Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Opt Lett ; 43(22): 5619-5622, 2018 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-30439909

RESUMO

Radiative thermal rectifiers capable of realizing asymmetric heat flux transfer have attracted a lot of research interests recently, mainly focusing on the engineering of the emissivity spectra. In this Letter, we propose a far-field radiative thermal rectifier utilizing the phase change material vanadium dioxide (VO2). The thermal rectifier consists of a metamaterial infrared absorber and a two-layer thin-film structure acting as the active and the passive components, respectively. Numerical optimization has been carried out to control the emissivity spectra of both parts and maximize the overall rectification effect. A large thermal rectification factor of 3.5 is predicted at a temperature bias of ΔT=100 K.

2.
Adv Mater ; 33(4): e2003084, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33306245

RESUMO

Janus metamaterials, metasurfaces, and monolayers have received intensive attention in nanophotonics and 2D materials. Their core concept is to introduce asymmetry along the wave propagation direction, by stacking different materials or layers of meta-atoms, or breaking out-of-plane mirror asymmetry with external biases. Nevertheless, it has been hitherto elusive to realize a diffusive Janus metadevice, since scalar diffusion systems such as heat conduction normally operate in the absence of polarization control, spin manipulation, or electric-field stimuli, which all are widely used in achieving optical Janus devices. It is even more challenging, if not impossible, for a single diffusive metadevice to exhibit more than two thermal functions. Here a path-dependent thermal metadevice beyond Janus characteristics is proposed, which can exhibit three distinct thermal behaviors (cloaking, concentrating, and transparency) under different directions of heat flow. The rotation transformation mechanism of thermal conductivity provides a robust platform to assign a specific thermal behavior in any direction. The proof-of-concept experiment of anisotropic in-plane conduction successfully validates such a path-dependent trifunction thermal metamaterial device. It is anticipated that this path-dependent strategy can provide a new dimension for multifunctional metamaterial devices in the thermal field, as well as for a more general diffusion process.

3.
Nat Commun ; 9(1): 4033, 2018 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-30279411

RESUMO

Thermal radiation can be substantially enhanced in the near-field scenario due to the tunneling of evanescent waves. Monolayer graphene could play a vital role in this process owing to its strong infrared plasmonic response, however, which still lacks an experimental verification due to the technical challenges. Here, we manage to make a direct measurement about plasmon-mediated thermal radiation between two macroscopic graphene sheets using a custom-made setup. Super-Planckian radiation with efficiency 4.5 times larger than the blackbody limit is observed at a 430-nm vacuum gap on insulating silicon hosting substrates. The positive role of graphene plasmons is further confirmed on conductive silicon substrates which have strong infrared loss and thermal emittance. Based on these, a thermophotovoltaic cell made of the graphene-silicon heterostructure is lastly discussed. The current work validates the classic thermodynamical theory in treating graphene and also paves a way to pursue the application of near-field thermal management.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA