Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Breast Cancer Res Treat ; 197(1): 57-69, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36318382

RESUMO

PURPOSE: There is currently no curative treatment for patients diagnosed with triple-negative breast cancer brain metastases (TNBC-BM). CAR T cells hold potential for curative treatment given they retain the cytolytic activity of a T cell combined with the specificity of an antibody. In this proposal we evaluated the potential of EGFR re-directed CAR T cells as a therapeutic treatment against TNBC cells in vitro and in vivo. METHODS: We leveraged a TNBC-BM tissue microarray and a large panel of TNBC cell lines and identified elevated epidermal growth factor receptor (EGFR) expression. Next, we designed a second-generation anti-EGFR CAR T construct incorporating a clinically relevant mAb806 tumor specific single-chain variable fragment (scFv) and intracellular 4-1BB costimulatory domain and CD3ζ using a lentivirus system and evaluated in vitro and in vivo anti-tumor activity. RESULTS: We demonstrate EGFR is enriched in TNBC-BM patient tissue after neurosurgical resection, with six of 13 brain metastases demonstrating both membranous and cytoplasmic EGFR. Eleven of 13 TNBC cell lines have EGFR surface expression ≥ 85% by flow cytometry. EGFR806 CAR T treated mice effectively eradicated TNBC-BM and enhanced mouse survival (log rank p < 0.004). CONCLUSION: Our results demonstrates anti-tumor activity of EGFR806 CAR T cells against TNBC cells in vitro and in vivo. Given EGFR806 CAR T cells are currently undergoing clinical trials in primary brain tumor patients without obvious toxicity, our results are immediately actionable against the TNBC-BM patient population.


Assuntos
Neoplasias Encefálicas , Receptores de Antígenos Quiméricos , Neoplasias de Mama Triplo Negativas , Humanos , Animais , Camundongos , Receptores de Antígenos Quiméricos/genética , Receptores de Antígenos Quiméricos/uso terapêutico , Neoplasias de Mama Triplo Negativas/terapia , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Linhagem Celular Tumoral , Receptores ErbB/genética , Receptores ErbB/metabolismo , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/secundário
2.
Mol Pharm ; 16(10): 4302-4312, 2019 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-31398053

RESUMO

Secretome-based therapies have the potential to become the next generation of viable therapeutic wound repair treatments. However, precise strategies aimed to refine and control the secretome composition are necessary to enhance its therapeutic efficacy and facilitate clinical translation. In this study, we aim to accomplish this by transfecting human adipose-derived stem cells (hASCs) with microRNA-146a, which is a potent regulator of angiogenesis and inflammation. The secretome composition obtained from the transfected hASCs (secretome146a) was characterized and compared to nontransfected hASCs secretome to evaluate changes in angiogenic and anti-inflammatory growth factor, cytokine, and miRNA content. In vitro proliferation, migration, and tubular morphogenesis assays using human umbilical vein endothelial cells (HUVECs) were completed to monitor the proangiogenic efficacy of the secretome146a. Finally, the anti-inflammatory efficacy of the secretome146a was assessed using HUVECs that were activated to an inflammatory state by IL-1ß. The resulting HUVEC gene expression and protein activity of key inflammatory mediators were evaluated before and after secretome treatment. Overall, the secretome146a contained a greater array and concentration of therapeutic paracrine molecules, which translated into a superior angiogenic and anti-inflammatory efficacy. Therefore, this represents a promising strategy to produce therapeutic secretome for the promotion of wound repair processes.


Assuntos
Tecido Adiposo/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , MicroRNAs/genética , Neovascularização Fisiológica , Células-Tronco/metabolismo , Cicatrização , Tecido Adiposo/citologia , Movimento Celular , Proliferação de Células , Células Cultivadas , Células Endoteliais da Veia Umbilical Humana/citologia , Humanos , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , MicroRNAs/metabolismo , Células-Tronco/citologia
3.
Cells ; 13(13)2024 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-38994929

RESUMO

Standard-of-care treatment for Glioblastoma Multiforme (GBM) is comprised of surgery and adjuvant chemoradiation. Chimeric Antigen Receptor (CAR) T cell therapy has demonstrated disease-modifying activity in GBM and holds great promise. Radiation, a standard-of-care treatment for GBM, has well-known immunomodulatory properties and may overcome the immunosuppressive tumor microenvironment (TME); however, radiation dose optimization and integration with CAR T cell therapy is not well defined. Murine immunocompetent models of GBM were treated with titrated doses of stereotactic radiosurgery (SRS) of 5, 10, and 20 Gray (Gy), and the TME was analyzed using Nanostring. A conditioning dose of 10 Gy was determined based on tumor growth kinetics and gene expression changes in the TME. We demonstrate that a conditioning dose of 10 Gy activates innate and adaptive immune cells in the TME. Mice treated with 10 Gy in combination with mCAR T cells demonstrated enhanced antitumor activity and superior memory responses to rechallenge with IL13Rα2-positive tumors. Furthermore, 10 Gy plus mCAR T cells also protected against IL13Rα2-negative tumors through a mechanism that was, in part, c-GAS-STING pathway-dependent. Together, these findings support combination conditioning with low-dose 10 Gy radiation in combination with mCAR T cells as a therapeutic strategy for GBM.


Assuntos
Glioblastoma , Receptores de Antígenos Quiméricos , Microambiente Tumoral , Glioblastoma/terapia , Glioblastoma/imunologia , Glioblastoma/radioterapia , Glioblastoma/patologia , Animais , Receptores de Antígenos Quiméricos/metabolismo , Receptores de Antígenos Quiméricos/imunologia , Camundongos , Microambiente Tumoral/imunologia , Humanos , Linhagem Celular Tumoral , Imunoterapia Adotiva/métodos , Neoplasias Encefálicas/terapia , Neoplasias Encefálicas/imunologia , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/radioterapia , Linfócitos T/imunologia , Camundongos Endogâmicos C57BL , Imunomodulação , Feminino
4.
J Vis Exp ; (200)2023 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-37955379

RESUMO

Chimeric antigen receptor (CAR) T cells are at the forefront of oncology. A CAR is constructed of a targeting domain (usually a single chain variable fragment, scFv), with an accompanying intra-chain linker, followed by a hinge, transmembrane, and costimulatory domain. Modification of the intra-chain linker and hinge domain can have a significant effect on CAR-mediated killing. Considering the many different options for each part of a CAR construct, there are large numbers of permutations. Making CAR-T cells is a time-consuming and expensive process, and making and testing many constructs is a heavy time and material investment. This protocol describes a platform to rapidly evaluate hinge-optimized CAR constructs in Jurkat cells (CAR-J). Jurkat cells are an immortalized T cell line with high lentivirus uptake, allowing for efficient CAR transduction. Here, we present a platform to rapidly evaluate CAR-J using a fluorescent imager, followed by confirmation of cytolysis in PBMC-derived T cells.


Assuntos
Receptores de Antígenos Quiméricos , Anticorpos de Cadeia Única , Humanos , Receptores de Antígenos Quiméricos/genética , Leucócitos Mononucleares , Linhagem Celular Tumoral , Células Jurkat , Anticorpos de Cadeia Única/genética , Imunoterapia Adotiva/métodos , Receptores de Antígenos de Linfócitos T/genética
5.
J Biomed Mater Res A ; 109(12): 2597-2610, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34189837

RESUMO

Hydrogels can be fabricated and designed to exert direct control over stem cells' adhesion and differentiation. In this study, we have investigated the use of polydopamine (pDA)-treatment as a binding platform for bioactive compounds to create a versatile gelatin-alginate (Gel-Alg) hydrogel for tissue engineering applications. Precisely, pDA was used to modify the surface properties of the hydrogel and better control the adhesion and osteogenic differentiation of human adipose-derived stem cells (hASCs). pDA enabled the adsorption of different types of bioactive molecules, including a model osteoinductive drug (dexamethasone) as well as a model pro-angiogenic peptide (QK). The pDA treatment efficiently retained the drug and the peptide compared to the untreated hydrogel and proved to be effective in controlling the morphology, cell area, and osteogenic differentiation of hASCs. Overall, the findings of this study confirm the efficacy of pDA treatment as a valuable strategy to modulate the biological properties of biocompatible Gel-Alg hydrogels and further extend their value in regenerative medicine.


Assuntos
Tecido Adiposo/fisiologia , Alginatos/química , Gelatina/química , Hidrogéis/química , Indóis/química , Polímeros/química , Células-Tronco/fisiologia , Adesão Celular , Diferenciação Celular/efeitos dos fármacos , Materiais Revestidos Biocompatíveis , Dexametasona/farmacologia , Humanos , Neovascularização Fisiológica/efeitos dos fármacos , Osteogênese , