa, Washington, Louisiana, and Tennessee (USA), and Quebec in Canada) of P. deltoides. Ultimately, 108 alleles (Na) were detected; the expected heterozygosity (He) per locus ranged from 0.070 to 0.905, and the average polymorphic information content (PIC) was 0.535. The provenance 'Was' had a relatively low genetic diversity, while 'Que', 'Lou', and 'Ten' provenances had high genetic diversity, with Shannon's information index (I) above 1.0. The mean coefficient of genetic differentiation (Fst) and gene flow (Nm) were 0.129 and 1.931, respectively. Analysis of molecular variance (AMOVA) showed that 84.88% of the genetic variation originated from individuals. Based on principal coordinate analysis (PCoA) and STRUCTURE cluster analysis, individuals distributed in the Mississippi River Basin were roughly classified as one group, while those distributed in the St. Lawrence River Basin and Columbia River Basin were classified as another group. The cluster analysis based on the population level showed that provenance 'Iow' had a small gene flow and high degree of genetic differentiation compared with the other provenances, and was classified into one group. There was a significant relationship between genetic distance and geographical distance. CONCLUSIONS: P. deltoides resources have high genetic diversity and there is a moderate level of genetic differentiation among provenances. Geographical isolation and natural conditions may be the main factors causing genetic differences among individuals. Individuals reflecting population genetic information can be selected to build a core germplasm bank. Meanwhile, the results could provide theoretical support for the scientific management and efficient utilization of P. deltoides genetic resources, and promote the development of molecular marker-assisted breeding of poplar.


Assuntos
Variação Genética , Genética Populacional , Repetições de Microssatélites , Populus/genética , Alelos , Canadá , Biologia Computacional/métodos , Loci Gênicos , Marcadores Genéticos , Genótipo , Filogenia , Polimorfismo Genético , Populus/classificação , Estados Unidos
10.
J Clin Lab Anal ; 34(8): e23337, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32410296

RESUMO

BACKGROUND: Polymorphisms (rs1801133 or C677T; rs1801131 or A1298C) of the MTHFR gene and rs1801394 (A66G) of the MTRR gene are important genetic determinants of folate metabolism. A convenient, sensitive, and reliable method is required to detect polymorphisms for the precise supplementation of folate. METHODS: A rapid detection method based on molecular beacon probes that can detect rs1801133, rs1801131, and rs1801394 simultaneously was developed in this study. Specific primers and probes were designed, and the amplification system and conditions were optimized. We applied our method to a group of 500 unrelated women of gestational age in the Dongguan region of Guangdong Province in China. The clinical performance of this assay was evaluated by testing 94 samples in comparison with Sanger sequencing. RESULTS: The molecular-beacon-based PCR assay we established is extremely sensitive, with a detection limit of 2 ng/µL of genomic DNA, and validated by direct sequencing in a blind study with 100% concordance. CONCLUSION: The results demonstrate that our molecular-beacon-based asymmetric PCR assay is an easy, reliable, high-yield, and cost-effective method for the simultaneous detection of three polymorphisms related to folate metabolism. It could help evaluate the risk of perinatal-neonatal neural tube malformation, pregnancy hypertension, and other diseases and guide the individualized supplementation of folic acid. Data on the spectrum of mutations in the Dongguan District in this study are beneficial for guiding the supplementation of folic acid.


Assuntos
Ferredoxina-NADP Redutase/genética , Ácido Fólico , Metilenotetra-Hidrofolato Redutase (NADPH2)/genética , Reação em Cadeia da Polimerase/métodos , Polimorfismo Genético/genética , Adulto , Feminino , Ácido Fólico/genética , Ácido Fólico/metabolismo , Genótipo , Humanos , Limite de Detecção , Mutação/genética , Reprodutibilidade dos Testes , Análise de Sequência de DNA/métodos , Adulto Jovem
11.
Biomed Chromatogr ; 34(11): e4937, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32614971

RESUMO

A simple and sensitive ultra-high performance liquid chromatography-tandem mass spectrometric (UHPLC-MS/MS) method was developed and validated for the determination of ARQ531, a Bruton's tyrosine kinase inhibitor in rat plasma. After protein precipitation with acetonitrile, the samples were separated on a UPLC BEH C18 column with 0.1% formic acid in water and acetonitrile as mobile phase at a flow rate of 0.4 ml/min. The mass detection was performed on a triple quadrupole tandem mass spectrometer by multiple reaction monitoring with precursor-to-product ion transitions of m/z 479.1 > 365.1 and m/z 441.2 > 138.1 for ARQ531 and internal standard, respectively. Good linearity (correlation coefficient > 0.9988) was achieved over the concentration range of 0.5-1,000 ng/ml and the lower limit of quantitation was 0.5 ng/ml. The accuracy ranged from -13.50 to 11.35% and the precision was <8.87%. The extraction recovery was >85.56%. ARQ531 was demonstrated to be stable under the tested conditions. The validated method was further applied to a pharmacokinetic study of ARQ531 in rats after intravenous (1 mg/kg) and oral (1, 3 and 10 mg/kg) administration. The results demonstrated that ARQ531 displayed linear pharmacokinetic profiles over the oral dose range of 1-10 mg/kg and good oral bioavailability (>50%).


Assuntos
Tirosina Quinase da Agamaglobulinemia/antagonistas & inibidores , Cromatografia Líquida de Alta Pressão/métodos , Inibidores de Proteínas Quinases/sangue , Inibidores de Proteínas Quinases/farmacocinética , Espectrometria de Massas em Tandem/métodos , Animais , Disponibilidade Biológica , Limite de Detecção , Modelos Lineares , Masculino , Inibidores de Proteínas Quinases/química , Ratos , Ratos Sprague-Dawley , Reprodutibilidade dos Testes
12.
J Perianesth Nurs ; 35(3): 326-330, 2020 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-31973960

RESUMO

PURPOSE: The study was designed to evaluate the effect of an individualized fasting program on fasting time and comfort in infants and young children during the perioperative period. DESIGN: A quasiexperimental design was used. METHODS: The study included 675 children (intervention = 353, control = 322). Data collection tools included Characteristics of Children Form and the Infant Hunger Rating Scale. The fasting program included individualized fasting education and fasting in batches. On the day of the operation, clear liquids were fed 2 hours before surgery and refed after the patient woke after surgery. FINDINGS: The duration of perioperative fasting and the time to refeeding were shorter, the hunger scores were lower in the intervention group than those in the control group (P < .05). There was no difference in the incidence of vomiting between the two groups (P > .05), and no coughing and bloating occurred. CONCLUSIONS: The fasting program for infants and young children can shorten the duration of fasting and can reduce the degree of hunger. This program is safe and feasible.


Assuntos
Jejum , Fome , Criança , Pré-Escolar , Humanos , Incidência , Lactente , Período Perioperatório
13.
Int J Mol Sci ; 20(24)2019 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-31835605

RESUMO

Leaves of C. porrectum are rich in essential oils containing monoterpenes, sesquiterpenes and aromatic compounds, but the molecular mechanism of terpenoid biosynthesis in C. porrectum is still unclear. In this paper, the differences in the contents and compositions of terpenoids among three chemotypes were analyzed using gas chromatography mass spectrometry (GC/MS). Furthermore, the differential expression of gene transcripts in the leaf tissues of the three C. porrectum chemotypes were analyzed through a comparison of full-length transcriptomes and expression profiles. The essential oil of the three C. porrectum chemotypes leaves was mainly composed of monoterpenes. In the full-length transcriptome of C. porrectum, 104,062 transcripts with 306,337,921 total bp, an average length of 2944 bp, and an N50 length of 5449 bp, were obtained and 94025 transcripts were annotated. In the eucalyptol and linalool chemotype, the camphor and eucalyptol chemotype, and the camphor and linalool chemotype comparison groups, 21, 22 and 18 terpene synthase (TPS) unigenes were identified respectively. Three monoterpene synthase genes, CpTPS3, CpTPS5 and CpTPS9, were upregulated in the eucalyptol chemotype compared to the linalool chemotype and camphor chemotype. CpTPS1 was upregulated in the camphor chemotype compared to the linalool chemotype and the eucalyptol chemotype. CpTPS4 was upregulated in the linalool chemotype compared to the camphor chemotype and the eucalyptol chemotype. Different unigenes had different expression levels among the three chemotypes, but the unigene expression levels of the 2-C-methyl-D-erythritol 4phosphate (MEP) pathway were generally higher than those of the mevalonate acid (MVA) pathway. Quantitative reverse transcription PCR(qRT-PCR) further validated these expression levels. The present study provides new clues for the functional exploration of the terpenoid synthesis mechanism and key genes in different chemotypes of C. porrectum.


Assuntos
Vias Biossintéticas , Cinnamomum/genética , Perfilação da Expressão Gênica/métodos , Monoterpenos/análise , Cinnamomum/metabolismo , Cromatografia Gasosa-Espectrometria de Massas , Regulação da Expressão Gênica de Plantas , Anotação de Sequência Molecular , Monoterpenos/metabolismo , Óleos Voláteis/análise , Óleos Voláteis/metabolismo , Folhas de Planta/genética , Folhas de Planta/metabolismo , Proteínas de Plantas/genética , Sequenciamento do Exoma
15.
Bioinformatics ; 33(13): 2065-2067, 2017 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-28203705

RESUMO

ABSTRACT: In plants, 24 nucleotide small interfering RNAs (24-nt siRNAs) account for a large percentage of the total siRNA pool, and they play an important role in guiding plant-specific RNA-directed DNA methylation (RdDM), which transcriptionally silences transposon elements, transgenes, repetitive sequences and some endogenous genes. Several loci in plant genomes produce clusters of 24-nt RNAs, and these loci are receiving increasing attention from the research community. However, at present there is no bioinformatics resource dedicated to 24-nt siRNA loci and their derived 24-nt siRNAs. Thus, in this study, Pln24NT, a freely available web resource, was created to centralize 24-nt siRNA loci and 24-nt siRNA information, including fundamental locus information, expression profiles and annotation of transposon elements, from next-generation sequencing (NGS) data for 10 popular plant species. An intuitive web interface was also developed for convenient searching and browsing, and analytical tools were included to help users flexibly analyze their own siRNA NGS data. Pln24NT will help the plant research community to discover and characterize 24-nt siRNAs, and may prove useful for studying the roles of siRNA in RNA-directed DNA methylation in plants. AVAILABILITY AND IMPLEMENTATION: http://bioinformatics.caf.ac.cn/Pln24NT . CONTACT: suxh@caf.ac.cn. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Genes de Plantas , Genômica/métodos , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Plantas/metabolismo , RNA Interferente Pequeno/genética , Software , Metilação de DNA , Regulação da Expressão Gênica de Plantas , Genoma de Planta , Plantas/genética , RNA de Plantas/genética , Análise de Sequência de DNA/métodos , Análise de Sequência de RNA/métodos
16.
Pol J Microbiol ; 67(3): 383-388, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30451456

RESUMO

In this study, the gut microbiota was characterized in four age strata of Tibetan minipigs. Results indicated that the fecal bacteria of 7-, 28-, 56-, and 180-day-old minipigs did not significantly differ in terms of phylogenetic diversity (i.e., PD whole tree) or the Shannon index (both, p > 0.05). Findings of a principal coordinate analysis demonstrated that fecal bacteria of 180-day-old minipigs were discernable from those of the other three age groups. From ages seven to 56 days, the abundance of Bacteroidetes or Firmicutes appeared to vary. Regarding genera, the populations of Bacteroides and Akkermansia decreased with increasing age.


Assuntos
Bactérias/classificação , Fezes/microbiologia , Microbioma Gastrointestinal , Fatores Etários , Animais , Bacteroidetes/genética , Bacteroidetes/isolamento & purificação , Trato Gastrointestinal/microbiologia , Filogenia , RNA Ribossômico 16S/genética , Suínos , Porco Miniatura/microbiologia
17.
Proc Natl Acad Sci U S A ; 111(5): E572-81, 2014 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-24449888

RESUMO

The roles of microRNAs (miRNAs) and the miRNA processing machinery in the regulation of stem cell biology are not well understood. Here, we show that the p53 family member and p63 isoform, ΔNp63, is a transcriptional activator of a cofactor critical for miRNA processing (DGCR8). This regulation gives rise to a unique miRNA signature resulting in reprogramming cells to multipotency. Strikingly, ΔNp63(-/-) epidermal cells display profound defects in terminal differentiation and express a subset of markers and miRNAs present in embryonic stem cells and fibroblasts induced to pluripotency using Yamanaka factors. Moreover, ΔNp63(-/-) epidermal cells transduced with an inducible DGCR8 plasmid can differentiate into multiple cell fates in vitro and in vivo. We found that human primary keratinocytes depleted of ΔNp63 or DGCR8 can be reprogrammed in 6 d and express a unique miRNA and gene expression signature that is similar but not identical to human induced pluripotent stem cells. Our data reveal a role for ΔNp63 in the transcriptional regulation of DGCR8 to reprogram adult somatic cells into multipotent stem cells.


Assuntos
Regulação para Baixo/genética , Queratinócitos/metabolismo , Células-Tronco Multipotentes/citologia , Fosfoproteínas/genética , Proteínas/genética , Proteínas de Ligação a RNA/genética , Transativadores/genética , Fatores de Transcrição/genética , Proteínas Supressoras de Tumor/genética , Adulto , Animais , Diferenciação Celular , Linhagem Celular , Linhagem da Célula , Proliferação de Células , Quimera , Embrião de Mamíferos/citologia , Células Epidérmicas , Perfilação da Expressão Gênica , Proteínas de Homeodomínio/metabolismo , Humanos , Células-Tronco Pluripotentes Induzidas/citologia , Células-Tronco Pluripotentes Induzidas/metabolismo , Queratinócitos/citologia , Camundongos , MicroRNAs/genética , MicroRNAs/metabolismo , Células-Tronco Multipotentes/metabolismo , Proteína Homeobox Nanog , Fator 3 de Transcrição de Octâmero/metabolismo , Fosfoproteínas/deficiência , Fosfoproteínas/metabolismo , Proteínas/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Proteínas de Ligação a RNA/metabolismo , Fatores de Transcrição SOXB1/metabolismo , Transativadores/deficiência , Transativadores/metabolismo , Fatores de Transcrição/deficiência , Fatores de Transcrição/metabolismo , Transcrição Gênica , Proteínas Supressoras de Tumor/deficiência , Proteínas Supressoras de Tumor/metabolismo
18.
Plant J ; 83(4): 638-49, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26088926

RESUMO

Methyl jasmonate (MeJA) elicits stomatal closure in many plant species. Stomatal closure is accompanied by large ion fluxes across the plasma membrane (PM). Here, we recorded the transmembrane ion fluxes of H(+) , Ca(2+) and K(+) in guard cells of wild-type (Col-0) Arabidopsis, the CORONATINE INSENSITIVE1 (COI1) mutant coi1-1 and the PM H(+) -ATPase mutants aha1-6 and aha1-7, using a non-invasive micro-test technique. We showed that MeJA induced transmembrane H(+) efflux, Ca(2+) influx and K(+) efflux across the PM of Col-0 guard cells. However, this ion transport was abolished in coi1-1 guard cells, suggesting that MeJA-induced transmembrane ion flux requires COI1. Furthermore, the H(+) efflux and Ca(2+) influx in Col-0 guard cells was impaired by vanadate pre-treatment or PM H(+) -ATPase mutation, suggesting that the rapid H(+) efflux mediated by PM H(+) -ATPases could function upstream of the Ca(2+) flux. After the rapid H(+) efflux, the Col-0 guard cells had a longer oscillation period than before MeJA treatment, indicating that the activity of the PM H(+) -ATPase was reduced. Finally, the elevation of cytosolic Ca(2+) concentration and the depolarized PM drive the efflux of K(+) from the cell, resulting in loss of turgor and closure of the stomata.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/metabolismo , Membrana Celular/metabolismo , Ciclopentanos/farmacologia , Íons/metabolismo , Oxilipinas/farmacologia , Estômatos de Plantas/metabolismo , ATPases Translocadoras de Prótons/metabolismo , Arabidopsis/efeitos dos fármacos , Proteínas de Arabidopsis/genética , Transporte Biológico/efeitos dos fármacos , Estômatos de Plantas/efeitos dos fármacos , ATPases Translocadoras de Prótons/genética
19.
BMC Genomics ; 17: 200, 2016 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-26951633

RESUMO

BACKGROUND: Drought and soil salinity are major abiotic stresses. The mechanisms of stress tolerance have been studied extensively in model plants. Caragana korshinskii is characterized by high drought and salt tolerance in northwestern China; unique patterns of gene expression allow it to tolerate the stress imposed by dehydration and semi-desert saline soil. There have, however, been no reports on the differences between C. korshinskii and model plants in the mechanisms underlying their drought and salt tolerance and regulation of gene expression. RESULTS: Three sequencing libraries from drought and salt-treated whole-seedling- plants and the control were sequenced to investigate changes in the C. korshinskii transcriptome in response to drought and salt stresses. Of the 129,451 contigs, 70,662 (54.12 %) were annotated with gene descriptions, gene ontology (GO) terms, and metabolic pathways, with a cut-off E-value of 10(-5). These annotations included 56 GO terms, 148 Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways, and 25 Clusters of Orthologous Groups (COG). On comparison of the transcriptomes of the control, drought- and salt-treated plants, 1630 and 1521 contigs showed significant differences in transcript abundance under drought and salt stresses. Compared to the differentially expressed genes (DEGs) in drought- or salt-treated Arabidopsis in the database, 542 DEGs in drought-treated C. korshinskii and 529 DEGs in salt-treated samples were presumably unique to C. korshinskii. The transcription profiles revealed that genes related to transcription factors, protein kinases, and antioxidant enzymes are relevant to the tolerance of drought and salt stress in this species. The expression patterns of 38 randomly selected DEGs were confirmed by quantitative real-time PCR and were essentially consistent with the changes in transcript abundance identified by RNA-seq. CONCLUSIONS: The present study identified potential genes involved in drought and salt tolerance in C. korshinskii, as well as many DEGs uniquely expressed in drought- or salt-treated C. korshinskii samples compared to Arabidopsis. To our knowledge, this study is the first exploration of the C. korshinskii transcriptome under drought and salt conditions, and these results will facilitate the discovery of specific stress-resistance-related genes in C. korshinskii, possibly leading to the development of novel plant cultivars through genetic engineering.


Assuntos
Caragana/genética , Secas , Plântula/genética , Estresse Fisiológico , Transcriptoma , Caragana/fisiologia , Regulação da Expressão Gênica de Plantas , RNA de Plantas/genética , Plântula/fisiologia , Análise de Sequência de RNA , Cloreto de Sódio
20.
New Phytol ; 211(2): 750-60, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26958803

RESUMO

Phase change plays a prominent role in determining the form of growth and development. Although considerable attention has been focused on identifying the regulatory control mechanisms of phase change, a detailed understanding of the genetic architecture of this phenomenon is still lacking. We address this issue by deriving a computational model. The model is founded on the framework of functional mapping aimed at characterizing the interplay between quantitative trait loci (QTLs) and development through biologically meaningful mathematical equations. A multiphasic growth equation was implemented into functional mapping, which, via a series of hypothesis tests, allows the quantification of how QTLs regulate the timing and pattern of vegetative phase transition between independently regulated, temporally coordinated processes. The model was applied to analyze stem radial growth data of an interspecific hybrid family derived from two Populus species during the first 24 yr of ontogeny. Several key QTLs related to phase change have been characterized, most of which were observed to be in the adjacent regions of candidate genes. The identification of phase transition QTLs, whose expression is regulated by endogenous and environmental signals, may enhance our understanding of the evolution of development in changing environments.


Assuntos
Modelos Teóricos , Desenvolvimento Vegetal , Populus/crescimento & desenvolvimento , Segregação de Cromossomos/genética , Simulação por Computador , Cruzamentos Genéticos , Padrões de Herança/genética , Desenvolvimento Vegetal/genética , Caules de Planta/crescimento & desenvolvimento , Polimorfismo de Nucleotídeo Único/genética , Populus/genética , Locos de Características Quantitativas/genética , Chuva , Temperatura , Fatores de Tempo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA