RESUMO
Traditionally, many coatings were merely concentrated on settling the inherent fire protection problem of steel structures, while surface contamination and corrosion susceptibility should also be considered. Concurrently addressing these problems in fireproof efficiency and surface multifunctionality has become an issue of great significance in further expanding the application value in industrial and daily scenarios. Based on this condition, ecofriendly, graphene-based, and superhydrophobic coatings with multifunctional integration were constructed on steel via a one-step spraying method. The as-prepared coatings mainly consist of epoxy resin (EP), silicone resin (SR), a cyclodextrin-based flame retardant (MCDPM), expandable graphite (EG), and multilayered graphene (MG). The results demonstrate that the water contact angle (WCA) and water sliding angle (WSA) of as-prepared coatings can reach 156.8 ± 1.6 and 5.8 ± 0.7°, respectively, revealing good water repellency and self-cleaning properties. The coatings can also exhibit adequate adaptability for various substrates including wood, polyurethane foam, and cotton fabrics. Besides, good durability and robustness of coatings have been also verified via acid/alkali immersion, outdoor exposure, O2/plasma etching, and linear abrasion tests. Simultaneously, the coatings can exhibit excellent anticorrosion capacity for steel materials via a double barrier effect. Most importantly, the coatings have exhibited the lowest backside temperature (234.5 °C) during fire impact tests, suggesting excellent fireproof and heat insulation performance. This fact can be ascribed to the conjunct action between the physical/chemical charring process of flame retardants and the remarkable thermal stability of graphene. Consequently, this article can be expected to further promote the development and application of multifunctional-integrated coatings for steel structures in more fields.
RESUMO
A novel endophytic bacterium, designated strain BGMRC 0089T, was isolated from a surface-sterilized root of Sonneratia apetala. Cells were observed to be Gram-negative, rod-shaped and motile with polar flagella. Strain BGMRC 0089T was found to grow optimally at 28-30 °C, pH 7.0-8.0 and in the presence of 1â% (w/v) NaCl. Strain BGMRC 0089T contained ubiquinone Q-10 and the predominant fatty acid was summed feature 8. The polar lipid profile of strain BGMRC 0089T was found to contain diphosphatidylglycerol, phosphatidylglycerol, phosphatidylmonomethylethanolamine and phosphatidylethanolamine. Based on the results of 16S rRNA gene analysis, this isolate has the closest phylogenetic relationships with Rhizobium lemnae L6-16T (96.5â%) and Allorhizobium oryziradicis N19T (96.4â%). Average nucleotide identity, amino acid identity and digital DNA-DNA hybridization values of the isolate with the type strains of the genera Rhizobium and Allorhizobium were below 84.6, 73.9 and 22.1ââ%, respectively. Analysis the 4.55 Mb draft genome of strain BGMRC 0089T revealed several plant-associated genes, which may play important roles for the plant in the adaptation to the mangrove habitat. Based on its distinct phylogenetic, phenotypic and chemotaxonomic characteristics, strain BGMRC 0089T is proposed to represent a novel Allorhizobium species, for which the name Allorhizobium sonneratiae sp. nov. is proposed (type strain BGMRC 0089T=DSM 100171T=MCCC 1K04805T).
Assuntos
Ácidos Graxos , Rhizobium , Ácidos Graxos/química , Fosfolipídeos/química , Filogenia , RNA Ribossômico 16S/genética , Técnicas de Tipagem Bacteriana , Análise de Sequência de DNA , Composição de Bases , DNA Bacteriano/genética , Rhizobium/genética , ChinaRESUMO
OBJECTIVES: Currently, the research results regarding the bilateral temporomandibular joint symmetry in patients at different ages with unilateral complete cleft lip and palate (UCLP) are still controversial. In this study, the position of condyle in the articular fossa and morphology of condyle in UCLP patients at different developmental stages was measured and analyzed to explore the asymmetry difference, which can provide a new theoretical basis for the sequential therapy. METHODS: A total of 90 patients with UCLP were divided into a mixed dentition group (31 cases), a young permanent dentition group (31 cases) and an old permanent dentition group (28 cases) according to age and dentition development. Cone beam computed tomography (CBCT) images were imported into Invivo5 software for 3D reconstruction, and the joint space, anteroposterior diameter, medio-lateral diameter, and height of condylar were measured, and its asymmetry index was calculated. RESULTS: The asymmetry index of condylar height and anteroposterior diameter among the 3 groups, from small to large, was the mixed dentition group
Assuntos
Fenda Labial , Fissura Palatina , Humanos , Fenda Labial/diagnóstico por imagem , Fissura Palatina/diagnóstico por imagem , Articulação Temporomandibular/diagnóstico por imagem , Relevância ClínicaRESUMO
This study aimed to determine the effects of D-tyrosine, D-aspartic acid, D-tryptophan and D-leucine on biofilm formation of mixed microorganisms. Results showed that, in the attachment stage, D-amino acids caused significant reduction in adhesion efficiency of mixed microorganisms to the membrane surface. Moreover, D-amino acids have a promoting effect on the reversible adhesion of mixed microorganisms. The addition of D-amino acid generally inhibited the biofilm biomass, of which D-tyrosine has the best inhibition effect. With the effect of D-tyrosine, D-aspartic acid, D-tryptophan and D-leucine, the protein in extracellular polymeric substance (EPS) decreased by 8.21%, 7.65%, 3.51% and 11.31%, respectively. The carbohydrates in EPS decreased by 29.53%, 21.44%, 14.60% and 10.54%, respectively. The results of excitation-emission matrix spectra (EEMs) suggested that the structural properties of the tyrosine-like proteins, tryptophan-like protein and humic-like acid might have changed by the D-amino acids.
Assuntos
Aminoácidos , Matriz Extracelular de Substâncias Poliméricas , Biofilmes , TirosinaRESUMO
Small cell lung cancer (SCLC) is an aggressive disease with poor survival. A few sequencing studies performed on limited number of samples have revealed potential disease-driving genes in SCLC, however, much still remains unknown, particularly in the Asian patient population. Here we conducted whole exome sequencing (WES) and transcriptomic sequencing of primary tumors from 99 Chinese SCLC patients. Dysregulation of tumor suppressor genes TP53 and RB1 was observed in 82% and 62% of SCLC patients, respectively, and more than half of the SCLC patients (62%) harbored TP53 and RB1 mutation and/or copy number loss. Additionally, Serine/Arginine Splicing Factor 1 (SRSF1) DNA copy number gain and mRNA over-expression was strongly associated with poor survival using both discovery and validation patient cohorts. Functional studies in vitro and in vivo demonstrate that SRSF1 is important for tumorigenicity of SCLC and may play a key role in DNA repair and chemo-sensitivity. These results strongly support SRSF1 as a prognostic biomarker in SCLC and provide a rationale for personalized therapy in SCLC.
Assuntos
Carcinoma de Células Pequenas/genética , Neoplasias Pulmonares/genética , Proteínas Oncogênicas/genética , Fatores de Processamento de Serina-Arginina/genética , Adulto , Idoso , Variações do Número de Cópias de DNA , Dano ao DNA , Feminino , Inativação Gênica , Humanos , Masculino , Pessoa de Meia-Idade , MutaçãoRESUMO
Previous field investigations implied a potential phosphorus (P)-limitation on the growth of phytoplankton in Daya Bay, a mesotrophic bay in the northern South China Sea. Using a total of 15 mesocosms (3 × 3 × 1.5 m, with ~10.8 m3 natural seawater containing phytoplankton assemblages for each), we found P-enrichment caused no obvious effect on phytoplankton (Chl a) growth across 8-day's cultivation in neither winter nor summer, while nitrogen (N)-enrichment greatly increased Chl a in both seasons. N plus P-enrichment further increased Chl a content. The N- or N plus P-enrichments increased the allocation of nano-Chl a but decreased micro-Chl a in most cases, with no obvious effect by P-alone. Coincided with nutrients effect on Chl a content, N- or N plus P-enrichments significantly enhanced the maximum photochemical quantum yield of Photosystem II (FV/FM) and maximum relative electron transport rate (rETRmax), but declined the non-photochemical quenching (NPQ), as well as the threshold for light saturation of electron transport (EK); again, P-enrichment had no significant effect. Moreover, the absorption cross section for PSII photochemistry (σPSII) and electron transport efficiency (α) increased due to N- or N plus P-enrichments, indicating the increased nutrients enhance the light utilization efficiency through promoting PSII light harvesting ability, and thus to enhance phytoplankton growth. Our findings indicate that N- or N plus P-enrichments rigorously fuel phytoplankton blooms regardless of N:P ratios, making a note of caution on the expected P-deficiency or P-limitation on the basis of Redfield N:P ratios in Daya Bay.
Assuntos
Monitoramento Ambiental , Fósforo/metabolismo , Fitoplâncton/crescimento & desenvolvimento , Poluentes Químicos da Água/metabolismo , Baías , China , Eutrofização , Nutrientes/metabolismo , Fitoplâncton/efeitos dos fármacosRESUMO
The soluble (S), loosely bound (LB) and tightly bound (TB) extracellular polymeric substances (EPS) were extracted from sludge flocs of a membrane bioreactor to evaluate their characteristics and adsorptive fouling. The degrees of adsorptive fouling by the EPS fractions were in the order S-EPS < TB-EPS < LB-EPS. The images of atomic force microscopy showed the membrane fouled by LB-EPS was rougher than that fouled by the other fractions. The adsorbed EPS layer, which was sensed by quartz crystal microbalance with dissipation, was found to be more rigid and compact for LB-EPS, compared with the other EPS fractions. The excitation-emission matrix and Fourier transform infrared techniques were also used to characterize the individual EPS fractions. Compared with S-EPS and TB-EPS, the LB-EPS contained a larger amount of aromatic protein and less carbohydrates and lipids, exhibiting characteristics of greater aromaticity and hydrophobicity. These characteristics should be responsible for more severe fouling, and the stiffer and more compact structure of the adsorbed layer.
Assuntos
Reatores Biológicos , Membranas Artificiais , Polímeros/química , Esgotos/química , Adsorção , Carboidratos , Microscopia de Força Atômica , ProteínasRESUMO
To recommend a reliable and clinically realistic RET/PTC rearrangement detection assay for papillary thyroid carcinoma (PTC), we compared multiplex quantitative polymerase chain reaction (qPCR), fluorescence in situ hybridization (FISH), and immunohistochemistry (IHC). RET/PTC rearrangement was detected using either RET break-apart FISH followed by multicolor FISH to confirm CCDC6/RET or NCOA4/RET fusions, or by multiplex qPCR to detect 14 RET/PTC subtypes with simultaneous RET mRNA expression. RET protein expression was detected by IHC. The specificity and sensitivity of multiplex qPCR and IHC were calculated using break-apart FISH as a reference. Among 73 PTC patients with sufficient tissue available for FISH and multiplex qPCR, 10 cases were defined as RET/PTC positive by both assays, including eight CCDC6/RET and two NCOA4/RET fusions with relatively high RET mRNA. In addition, multiplex qPCR identified another two CCDC6/RET fusion positive cases, but with low RET mRNA expression. IHC staining identified 11 RET positive cases among 39 patients with available samples. In comparison to FISH, multiplex qPCR displayed 100% sensitivity and 97% specificity to detect RET/PTC fusions, while IHC was neither sensitive nor specific. Our data reveal that both multiplex qPCR and FISH assays are equally applicable for detection of RET/PTC rearrangements. Break-apart FISH methodology is highly recommended for the wider screening of RET rearrangements (regardless of partner genes), while multiplex qPCR is preferred to identify all known fusion types using one assay, provided mRNA expression is also measured. IHC analysis could potentially provide an additional method of fusion detection dependent on further optimization of assay conditions and scoring cutoffs.
Assuntos
Carcinoma/genética , Hibridização in Situ Fluorescente , Proteínas Proto-Oncogênicas c-ret/genética , Reação em Cadeia da Polimerase em Tempo Real , Neoplasias da Glândula Tireoide/genética , Translocação Genética , Carcinoma Papilar , Humanos , Imuno-Histoquímica , Câncer Papilífero da TireoideRESUMO
BACKGROUND: Genetic amplification of HER2 drives tumorigenesis and cancer progression in a subset of patients with gastric cancer (GC), and treatment with trastuzumab, a humanized HER2-neutralizing antibody, improves the overall survival rate of HER2-positive patients. However, a considerable portion of the patients does not respond to trastuzumab and the molecular mechanisms underlying the intrinsic resistance to anti-HER2 therapy in GC is not fully understood. METHODS: We performed whole-transcriptome sequencing on 21 HER2-positive tumor specimens from Chinese GC patients. Whole genome sequencing was performed on the three samples with HER2 fusion to discover the DNA integration structure. A multicolor FISH assay for HER2 split screening was conducted to confirm HER2 fusion and IHC (HercepTest™) was used to detect the membranous expression of HER2. Fusion cDNA were transfected into NIH/3T3 cells and generate stable cell line by lentivirus. The expression of exogenous HER2 fusion proteins and pHER2 were examined by western blot analysis. In vitro efficacy studies were also conducted by PD assay and softagar assay in cell line expression wild type and fusion HER2. T-DM1 was used to assess its binding to NIH/3T3 cells ectopically expressing wild-type and fusion HER2. Finally, the anti-tumor efficacy of trastuzumab was tested in NIH/3 T3 xenografts expressing the HER2 fusion variants. RESULTS: We identified three new HER2 fusions with ZNF207, MDK, or NOS2 in 21 HER2-amplified GC samples (14%; 3/21). Two of the fusions, ZNF207-HER2, and MDK-HER2, which are oncogenic, lead to aberrant activation of HER2 kinase. Treatment with trastuzumab inhibited tumor growth significantly in xenografts expressing MDK-HER2 fusion. In contrast, trastuzumab had no effect on the growth of xenografts expressing ZNF207-HER2 fusion, due to its inability to bind to trastuzumab. CONCLUSIONS: Our results provide the molecular basis of a novel resistance mechanism to trastuzumab-based anti-HER2 therapy, supporting additional molecule stratification within HER2-positive GC patients for more effective therapy options.
