Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
Brain ; 2024 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-39045638

RESUMO

Late-onset Pompe Disease (LOPD) is a rare genetic disorder caused by the deficiency of acid alpha-glucosidase leading to progressive cellular dysfunction due to the accumulation of glycogen in the lysosome. The mechanism of relentless muscle damage - a classic manifestation of the disease - has been extensively studied by analysing the whole muscle tissue; however, little, if any, is known about transcriptional heterogeneity among nuclei within the multinucleated skeletal muscle cells. This is the first report of application of single nuclei RNA sequencing to uncover changes in the gene expression profile in muscle biopsies from eight patients with LOPD and four muscle samples from age and gender matched healthy controls. We matched these changes with histology findings using GeoMx Spatial Transcriptomics to compare the transcriptome of control myofibers from healthy individuals with non-vacuolated (histologically unaffected) and vacuolated (histologically affected) myofibers of LODP patients. We observed an increase in the proportion of slow and regenerative muscle fibers and macrophages in LOPD muscles. The expression of the genes involved in glycolysis was reduced, whereas the expression of the genes involved in the metabolism of lipids and amino acids was increased in non-vacuolated fibers, indicating early metabolic abnormalities. Additionally, we detected upregulation of autophagy genes, and downregulation of the genes involved in ribosomal and mitochondrial function leading to defective oxidative phosphorylation. The upregulation of the genes associated with inflammation, apoptosis and muscle regeneration was observed only in vacuolated fibers. Notably, enzyme replacement therapy - the only available therapy for the disease - showed a tendency to restore metabolism dysregulation, particularly within slow fibers. A combination of single nuclei RNA sequencing and spatial transcriptomics revealed the landscape of normal and the diseased muscle, and highlighted the early abnormalities associated with the disease progression. Thus, the application of these two new cutting-edge technologies provided insight into the molecular pathophysiology of muscle damage in LOPD and identified potential avenues for therapeutic intervention.

2.
Am J Pathol ; 192(8): 1151-1166, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35605642

RESUMO

Late-onset Pompe disease (LOPD) is a rare genetic disorder produced by mutations in the GAA gene and is characterized by progressive muscle weakness. LOPD muscle biopsies show accumulation of glycogen along with the autophagic vacuoles associated with atrophic muscle fibers. The expression of molecules related to muscle fiber atrophy in muscle biopsies of LOPD patients was studied using immunofluorescence and real-time PCR. BCL2 and adenovirus E1B 19-kDa interacting protein 3 (BNIP3), a well-known atrogene, was identified as a potential mediator of muscle fiber atrophy in LOPD muscle biopsies. Vacuolated fibers in LOPD patient muscle biopsies were smaller than nonvacuolated fibers and expressed BNIP3. The current data suggested that BNIP3 expression is regulated by inhibition of the AKT-mammalian target of rapamycin pathway, leading to phosphorylation of Unc-51 like autophagy activating kinase 1 (ULK1) at Ser317 by AMP-activated protein kinase. Myoblasts and myotubes obtained from LOPD patients and age-matched controls were studied to confirm these results using different molecular techniques. Myotubes derived from LOPD patients were likewise smaller and expressed BNIP3. Conclusively, transfection of BNIP3 into control myotubes led to myotube atrophy. These findings suggest a cascade that starts with the inhibition of the AKT-mammalian target of rapamycin pathway and activation of BNIP3 expression, leading to progressive muscle fiber atrophy. These results open the door to potential new treatments targeting BNIP3 to reduce its deleterious effects on muscle fiber atrophy in Pompe disease.


Assuntos
Doença de Depósito de Glicogênio Tipo II , Atrofia/patologia , Doença de Depósito de Glicogênio Tipo II/genética , Doença de Depósito de Glicogênio Tipo II/patologia , Humanos , Proteínas de Membrana/genética , Fibras Musculares Esqueléticas/metabolismo , Proteínas Proto-Oncogênicas , Proteínas Proto-Oncogênicas c-akt , Serina-Treonina Quinases TOR/metabolismo
3.
Brain ; 145(2): 596-606, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-34515763

RESUMO

Sarcoglycanopathies include four subtypes of autosomal recessive limb-girdle muscular dystrophies (LGMDR3, LGMDR4, LGMDR5 and LGMDR6) that are caused, respectively, by mutations in the SGCA, SGCB, SGCG and SGCD genes. Delta-sarcoglycanopathy (LGMDR6) is the least frequent and is considered an ultra-rare disease. Our aim was to characterize the clinical and genetic spectrum of a large international cohort of LGMDR6 patients and to investigate whether or not genetic or protein expression data could predict a disease's severity. This is a retrospective study collecting demographic, genetic, clinical and histological data of patients with genetically confirmed LGMDR6 including protein expression data from muscle biopsies. We contacted 128 paediatric and adult neuromuscular units around the world that reviewed genetic data of patients with a clinical diagnosis of a neuromuscular disorder. We identified 30 patients with a confirmed diagnosis of LGMDR6 of which 23 patients were included in this study. Eighty-seven per cent of the patients had consanguineous parents. Ninety-one per cent of the patients were symptomatic at the time of the analysis. Proximal muscle weakness of the upper and lower limbs was the most common presenting symptom. Distal muscle weakness was observed early over the course of the disease in 56.5% of the patients. Cardiac involvement was reported in five patients (21.7%) and four patients (17.4%) required non-invasive ventilation. Sixty per cent of patients were wheelchair-bound since early teens (median age of 12.0 years). Patients with absent expression of the sarcoglycan complex on muscle biopsy had a significant earlier onset of symptoms and an earlier age of loss of ambulation compared to patients with residual protein expression. This study confirmed that delta-sarcoglycanopathy is an ultra-rare neuromuscular condition and described the clinical and molecular characteristics of the largest yet-reported collected cohort of patients. Our results showed that this is a very severe and quickly progressive disease characterized by generalized muscle weakness affecting predominantly proximal and distal muscles of the limbs. Similar to other forms of sarcoglycanopathies, the severity and rate of progressive weakness correlates inversely with the abundance of protein on muscle biopsy.


Assuntos
Distrofia Muscular do Cíngulo dos Membros , Distrofias Musculares , Sarcoglicanopatias , Adulto , Criança , Humanos , Debilidade Muscular , Distrofias Musculares/genética , Distrofia Muscular do Cíngulo dos Membros/diagnóstico , Distrofia Muscular do Cíngulo dos Membros/genética , Estudos Retrospectivos , Sarcoglicanopatias/genética , Sarcoglicanas/genética , Sarcoglicanas/metabolismo
4.
FASEB J ; 35(9): e21819, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34405910

RESUMO

Skeletal muscle contains multiple cell types that work together to maintain tissue homeostasis. Among these, satellite cells (SC) and fibroadipogenic progenitors cells (FAPs) are the two main stem cell pools. Studies of these cells using animal models have shown the importance of interactions between these cells in repair of healthy muscle, and degeneration of dystrophic muscle. Due to the unavailability of fresh patient muscle biopsies, similar analysis of interactions between human FAPs and SCs is limited especially among the muscular dystrophy patients. To address this issue here we describe a method that allows the use of frozen human skeletal muscle biopsies to simultaneously isolate and grow SCs and FAPs from healthy or dystrophic patients. We show that while the purified SCs differentiate into mature myotubes, purified FAPs can differentiate into adipocytes or fibroblasts demonstrating their multipotency. We find that these FAPs can be immortalized and the immortalized FAPs (iFAPs) retain their multipotency. These approaches open the door for carrying out personalized analysis of patient FAPs and interactions with the SCs that lead to muscle loss.


Assuntos
Biópsia , Separação Celular , Criopreservação , Músculo Esquelético/citologia , Músculo Esquelético/patologia , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/patologia , Adolescente , Adulto , Idoso , Diferenciação Celular , Feminino , Voluntários Saudáveis , Humanos , Masculino , Pessoa de Meia-Idade , Células-Tronco Multipotentes/citologia , Células-Tronco Multipotentes/patologia , Distrofia Muscular de Duchenne/patologia , Adulto Jovem
5.
Eur J Neurol ; 29(5): 1488-1495, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35112761

RESUMO

BACKGROUND: Oculopharyngeal muscular dystrophy (OPMD) is an autosomal dominant, late-onset myopathy characterized by ptosis, dysphagia, and progressive proximal limb muscle weakness. The disease is produced by a short expansion of the (GCN)n triplet in the PABPN1 gene. The size of expansion has been correlated to the disease onset and severity. We report the clinical features of a large cohort of OPMD patients harboring the (GCN)15 allele from the Canary Islands. METHODS: A retrospective observational study was performed analyzing the clinical, demographic, and genetic data of 123 OPMD patients. Clinical data from this cohort were compared with clinical data collected in a large European study including 139 OPMD patients. RESULTS: A total of 113 patients (94.2%) carried the (GCN)15 expanded PABN1 allele. Age of symptoms' onset was 45.1 years. The most frequent symptom at onset was ptosis (85.2%) followed by dysphagia (12%). The severity of the disease was milder in the Canary cohort compared to European patients as limb weakness (35.1% vs. 50.4%), the proportion of patients that require assistance for walking or use a wheelchair (9.3% vs. 27.4%), and needed of surgery because of severe dysphagia (4.6% vs. 22.8%) was higher in the European cohort. CONCLUSIONS: Nearly 95% of patients with OPMD from the Canary Islands harbored the (GCN)15 expanded allele supporting a potential founder effect. Disease progression seemed to be milder in the (GCN)15 OPMD Canary cohort than in other cohorts with shorter expansions suggesting that other factors, apart from the expansion size, could be involved in the progression of the disease.


Assuntos
Transtornos de Deglutição , Distrofia Muscular Oculofaríngea , Estudos de Coortes , Transtornos de Deglutição/genética , Humanos , Pessoa de Meia-Idade , Debilidade Muscular/etiologia , Distrofia Muscular Oculofaríngea/diagnóstico , Distrofia Muscular Oculofaríngea/genética , Proteína I de Ligação a Poli(A)/genética , Espanha
6.
J Neuroinflammation ; 18(1): 251, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34719386

RESUMO

BACKGROUND: Guillain-Barré syndrome (GBS) is an acute inflammatory neuropathy with a heterogeneous presentation. Although some evidences support the role of autoantibodies in its pathogenesis, the target antigens remain unknown in a substantial proportion of GBS patients. The objective of this study is to screen for autoantibodies targeting peripheral nerve components in Guillain-Barré syndrome. METHODS: Autoantibody screening was performed in serum samples from all GBS patients included in the International GBS Outcome study by 11 different Spanish centres. The screening included testing for anti-ganglioside antibodies, anti-nodo/paranodal antibodies, immunocytochemistry on neuroblastoma-derived human motor neurons and murine dorsal root ganglia (DRG) neurons, and immunohistochemistry on monkey peripheral nerve sections. We analysed the staining patterns of patients and controls. The prognostic value of anti-ganglioside antibodies was also analysed. RESULTS: None of the GBS patients (n = 100) reacted against the nodo/paranodal proteins tested, and 61 (61%) were positive for, at least, one anti-ganglioside antibody. GBS sera reacted strongly against DRG neurons more frequently than controls both with IgG (6% vs 0%; p = 0.03) and IgM (11% vs 2.2%; p = 0.02) immunodetection. No differences were observed in the proportion of patients reacting against neuroblastoma-derived human motor neurons. Reactivity against monkey nerve tissue was frequently detected both in patients and controls, but specific patterns were only detected in GBS patients: IgG from 13 (13%) patients reacted strongly against Schwann cells. Finally, we confirmed that IgG anti-GM1 antibodies are associated with poorer outcomes independently of other known prognostic factors. CONCLUSION: Our study confirms that (1) GBS patients display a heterogeneous repertoire of autoantibodies targeting nerve cells and structures; (2) gangliosides are the most frequent antigens in GBS patients and have a prognostic value; (3) further antigen-discovery experiments may elucidate other potential antigens in GBS.


Assuntos
Autoanticorpos/sangue , Síndrome de Guillain-Barré/sangue , Síndrome de Guillain-Barré/diagnóstico , Idoso , Animais , Linhagem Celular Tumoral , Estudos de Coortes , Feminino , Gânglios Espinais/metabolismo , Gânglios Espinais/patologia , Síndrome de Guillain-Barré/epidemiologia , Humanos , Macaca , Masculino , Programas de Rastreamento/métodos , Pessoa de Meia-Idade , Estudos Prospectivos , Ratos , Espanha/epidemiologia
7.
BMC Musculoskelet Disord ; 21(1): 784, 2020 Nov 27.
Artigo em Inglês | MEDLINE | ID: mdl-33246442

RESUMO

BACKGROUND: Dysferlinopathies are a group of muscle disorders causing muscle weakness and absence or low levels of dysferlin, a type-II transmembrane protein and the causative gene of these dystrophies. Dysferlin is implicated in vesicle fusion, trafficking, and membrane repair. Muscle biopsy of patients with dysferlinopathy is characterized by the presence of inflammatory infiltrates. Studies in the muscle of both human and mouse models of dysferlinopathy suggest dysferlin deficient muscle plays a role in this inflammation by releasing thrombospondin-1. It has also been reported that vitamin D3 treatment enhances dysferlin expression. The ubiquitin-proteasome system recognizes and removes proteins that fail to fold or assemble properly and previous studies suggest that its inhibition could have a therapeutic effect in muscle dystrophies. Here we assessed whether inhibition of the ubiquitin proteasome system prevented degradation of dysferlin in immortalized myoblasts from a patients with two missense mutations in exon 44. METHODS: To assess proteasome inhibition we treated dysferlin deficient myotubes with EB1089, a vitamin D3 analog, oprozomib and ixazomib. Western blot was performed to analyze the effect of these treatments on the recovery of dysferlin and myogenin expression. TSP-1 was quantified using the enzyme-linked immunosorbent assay to analyze the effect of these drugs on its release. A membrane repair assay was designed to assess the ability of treated myotubes to recover after membrane injury and fusion index was also measured with the different treatments. Data were analyzed using a one-way ANOVA test followed by Tukey post hoc test and analysis of variance. A p ≤ 0.05 was considered statistically significant. RESULTS: Treatment with proteasome inhibitors and EB1089 resulted in a trend towards an increase in dysferlin and myogenin expression. Furthermore, EB1089 and proteasome inhibitors reduced the release of TSP-1 in myotubes. However, no effect was observed on the repair of muscle membrane after injury. CONCLUSIONS: Our findings indicate that the ubiquitin-proteasome system might not be the main mechanism of mutant dysferlin degradation. However, its inhibition could help to improve muscle inflammation by reducing TSP-1 release.


Assuntos
Inibidores de Proteassoma , Trombospondina 1 , Disferlina/genética , Humanos , Fibras Musculares Esqueléticas , Proteínas Musculares/genética , Músculo Esquelético , Inibidores de Proteassoma/farmacologia
8.
Mol Genet Metab ; 128(1-2): 129-136, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31378569

RESUMO

Late onset Pompe disease (LOPD) is a genetic disorder characterized by slowly progressive skeletal and respiratory muscle weakness. Symptomatic patients are treated with enzyme replacement therapy (ERT) with alglucosidase alpha (rhGAA). Although most of ERT treated patients develop antibodies against rhGAA, their influence on clinical progression is not completely known. We studied the impact of anti-rhGAA antibodies on clinical progression of 25 ERT treated patients. We evaluated patients at visit 0 and, after 1 year, at visit 1. We performed several muscle function tests, conventional spirometry and quantitative muscle MRI (qMRI) using 3-point Dixon analysis of thigh muscles at both visits. We also obtained serum samples at both visits and anti-rhGAA antibodies were quantified using ELISA. Antibody titers higher than 1:200 were identified in 18 patients (72%) of our cohort. Seven patients (28%) did not develop antibodies (0 to <1:200), 17 patients (68%) developed low to intermediate titers (1:200 to <1:31,200) and 1 patient (4%) developed high titers (>1:31,200). We analyzed the effect of low and intermediate antibody titers in clinical and radiological progression. There were no differences between the results of muscle function tests, spirometry or fat fraction analyzed using qMRI between patients with and without antibodies groups at baseline. Moreover, antibody titers did not influence muscle function test, spirometry results or qMRI results at year 1 visit. Most of the LOPD patients developed antibodies against ERT that persisted over time at low or intermediate levels. However, antibodies at these low and intermediate titers might not influence clinical response to the drug.


Assuntos
Anticorpos/sangue , Terapia de Reposição de Enzimas , Doença de Depósito de Glicogênio Tipo II/tratamento farmacológico , Transtornos de Início Tardio/tratamento farmacológico , alfa-Glucosidases/imunologia , Adulto , Idoso , Feminino , Humanos , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Músculo Esquelético/efeitos dos fármacos , Estudos Prospectivos
9.
Brain ; 141(6): 1609-1621, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29741608

RESUMO

Dermatomyositis is an acquired auto-immune disease characterized by skin lesions and muscle-specific pathological features such as perifascicular muscle fibre atrophy and vasculopathy. Dermatomyositis patients display an upregulation of type I interferon-inducible genes in muscle fibres, endothelial cells, skin and peripheral blood. However, the effect of type I interferon on muscle tissue has not yet been determined. Our aim was to study the pathogenicity of type I interferon in vitro and to evaluate the efficacy of the type I interferon pathway blockade for therapeutic purposes. The activation of type I interferon in differentiating myoblasts abolished myotube formation with reduced myogenin expression while in differentiated myotubes, we observed a reduction in surface area and an upregulation of atrophy-associated genes. In vitro endothelial cells exposure to type I interferon disrupted vascular network organization. All the pathogenic effects observed in vitro were abolished by ruxolitinib. Finally, four refractory dermatomyositis patients were treated with ruxolitinib and improvement ensued in skin lesions, muscle weakness and a reduced serum type I interferon levels and interferon-inducbile genes scores. We propose JAK inhibition as a mechanism-based treatment for dermatomyositis, a finding that is relevant for the design of future clinical trials targeting dermatomyositis.


Assuntos
Dermatomiosite , Interferon Tipo I/toxicidade , Inibidores de Janus Quinases/uso terapêutico , Músculo Esquelético/efeitos dos fármacos , Pirazóis/uso terapêutico , Transdução de Sinais/efeitos dos fármacos , Idoso , Idoso de 80 Anos ou mais , Linhagem Celular Transformada , Dermatomiosite/induzido quimicamente , Dermatomiosite/tratamento farmacológico , Dermatomiosite/patologia , Células Endoteliais/efeitos dos fármacos , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Proteínas de Resistência a Myxovirus/genética , Proteínas de Resistência a Myxovirus/metabolismo , Neovascularização Patológica/induzido quimicamente , Nitrilas , Pirimidinas , Proteínas Ligases SKP Culina F-Box/genética , Proteínas Ligases SKP Culina F-Box/metabolismo , Regulação para Cima/efeitos dos fármacos
10.
Am J Pathol ; 187(8): 1814-1827, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28618254

RESUMO

Duchenne muscular dystrophy (DMD) is characterized by a progressive loss of muscle fibers, and their substitution by fibrotic and adipose tissue. Many factors contribute to this process, but the molecular pathways related to regeneration and degeneration of muscle are not completely known. Platelet-derived growth factor (PDGF)-BB belongs to a family of growth factors that regulate proliferation, migration, and differentiation of mesenchymal cells. The role of PDGF-BB in muscle regeneration in humans has not been studied. We analyzed the expression of PDGF-BB in muscle biopsy samples from controls and patients with DMD. We performed in vitro experiments to understand the effects of PDGF-BB on myoblasts involved in the pathophysiology of muscular dystrophies and confirmed our results in vivo by treating the mdx murine model of DMD with repeated i.m. injections of PDGF-BB. We observed that regenerating and necrotic muscle fibers in muscle biopsy samples from DMD patients expressed PDGF-BB. In vitro, PDGF-BB attracted myoblasts and activated their proliferation. Analysis of muscles from the animals treated with PDGF-BB showed an increased population of satellite cells and an increase in the number of regenerative fibers, with a reduction in inflammatory infiltrates, compared with those in vehicle-treated mice. Based on our results, PDGF-BB may play a protective role in muscular dystrophies by enhancing muscle regeneration through activation of satellite cell proliferation and migration.


Assuntos
Proliferação de Células/efeitos dos fármacos , Células Musculares/efeitos dos fármacos , Músculo Esquelético/metabolismo , Distrofia Muscular de Duchenne/metabolismo , Proteínas Proto-Oncogênicas c-sis/metabolismo , Regeneração/efeitos dos fármacos , Animais , Becaplermina , Diferenciação Celular/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Distrofina/genética , Distrofina/metabolismo , Humanos , Camundongos , Camundongos Endogâmicos mdx , Células Musculares/metabolismo , Músculo Esquelético/efeitos dos fármacos , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/genética , Distrofia Muscular de Duchenne/patologia , Proteínas Proto-Oncogênicas c-sis/genética , Proteínas Proto-Oncogênicas c-sis/farmacologia , Regeneração/genética
11.
Am J Pathol ; 186(3): 691-700, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26806087

RESUMO

The anti-melanoma differentiation-associated gene 5 (MDA5) autoantibody is specifically associated with dermatomyositis (DM). Nevertheless, anti-MDA5(+)-patients experience characteristic symptoms distinct from classic DM, including severe signs of extramuscular involvement; however, the clinical signs of myopathy are mild or even absent. The morphological and immunological features are not yet described in adulthood. Data concerning the pathophysiology of anti-MDA5 DM are sparse; however, the importance of the interferon (IFN) type I pathway involved in DM has been shown. Our aim was to define morphological alterations of the skeletal muscle and the intrinsic immune response of anti-MDA5-positive DM patients. Immunohistological and RT-PCR analysis of muscle biopsy specimens from anti-MDA5 and classic DM were compared. Those with anti-MDA5 DM did not present the classic features of perifascicular fiber atrophy and major histocompatibility complex class I expression. They did not show significant signs of capillary loss; tubuloreticular formations were observed less frequently. Inflammation was focal, clustering around single vessels but significantly less intense. Expression of IFN-stimulated genes was up-regulated in anti-MDA5 DM; however, the IFN score was significantly lower. Characteristic features were observed in anti-MDA5 DM and not in classic DM patients. Only anti-MDA5 DM showed numerous nitric oxide synthase 2-positive muscle fibers with sarcoplasmic colocalization of markers of regeneration and cell stress. Anti-MDA5-positive patients demonstrate a morphological pattern distinct from classic DM.


Assuntos
RNA Helicases DEAD-box/metabolismo , Dermatomiosite/complicações , Melanoma/complicações , Óxido Nítrico Sintase Tipo II/metabolismo , Adulto , Biomarcadores , RNA Helicases DEAD-box/genética , Dermatomiosite/metabolismo , Dermatomiosite/patologia , Feminino , Humanos , Helicase IFIH1 Induzida por Interferon , Interferons/genética , Interferons/metabolismo , Masculino , Melanoma/metabolismo , Melanoma/patologia , Pessoa de Meia-Idade , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Óxido Nítrico Sintase Tipo II/genética , Fenótipo , Regeneração , Estudos Retrospectivos , Regulação para Cima
12.
J Pathol ; 233(3): 258-68, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24604766

RESUMO

We investigated the molecular mechanisms involved in the pathogenesis of three inflammatory myopathies, dermatomyositis (DM), polymyositis (PM) and inclusion body myositis (IBM). We performed microarray experiments(†) using microdissected pathological muscle fibres from 15 patients with these disorders and five controls. Differentially expressed candidate genes were validated by immunohistochemistry on muscle biopsies, and the altered pathways were analysed in human myotube cultures. Up-regulation of genes involved in viral and nucleic acid recognition were found in the three myopathies but not in controls. In DM, retinoic acid-inducible gene 1 (RIG-I, DDX58) and the novel antiviral factor DDX60, which promotes RIG-I-mediated signalling, were significantly up-regulated, followed by IFIH1 (MDA5) and TLR3. Immunohistochemistry confirmed over-expression of RIG-I in pathological muscle fibres in 5/5 DM, 0/5 PM and 0/5 IBM patients, and in 0/5 controls. Stimulation of human myotubes with a ligand of RIG-I produced a significant secretion of interferon-ß (IFNß; p < 0.05) and up-regulation of class I MHC, RIG-I and TLR3 (p < 0.05) by IFNß-dependent and TLR3-independent mechanisms. RIG-I-mediated innate immunity, triggered by a viral or damage signal, plays a significant role in the pathogenesis of DM, but not in that of PM or IBM.


Assuntos
RNA Helicases DEAD-box/metabolismo , Dermatomiosite/metabolismo , Imunidade Inata , Fibras Musculares Esqueléticas/metabolismo , Transdução de Sinais , Adulto , Idoso , Estudos de Casos e Controles , Células Cultivadas , Proteína DEAD-box 58 , RNA Helicases DEAD-box/genética , Dermatomiosite/genética , Dermatomiosite/imunologia , Feminino , Perfilação da Expressão Gênica/métodos , Regulação da Expressão Gênica , Estudos de Associação Genética , Antígenos de Histocompatibilidade Classe I/metabolismo , Humanos , Imuno-Histoquímica , Corpos de Inclusão/imunologia , Corpos de Inclusão/metabolismo , Helicase IFIH1 Induzida por Interferon , Interferon beta/metabolismo , Masculino , Microdissecção , Pessoa de Meia-Idade , Fibras Musculares Esqueléticas/imunologia , Análise de Sequência com Séries de Oligonucleotídeos , Polimiosite/genética , Polimiosite/imunologia , Polimiosite/metabolismo , Receptores Imunológicos , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo
13.
Ann Neurol ; 73(3): 370-80, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23280477

RESUMO

OBJECTIVE: Chronic inflammatory demyelinating polyradiculoneuropathy (CIDP) is a frequent autoimmune neuropathy with a heterogeneous clinical spectrum. Clinical and experimental evidence suggests that autoantibodies may be involved in its pathogenesis, but the target antigens are unknown. Axoglial junction proteins have been proposed as candidate antigens. We examined the reactivity of CIDP patients' sera against neuronal antigens and used immunoprecipitation for antigen unraveling. METHODS: Primary cultures of hippocampal neurons were used to select patients' sera that showed robust reactivity with the cell surface of neurons. The identity of the antigens was established by immunoprecipitation and mass spectrometry, and subsequently confirmed with cell-based assays, immunohistochemistry with teased rat sciatic nerve, and immunoabsorption experiments. RESULTS: Four of 46 sera from patients with CIDP reacted strongly against hippocampal neurons (8.6%) and paranodal structures on peripheral nerve. Two patients' sera precipitated contactin-1 (CNTN1), and 1 precipitated both CNTN1 and contactin-associated protein 1 (CASPR1). Reactivity against CNTN1 was confirmed in 2 cases, whereas the third reacted only when CNTN1 and CASPR1 were cotransfected. No other CIDP patient or any of the 104 controls with other neurological diseases tested positive. All 3 patients shared common clinical features, including advanced age, predominantly motor involvement, aggressive symptom onset, early axonal involvement, and poor response to intravenous immunoglobulin. INTERPRETATION: Antibodies against the CNTN1/CASPR1 complex occur in a subset of patients with CIDP who share common clinical features. The finding of this biomarker may help to explain the symptoms of these patients and the heterogeneous response to therapy in CIDP.