Assuntos
Genes erbB-2 , Oncogenes , Neoplasias Gástricas/genética , Animais , Sequência de Bases , Primers do DNA , Fusão Gênica , Humanos , Hibridização in Situ Fluorescente , Camundongos , Células NIH 3T3 , Reação em Cadeia da Polimerase Via Transcriptase ReversaRESUMO
BACKGROUND: MAPK7/ERK5 (extracellular-signal-regulated kinase 5) functions within a canonical three-tiered MAPK (mitogen activated protein kinase) signaling cascade comprising MEK (MAPK/ERK kinase) 5, MEKK(MEK kinase) 2/3 and ERK5 itself. Despite being the least well studied of the MAPK-modules, evidence supports a role for MAPK7-signaling in the pathology of several cancer types. METHODS AND RESULTS: Fluorescence in situ hybridization (FISH) analysis identified MAPK7 gene amplification in 4% (3/74) of non-small cell lung cancers (NSCLC) (enriched to 6% (3/49) in squamous cell carcinoma) and 2% (2/95) of squamous esophageal cancers (sqEC). Immunohistochemical (IHC) analysis revealed a good correlation between MAPK7 gene amplification and protein expression. MAPK7 was validated as a proliferative oncogenic driver by performing in vitro siRNA knockdown of MAPK7 in tumor cell lines. Finally, a novel MEK5/MAPK7 co-transfected HEK293 cell line was developed and used for routine cell-based pharmacodynamic screening. Phosphorylation antibody microarray analysis also identified novel downstream pharmacodynamic (PD) biomarkers of MAPK7 kinase inhibition in tumor cells (pMEF2A and pMEF2D). CONCLUSIONS: Together, these data highlight a broader role for dysregulated MAPK7 in driving tumorigenesis within niche populations of highly prevalent tumor types, and describe current efforts in establishing a robust drug discovery screening cascade.
Assuntos
Carcinoma de Células Escamosas/genética , Ensaios de Seleção de Medicamentos Antitumorais , Neoplasias Esofágicas/genética , Neoplasias Pulmonares/genética , Proteína Quinase 7 Ativada por Mitógeno/genética , Inibidores de Proteínas Quinases/farmacologia , Biomarcadores Tumorais/metabolismo , Carcinoma de Células Escamosas/química , Proliferação de Células/genética , Neoplasias Esofágicas/química , Regulação Neoplásica da Expressão Gênica , Técnicas de Silenciamento de Genes , Células HEK293 , Humanos , Neoplasias Pulmonares/química , Fatores de Transcrição MEF2/metabolismo , Proteína Quinase 7 Ativada por Mitógeno/análise , Proteína Quinase 7 Ativada por Mitógeno/antagonistas & inibidores , Fosforilação , Transdução de SinaisRESUMO
BACKGROUND: To determine the prevalence of RET rearrangement genes, RET copy number gains and expression in tumor samples from four Phase III non-small-cell lung cancer (NSCLC) trials of vandetanib, a selective inhibitor of VEGFR, RET and EGFR signaling, and to determine any association with outcome to vandetanib treatment. METHODS: Archival tumor samples from the ZODIAC ( NCT00312377 , vandetanib ± docetaxel), ZEAL ( NCT00418886 , vandetanib ± pemetrexed), ZEPHYR ( NCT00404924 , vandetanib vs placebo) and ZEST ( NCT00364351 , vandetanib vs erlotinib) studies were evaluated by fluorescence in situ hybridization (FISH) and immunohistochemistry (IHC) in 944 and 1102 patients. RESULTS: The prevalence of RET rearrangements by FISH was 0.7% (95% CI 0.3-1.5%) among patients with a known result. Seven tumor samples were positive for RET rearrangements (vandetanib, n = 3; comparator, n = 4). 2.8% (n = 26) of samples had RET amplification (innumerable RET clusters, or ≥7 copies in > 10% of tumor cells), 8.1% (n = 76) had low RET gene copy number gain (4-6 copies in ≥40% of tumor cells) and 8.3% (n = 92) were RET expression positive (signal intensity ++ or +++ in >10% of tumor cells). Of RET-rearrangement-positive patients, none had an objective response in the vandetanib arm and one patient responded in the comparator arm. Radiologic evidence of tumor shrinkage was observed in two patients treated with vandetanib and one treated with comparator drug. The objective response rate was similar in the vandetanib and comparator arms for patients positive for RET copy number gains or RET protein expression. CONCLUSIONS: We have identified prevalence for three RET biomarkers in a population predominated by non-Asians and smokers. RET rearrangement prevalence was lower than previously reported. We found no evidence of a differential benefit for efficacy by IHC and RET gene copy number gains. The low prevalence of RET rearrangements (0.7%) prevents firm conclusions regarding association of vandetanib treatment with efficacy in the RET rearrangement NSCLC subpopulation. TRIAL REGISTRATION: Randomized Phase III clinical trials ( NCT00312377 , ZODIAC; NCT00418886 , ZEAL; NCT00364351 , ZEST; NCT00404924 , ZEPHYR).
Assuntos
Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Neoplasias Pulmonares/tratamento farmacológico , Piperidinas/uso terapêutico , Proteínas Proto-Oncogênicas c-ret/genética , Proteínas Proto-Oncogênicas c-ret/metabolismo , Quinazolinas/uso terapêutico , Idoso , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Feminino , Amplificação de Genes , Humanos , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Masculino , Pessoa de Meia-Idade , Prevalência , Estudos Retrospectivos , Translocação Genética , Resultado do TratamentoRESUMO
Gastric cancer is the second leading cause of death from cancer worldwide, with an approximately 20% 5-year survival rate. To identify molecular subtypes associated with the clinical prognosis, in addition to genetic aberrations for potential targeted therapeutics, we conducted a comprehensive whole-genome analysis of 131 Chinese gastric cancer tissue specimens using whole-genome array comparative genomic hybridization. The analyses revealed gene focal amplifications, including CTSB, PRKCI, PAK1, STARD13, KRAS, and ABCC4, in addition to ERBB2, FGFR2, and MET. The growth of PAK1-amplified gastric cancer cells in vitro and in vivo was inhibited when the corresponding mRNA was knocked down. Furthermore, both KRAS amplification and KRAS mutation were identified in the gastric cancer specimens. KRAS amplification was associated with worse clinical outcomes, and the KRAS gene mutation predicted sensitivity to the MEK1/2 inhibitor AZD6244 in gastric cancer cell lines. In summary, amplified PAK1, as well as KRAS amplification/mutation, may represent unique opportunities for developing targeted therapeutics for the treatment of gastric cancer.
Assuntos
Dosagem de Genes , Genoma Humano , Proteínas Proto-Oncogênicas/genética , RNA Mensageiro/metabolismo , Neoplasias Gástricas/genética , Quinases Ativadas por p21/genética , Proteínas ras/genética , Benzimidazóis/farmacologia , Instabilidade Cromossômica , Estudos de Coortes , Feminino , Amplificação de Genes , Perfilação da Expressão Gênica , Humanos , MAP Quinase Quinase 1/antagonistas & inibidores , MAP Quinase Quinase 2/antagonistas & inibidores , Masculino , Pessoa de Meia-Idade , Mutação , Proteínas Proto-Oncogênicas/metabolismo , Proteínas Proto-Oncogênicas p21(ras) , Neoplasias Gástricas/metabolismo , Neoplasias Gástricas/mortalidade , Taxa de Sobrevida , Quinases Ativadas por p21/metabolismo , Proteínas ras/metabolismoRESUMO
Macrolactins are a type of compound with complex macrolide structure which mainly be obtained through microbiological fermentation now. They have excellent antifungal, antibacterial and antitumor activity. In order to improve macrolactins production, Bacillus siamensis YB304 was used as the research object, and a mutant Mut-K53 with stable genetic characters was selected by UV-ARTP compound mutagenesis. The yield of macrolactins was 156.46â¯mg/L, 3.95 times higher than original strain. The metabolic pathway changes and regulatory mechanism of macrolactins were analyzed by quantitative proteomics combined with parallel reaction monitoring. This study revealed that 1794 proteins were extracted from strain YB304 and strain Mut-K53, most of them were related to metabolism. After UV-ARTP compound mutagenesis treatment, the expression of 628 proteins were significantly changed, of which 299 proteins were significantly up-regulated. KEGG pathway analysis showed that differentially expression proteins mainly distributed in biological process, cellular component, and molecular function processing pathways. Such as utilization of carbon sources, glycolysis pathway, and amino acid metabolism pathway. Furthermore, key precursor substances such as acyl-CoA and amino acids of macrolactin biosynthesis are mostly up-regulated, which are one of the main reasons for increased production of macrolactin.This study will provide a new way to increase the yield of macrolactins through mutagenesis breeding and proteomics.
Assuntos
Bacillus , Proteômica , Bacillus/genética , Bacillus/química , Mutagênese , MacrolídeosRESUMO
BACKGROUND: Patient-derived tumor xenograft models have been established and increasingly used for preclinical studies of targeted therapies in recent years. However, patient-derived non-small cell lung cancer (NSCLC) xenograft mouse models are relatively few in number and are limited in their degree of genetic characterization and validation. In this study, we aimed to establish a variety of patient-derived NSCLC models and characterize these for common genetic aberrations to provide more informative models for preclinical drug efficacy testing. METHODS: NSCLC tissues from thirty-one patients were collected and implanted into immunodeficient mice. Established xenograft models were characterized for common genetic aberrations, including detection of gene mutations within EGFR and KRAS, and genetic amplification of FGFR1 and cMET. Finally, gefitinib anti-tumor efficacy was tested in these patient-derived NSCLC xenograft models. RESULTS: Ten passable patient-derived NSCLC xenograft models were established by implantation of NSCLC specimens of thirty-one patients into immunodeficient mice. Genetic aberrations were detected in six of the models, including one model with an EGFR activating mutation (Exon19 Del), one model with KRAS mutation, one model with both KRAS mutation and cMET gene amplification, and three models with FGFR1 amplification. Anti-tumor efficacy studies using gefitinib demonstrated that the EGFR activating mutation model had superior sensitivity and that the KRAS mutation models were resistant to gefitinib. The range of gefitinib responses in the patient-derived NSCLC xenograft models were consistent with the results reported from clinical trials. Furthermore, we observed that patient-derived NSCLC models with FGFR1 gene amplification were insensitive to gefitinib treatment. CONCLUSIONS: Ten patient-derived NSCLC xenograft models were established containing a variety of genetic aberrations including EGFR activating mutation, KRAS mutation, and FGFR1 and cMET amplification. Gefitinib anti-tumor efficacy in these patient-derived NSCLC xenografts containing EGFR and KRAS mutation was consistent with the reported results from previous clinical trials. Thus, data from our panel of patient-derived NSCLC xenograft models confirms the utility of these models in furthering our understanding of this disease and aiding the development of personalized therapies for NSCLC patients.
Assuntos
Carcinoma Pulmonar de Células não Pequenas/metabolismo , Receptores ErbB/genética , Neoplasias Pulmonares/metabolismo , Mutação , Receptor Tipo 1 de Fator de Crescimento de Fibroblastos/genética , Proteínas ras/genética , Animais , Antineoplásicos/farmacologia , Linhagem Celular Tumoral , Análise Mutacional de DNA , Modelos Animais de Doenças , Feminino , Gefitinibe , Genes ras , Variação Genética , Humanos , Camundongos , Camundongos Nus , Camundongos SCID , Transplante de Neoplasias , Proteínas Proto-Oncogênicas c-met/genética , Quinazolinas/farmacologia , Ensaios Antitumorais Modelo de XenoenxertoRESUMO
BACKGROUND: Trastuzumab is currently approved for the clinical treatment of breast and gastric cancer patients with HER-2 positive tumors, but not yet for the treatment of esophageal carcinoma patients, whose tumors typically show 5 ~ 35% HER-2 gene amplification and 0 ~ 56% HER-2 protein expression. This study aimed to investigate the therapeutic efficacy of Trastuzumab in patient-derived esophageal squamous cell carcinoma xenograft (PDECX) mouse models. METHODS: PDECX models were established by implanting patient esophageal squamous cell carcinoma (ESCC) tissues into immunodeficient (SCID/nude) mice. HER-2 gene copy number (GCN) and protein expression were determined in xenograft tissues and corresponding patient EC samples by FISH and IHC analysis. Trastuzumab anti-tumor efficacy was evaluated within these PDECX models (n = 8 animals/group). Furthermore, hotspot mutations of EGFR, K-ras, B-raf and PIK3CA genes were screened for in the PDECX models and their corresponding patient's ESCC tissues. Similarity between the PDECX models and their corresponding patient's ESCC tissue was confirmed by histology, morphology, HER-2 GCN and mutation. RESULTS: None of the PDECX models (or their corresponding patient's ESCC tissues) harbored HER-2 gene amplification. IHC staining showed HER-2 positivity (IHC 2+) in 2 PDECX models and negativity in 3 PDECX models. Significant tumor regression was observed in the Trastuzumab-treated EC044 HER-2 positive model (IHC 2+). A second HER-2 positive (IHC 2+) model, EC039, harbored a known PIK3CA mutation and showed strong activation of the AKT signaling pathway and was insensitive to Trastuzumab treatment, but could be resensitised using a combination of Trastuzumab and AKT inhibitor AZD5363. In summary, we established 5 PDECX mouse models and demonstrated tumor regression in response to Trastuzumab treatment in a HER-2 IHC 2+ model, but resistance in a HER-2 IHC 2+/PIK3CA mutated model. CONCLUSIONS: This study demonstrates Trastuzumab-induced tumor regressions in HER-2 positive tumors, and highlights PIK3CA mutation as a potential resistance mechanism to Trastuzumab treatment in pre-clinical patient-derived EC xenograft models.
Assuntos
Anticorpos Monoclonais Humanizados/uso terapêutico , Antineoplásicos/uso terapêutico , Carcinoma de Células Escamosas/tratamento farmacológico , Neoplasias Esofágicas/tratamento farmacológico , Transplante Heterólogo , Animais , Sequência de Bases , Primers do DNA , Modelos Animais de Doenças , Feminino , Humanos , Hibridização in Situ Fluorescente , Camundongos , Camundongos Nus , Camundongos SCID , Reação em Cadeia da Polimerase , TrastuzumabRESUMO
Nitrilase is a valuable type of hydrolase that catalyzes nitriles into carboxylic acid and ammonia. Its applications, however, are severely restricted by the harsh conditions of industrial reaction processes. To solve this problem, a nitrilase from Acidovorax facilis 72W was inserted into an Escherichia coli-Bacillus subtilis shuttle vector for spore surface display. Western blot, enzyme activity measurements and flow cytometric analysis results all indicated a successful spore surface display of the CotB-nit fusion protein. In addition, the optimal catalytic pH value and temperature of the displayed nitrilase were determined to be 7.0 and 50°C, respectively. Moreover, results of reusability tests revealed that 64% of the initial activity of the displayed nitrilase was still retained at the 10th cycle. Furthermore, hydrolysis efficiency of upscale production of cyanocarboxylic acid was significantly higher in the displayed nitrilase-treated group than in the free group expressed by E. coli (pET-28a-nit). Generally, the display of A. facilis 72W nitrilase on the spore surface of Bacillus subtilis may be a useful method for immobilization of enzyme and consequent biocatalytic stabilization.
Assuntos
Aminoidrolases/genética , Aminoidrolases/metabolismo , Bacillus subtilis/genética , Bacillus subtilis/metabolismo , Comamonadaceae/enzimologia , Esporos Bacterianos/genética , Esporos Bacterianos/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Comamonadaceae/genética , Estabilidade Enzimática , Enzimas Imobilizadas/genética , Enzimas Imobilizadas/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Vetores Genéticos , Concentração de Íons de Hidrogênio , Imobilização/métodos , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Temperatura , Fatores de TempoRESUMO
Homeobox containing transcription factors are frequently deregulated in human hematologic malignant diseases either indirectly through an abnormality of an upstream factor, or directly through rearrangement of the gene itself. Study of T-cell acute lymphoblastic leukemia identified the related non-clustered homeobox transcription factors, TLX1 and TLX3, as frequently ectopically expressed as a result of chromosomal translocations. We report the deregulation of a non-clustered homeobox gene in a new type of t(5;14)(q35;q11) translocation in a mature peripheral B-cell leukemia. This translocation results in the ectopic expression of the CSX1/NKX2-5 gene on chromosome 5q35 due to its juxtaposition to the TCR delta gene on chromosome 14q11. Expression of the CSX1/NKX2-5 protein conferred enhanced replating potential to transduced murine bone marrow cells. Our study establishes that deregulation of homeobox encoding genes is not restricted to acute leukemic proliferations, but is also observed in chronic malignant diseases.
Assuntos
Linfócitos B/metabolismo , Regulação da Expressão Gênica , Proteínas de Homeodomínio/genética , Transtornos Linfoproliferativos/genética , Transtornos Linfoproliferativos/patologia , Fatores de Transcrição/genética , Ativação Transcricional , Proliferação de Células , Doença Crônica , Citogenética , Feminino , Proteína Homeobox Nkx-2.5 , Humanos , Pessoa de Meia-Idade , Modelos Biológicos , Mutação , Análise de Sequência de DNA , Translocação GenéticaRESUMO
Microbial fuel cells (MFCs) can use nitrate as a cathodic electron acceptor for electrochemical denitrification, yet there is little knowledge about how to apply them into current wastewater treatment process to achieve efficient nitrogen removal. In this study, two dual-chamber MFCs were integrated with an aerobic membrane bioreactor to construct a novel membrane bioelectrochemical reactor (MBER) for simultaneous nitrification and denitrification under specific aeration. The effects of chemical oxygen demand (COD) loading rate, COD/N ratio, hydraulic retention time (HRT), and external resistance on the system performance were investigated. High effluent quality was obtained in the MBER in terms of COD and ammonium. During the operation, denitrification simultaneously occurred with nitrification at the bio-cathode of the MBER, achieving a maximal nitrogen removal efficiency of 84.3 %. A maximum power density of 1.8 W/m3 and a current density of 8.5 A/m3 were achieved with a coulombic efficiency of 12.1 %. Furthermore, compared to the control system, the MBER exhibited lower membrane fouling tendency due to mixed liquor volatile suspended solids (MLVSSs) and extracellular polymeric substance (EPS) reductions, EPSp/EPSc ratio decrease, and particle size increase of the sludge. These results suggest that the MBER holds potential for efficient nitrogen removal, electricity production, and membrane fouling mitigation.
Assuntos
Reatores Biológicos , Desnitrificação , Nitrificação , Compostos de Amônio , Fontes de Energia Bioelétrica , Análise da Demanda Biológica de Oxigênio , Eletrodos , Nitratos , Nitrogênio/análise , Esgotos/química , Águas Residuárias/químicaRESUMO
Objective: To investigate the relationship between programmed death ligand 1 (PD-L1) expression using 5%, 25%, 50% cutoffs in tumor cells (TC) and postsurgical survival in non-small-cell lung cancer (NSCLC) patients. For samples with tumor infiltrating lymphocytes (TIL), correlation between PD-L1 expression in TIL using 1% cutoff and postsurgical survival was also evaluated. Methods: Primary NSCLC tumor surgical samples staging I to IIIA of 126 patients who underwent surgical procedures from September 2009 to August 2012 in Shanghai Chest Hospital, Shanghai Jiao Tong University were retrospectively included. PD-L1 protein expression was detected by immunohistochemistry (IHC) assays. A rabbit anti-human PD-L1 (E1L3N) monoclonal antibody (1:300, CST#13684, Cell Signaling Technology) was used for PD-L1 IHC staining. PD-L1 expression was evaluated both on TC and TIL. Univariate and multivariate analyses for postsurgical survival were done using Kaplan-Meier and Cox regression model, respectively. Results: The median postsurgical survival for all patients was 44.1 months [95% confidence interval (CI): 33.9-70.0 months). The median postsurgical survival for PD-L1 expression percentage 0, 1-50% and ≥50% were 51.9 months (95%CI: 33.9-70.0 months), 33.2 months (95%CI: 20.8-45.6 months) and 14.7 months (95%CI: 1.9-27.6 months), respectively (P = 0.002). Clinical stage and PD-L1 expression in TC (25% cutoff or 50% cutoff values) were found to be independent predictors for longer postsurgical survival in all cohort. Ninety (71.4%) of the 126 samples were identified to concurrent TIL. The median postsurgical survival time was 39.6 months (95% CI: 31.8-47.4 months) in patients with TIL. PD-L1 expression in TC (25% cutoff or 50% cutoff values) was found to be the independent predictor for longer postsurgical survival time in patients with TIL. Conclusion: PD-L1 negative expression in TC at 25% or 50% cutoff values was the independent predictor for longer postsurgical survival time in both NSCLC samples and NSCLC samples with TIL. For patients with PD-L1 high expression at 25% or 50% cutoff values, PD-L1 blocking may be considered.
RESUMO
In order to explore the potential patient population who could benefit from anti PD-1/PD-L1 mono or combination therapies, this study aimed to profile a panel of immunotherapy related biomarkers (PD-1, PD-L1, CTLA-4 and CD8) and targeted therapy biomarkers (EGFR, KRAS, ALK, ROS1 and MET) in NSCLC.Tumor samples from 297 NSCLC patients, including 156 adenocarcinomas (AD) and 129 squamous cell carcinomas (SCC), were analyzed using immunohistochemistry, immunofluorescence, sequencing and fluorescence in situ hybridization.43.1% of NSCLC patients had PD-L1 positive staining on ≥ 5% tumor cells (TC). Furthermore, dual color immunofluorescence revealed that the majority of PD-L1/CD8 dual positive tumor infiltrating lymphocytes (TIL) had infiltrated into the tumor core. Finally, combined analysis of all eight biomarkers showed that tumor PD-L1 positivity overlapped with known alterations in NSCLC oncogenic tumor drivers in 26% of SCC and 76% of AD samples.Our illustration of the eight biomarkers' overlap provides an intuitive overview of NSCLC for personalized therapeutic strategies using anti-PD-1/PD-L1 immune therapies, either as single agents, or in combination with targeted therapies. For the first time, we also report that PD-L1 and CD8 dual positive TILs are predominantly located within the tumor core.