Assuntos
Anticorpos/sangue , Contactina 1/imunologia , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/sangue , Idoso , Animais , Animais Recém-Nascidos , Anticorpos/farmacologia , Moléculas de Adesão Celular Neuronais/metabolismo , Células Cultivadas , Feminino , Seguimentos , Hipocampo/citologia , Hipocampo/patologia , Humanos , Masculino , Proteínas de Membrana/metabolismo , Pessoa de Meia-Idade , Proteínas do Tecido Nervoso/metabolismo , Condução Nervosa/efeitos dos fármacos , Neurônios/efeitos dos fármacos , Neurônios/metabolismo , Neurônios/patologia , Polirradiculoneuropatia Desmielinizante Inflamatória Crônica/imunologia , Ratos , Ratos Endogâmicos Lew , Nervo Isquiático/metabolismo , Soro , Estatísticas não Paramétricas , Transfecção
14.
Front Cell Dev Biol ; 12: 1399319, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39045456

RESUMO

Background: Duchenne muscular dystrophy is a genetic disease produced by mutations in the dystrophin gene characterized by early onset muscle weakness leading to severe and irreversible disability. Muscle degeneration involves a complex interplay between multiple cell lineages spatially located within areas of damage, termed the degenerative niche, including inflammatory cells, satellite cells (SCs) and fibro-adipogenic precursor cells (FAPs). FAPs are mesenchymal stem cell which have a pivotal role in muscle homeostasis as they can either promote muscle regeneration or contribute to muscle degeneration by expanding fibrotic and fatty tissue. Although it has been described that FAPs could have a different behavior in DMD patients than in healthy controls, the molecular pathways regulating their function as well as their gene expression profile are unknown. Methods: We used single-cell RNA sequencing (scRNAseq) with 10X Genomics and Illumina technology to elucidate the differences in the transcriptional profile of isolated FAPs from healthy and DMD patients. Results: Gene signatures in FAPs from both groups revealed transcriptional differences. Seurat analysis categorized cell clusters as proliferative FAPs, regulatory FAPs, inflammatory FAPs, and myofibroblasts. Differentially expressed genes (DEGs) between healthy and DMD FAPs included upregulated genes CHI3L1, EFEMP1, MFAP5, and TGFBR2 in DMD. Functional analysis highlighted distinctions in system development, wound healing, and cytoskeletal organization in control FAPs, while extracellular organization, degradation, and collagen degradation were upregulated in DMD FAPs. Validation of DEGs in additional samples (n = 9) using qPCR reinforced the specific impact of pathological settings on FAP heterogeneity, reflecting their distinct contribution to fibro or fatty degeneration in vivo. Conclusion: Using the single-cell RNA seq from human samples provide new opportunities to study cellular coordination to further understand the regulation of muscle homeostasis and degeneration that occurs in muscular dystrophies.

15.
Sci Rep ; 14(1): 3365, 2024 02 09.
Artigo em Inglês | MEDLINE | ID: mdl-38336890

RESUMO

Becker muscular dystrophy (BMD) is characterised by fiber loss and expansion of fibrotic and adipose tissue. Several cells interact locally in what is known as the degenerative niche. We analysed muscle biopsies of controls and BMD patients at early, moderate and advanced stages of progression using Hyperion imaging mass cytometry (IMC) by labelling single sections with 17 markers identifying different components of the muscle. We developed a software for analysing IMC images and studied changes in the muscle composition and spatial correlations between markers across disease progression. We found a strong correlation between collagen-I and the area of stroma, collagen-VI, adipose tissue, and M2-macrophages number. There was a negative correlation between the area of collagen-I and the number of satellite cells (SCs), fibres and blood vessels. The comparison between fibrotic and non-fibrotic areas allowed to study the disease process in detail. We found structural differences among non-fibrotic areas from control and patients, being these latter characterized by increase in CTGF and in M2-macrophages and decrease in fibers and blood vessels. IMC enables to study of changes in tissue structure along disease progression, spatio-temporal correlations and opening the door to better understand new potential pathogenic pathways in human samples.


Assuntos
Distrofia Muscular de Duchenne , Humanos , Distrofia Muscular de Duchenne/patologia , Atrofia Muscular/metabolismo , Músculos/metabolismo , Colágeno/metabolismo , Progressão da Doença , Citometria por Imagem , Músculo Esquelético/metabolismo
16.
Artigo em Inglês | MEDLINE | ID: mdl-36697230

RESUMO

BACKGROUND AND OBJECTIVES: Myasthenia gravis (MG) is an autoimmune disease associated with comorbid thymoma in 10%-15% of cases. Cytotoxic T lymphocyte-associated antigen 4 (CTLA4) expressed by T cells downregulates T-cell-mediated immune response. Polymorphisms in the CTLA4 gene have been associated with the development of MG. In this context, we aimed to determine whether CTLA4 expression in the thymoma differs between patients with and without MG and whether CTLA4 gene polymorphisms are associated with these differences. METHODS: This is a retrospective study of all patients, with and without MG, surgically treated at our institution for thymoma between January 2010 and December 2020. Ten samples were obtained from normal thymuses as controls. The number of CTLA4-positive cells in paraffin-embedded thymoma samples was determined by immunohistochemistry. The presence of follicular-center and regulatory T-cell lymphocytes was determined by immunohistochemistry (B-cell lymphoma [BCL]-6 expression) and double immunofluorescence-based staining of CD4-FOXP3, respectively. We evaluated the association between thymic expression of CTLA4 and the development of MG. We also determined the association between CTLA4 expression and various clinical and prognostic characteristics of MG. We sequenced the CTLA4 gene and evaluated possible associations between CTLA4 polymorphisms and thymic CTLA4 expression. Finally, we assessed the potential association between these polymorphisms and the risk of MG. RESULTS: Forty-one patients with thymoma were included. Of them, 23 had comorbid MG (56.1%). On average, patients with MG had fewer CTLA4-positive cells in the thymoma than non-MG patients: 69.3 cells/mm2 (95% CIs: 39.6-99.1) vs 674.4 (276.0-1,024.0) cells/mm2; p = 0.001 and vs controls (200.74 [57.9-343.6] cells/mm2; p = 0.02). No between-group differences (MG vs non-MG) were observed in the number of cells positive for BCL6 or CD4-FOXP3. CTLA4 expression was not associated with differences in MG outcome or treatment refractoriness. Two polymorphisms were detected in the CTLA4 gene, rs231770 (n = 30 patients) and rs231775 (n = 17). MG was present in a similar proportion of patients for all genotypes. However, a nonsignificant trend toward a lower CTLA4-positive cell count was observed among carriers of the rs231775 polymorphism vs noncarriers: 77.9 cells/mm2 (95% CI: -51.5 to 207.5) vs 343.3 cells/mm2 (95% CI: 126.2-560.4). DISCUSSION: Reduced CTLA4 expression in thymoma may predispose to a higher risk of developing MG.


Assuntos
Miastenia Gravis , Timoma , Neoplasias do Timo , Humanos , Antígeno CTLA-4/genética , Estudos Retrospectivos , Neoplasias do Timo/complicações , Fatores de Transcrição Forkhead/genética , Probabilidade
17.
Cell Death Dis ; 14(9): 596, 2023 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-37673877

RESUMO

Duchenne muscular dystrophy is a genetic disease produced by mutations in the dystrophin gene characterized by early onset muscle weakness leading to severe and irreversible disability. The cellular and molecular consequences of the lack of dystrophin in humans are only partially known, which is crucial for the development of new therapies aiming to slow or stop the progression of the disease. Here we have analyzed quadriceps muscle biopsies of seven DMD patients aged 2 to 4 years old and five age and gender matched controls using single nuclei RNA sequencing (snRNAseq) and correlated the results obtained with clinical data. SnRNAseq identified significant differences in the proportion of cell population present in the muscle samples, including an increase in the number of regenerative fibers, satellite cells, and fibro-adipogenic progenitor cells (FAPs) and a decrease in the number of slow fibers and smooth muscle cells. Muscle samples from the younger patients with stable mild weakness were characterized by an increase in regenerative fibers, while older patients with moderate and progressive weakness were characterized by loss of muscle fibers and an increase in FAPs. An analysis of the gene expression profile in muscle fibers identified a strong regenerative signature in DMD samples characterized by the upregulation of genes involved in myogenesis and muscle hypertrophy. In the case of FAPs, we observed upregulation of genes involved in the extracellular matrix regeneration but also several signaling pathways. Indeed, further analysis of the potential intercellular communication profile showed a dysregulation of the communication profile in DMD samples identifying FAPs as a key regulator of cell signaling in DMD muscle samples. In conclusion, our study has identified significant differences at the cellular and molecular levels in the different cell populations present in skeletal muscle samples of patients with DMD compared to controls.


Assuntos
Distrofia Muscular de Duchenne , Humanos , Pré-Escolar , Distrofia Muscular de Duchenne/genética , Distrofina/genética , Transcriptoma/genética , Fibras Musculares Esqueléticas , Transdução de Sinais
18.
J Cachexia Sarcopenia Muscle ; 13(2): 1373-1384, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35132805

RESUMO

BACKGROUND: The lack of dystrophin expression in Duchenne muscular dystrophy (DMD) induces muscle fibre and replacement by fibro-adipose tissue. Although the role of some growth factors in the process of fibrogenesis has been studied, pathways activated by PDGF-AA have not been described so far. Our aim was to study the molecular role of PDGF-AA in the fibrotic process of DMD. METHODS: Skeletal muscle fibro-adipogenic progenitor cells (FAPs) from three DMD treated with PDGF-AA at 50 ng/mL were analysed by quantitative mass spectrometry-based proteomics. Western-blot, immunofluorescence, and G-LISA were used to confirm the mass spectrometry results. We evaluated the effects of PDGF-AA on the activation of RhoA pathway using two inhibitors, C3-exoenzyme and fasudil. Cell proliferation and migration were determined by BrdU and migration assay. Actin reorganization and collagen synthesis were measured by phalloidin staining and Sircol assay, respectively. In an in vivo proof of concept study, we treated dba/2J-mdx mice with fasudil for 6 weeks. Muscle strength was assessed with the grip strength. Immunofluorescence and flow cytometry analyses were used to study fibrotic and inflammatory markers in muscle tissue. RESULTS: Mass spectrometry revealed that RhoA pathway proteins were up-regulated in treated compared with non-treated DMD FAPs (n = 3, mean age = 8 ± 1.15 years old). Validation of proteomic data showed that Arhgef2 expression was significantly increased in DMD muscles compared with healthy controls by a 7.7-fold increase (n = 2, mean age = 8 ± 1.14 years old). In vitro studies showed that RhoA/ROCK2 pathway was significantly activated by PDGF-AA (n = 3, 1.88-fold increase, P < 0.01) and both C3-exoenzyme and fasudil blocked that activation (n = 3, P < 0.05 and P < 0.001, respectively). The activation of RhoA pathway by PDGF-AA promoted a significant increase in proliferation and migration of FAPs (n = 3, P < 0.001), while C3-exoenzyme and fasudil inhibited FAPs proliferation at 72 h and migration at 48 and 72 h (n = 3, P < 0.001). In vivo studies showed that fasudil improved muscle function (n = 5 non-treated dba/2J-mdx and n = 6 treated dba/2J-mdx, 1.76-fold increase, P < 0.013), and histological studies demonstrated a 23% reduction of collagen-I expression area (n = 5 non-treated dba/2J-mdx and n = 6 treated dba/2J-mdx, P < 0.01). CONCLUSIONS: Our results suggest that PDGF-AA promotes the activation of RhoA pathway in FAPs from DMD patients. This pathway could be involved in FAPs activation promoting its proliferation, migration, and actin reorganization, which represents the beginning of the fibrotic process. The inhibition of RhoA pathway could be considered as a potential therapeutic target for muscle fibrosis in patients with muscular dystrophies.


Assuntos
Distrofia Muscular de Duchenne , Animais , Humanos , Camundongos , Camundongos Endogâmicos mdx , Músculo Esquelético/patologia , Distrofia Muscular de Duchenne/patologia , Fator de Crescimento Derivado de Plaquetas , Proteômica , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Células-Tronco/metabolismo , Células-Tronco/patologia , Quinases Associadas a rho/metabolismo , Quinases Associadas a rho/uso terapêutico , Proteína rhoA de Ligação ao GTP/metabolismo , Proteína rhoA de Ligação ao GTP/uso terapêutico
19.
Biomedicines ; 10(10)2022 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-36289891

RESUMO

Sarcoglycanopathies are a group of recessive limb-girdle muscular dystrophies, characterized by progressive muscle weakness. Sarcoglycan deficiency produces instability of the sarcolemma during muscle contraction, leading to continuous muscle fiber injury eventually producing fiber loss and replacement by fibro-adipose tissue. Therapeutic strategies aiming to reduce fibro-adipose expansion could be effective in muscular dystrophies. We report the positive effect of nintedanib in a murine model of alpha-sarcoglycanopathy. We treated 14 Sgca-/- mice, six weeks old, with nintedanib 50 mg/kg every 12 h for 10 weeks and compared muscle function and histology with 14 Sgca-/- mice treated with vehicle and six wild-type littermate mice. Muscle function was assessed using a treadmill and grip strength. A cardiac evaluation was performed by echocardiography and histological study. Structural analysis of the muscles, including a detailed study of the fibrotic and inflammatory processes, was performed using conventional staining and immunofluorescence. In addition, proteomics and transcriptomics studies were carried out. Nintedanib was well tolerated by the animals treated, although we observed weight loss. Sgca-/- mice treated with nintedanib covered a longer distance on the treadmill, compared with non-treated Sgca-/- mice, and showed higher strength in the grip test. Moreover, nintedanib improved the muscle architecture of treated mice, reducing the degenerative area and the fibrotic reaction that was associated with a reversion of the cytokine expression profile. Nintedanib improved muscle function and muscle architecture by reducing muscle fibrosis and degeneration and reverting the chronic inflammatory environment suggesting that it could be a useful therapy for patients with alpha-sarcoglycanopathy.

20.
Artigo em Inglês | MEDLINE | ID: mdl-34728497

RESUMO

BACKGROUND AND OBJECTIVES: To study the clinical and laboratory features of antineurofascin-155 (NF155)-positive autoimmune nodopathy (AN). METHODS: Patients with anti-NF155 antibodies detected on routine immunologic testing were included. Clinical characteristics, treatment response, and functional scales (modified Rankin Scale [mRS] and Inflammatory Rasch-built Overall Disability Scale [I-RODS]) were retrospectively collected at baseline and at the follow-up. Autoantibody and neurofilament light (NfL) chain levels were analyzed at baseline and at the follow-up. RESULTS: Forty NF155+ patients with AN were included. Mean age at onset was 42.4 years. Patients presented with a progressive (75%), sensory motor (87.5%), and symmetric distal-predominant weakness in upper (97.2%) and lower extremities (94.5%), with tremor and ataxia (75%). Patients received a median of 3 (2-4) different treatments in 46 months of median follow-up. Response to IV immunoglobulin (86.8%) or steroids (72.2%) was poor in most patients, whereas 77.3% responded to rituximab. HLA-DRB1*15 was detected in 91.3% of patients. IgG4 anti-NF155 antibodies were predominant in all patients; anti-NF155 titers correlated with mRS within the same patient (r = 0.41, p = 0.004). Serum NfL (sNfL) levels were higher in anti-NF155+ AN than in healthy controls (36.47 vs 7.56 pg/mL, p < 0.001) and correlated with anti-NF155 titers (r = 0.43, p = 0.001), with I-RODS at baseline (r = -0.88, p < 0.001) and with maximum I-RODS achieved (r = -0.58, p = 0.01). Anti-NF155 titers and sNfL levels decreased in all rituximab-treated patients. DISCUSSION: Anti-NF155 AN presents a distinct clinical profile and good response to rituximab. Autoantibody titers and sNfL are useful to monitor disease status in these patients. The use of untagged-NF155 plasmids minimizes the detection of false anti-NF155+ cases. CLASSIFICATION OF EVIDENCE: This study provides Class IV evidence that anti-NF155 antibodies associate with a specific phenotype and response to rituximab.


Assuntos
Autoanticorpos/sangue , Doenças Autoimunes do Sistema Nervoso , Moléculas de Adesão Celular/imunologia , Fatores Imunológicos/farmacologia , Fatores de Crescimento Neural/imunologia , Nós Neurofibrosos/imunologia , Rituximab/farmacologia , Adulto , Idoso , Doenças Autoimunes do Sistema Nervoso/sangue , Doenças Autoimunes do Sistema Nervoso/tratamento farmacológico , Doenças Autoimunes do Sistema Nervoso/imunologia , Doenças Autoimunes do Sistema Nervoso/fisiopatologia , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Estudos Retrospectivos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA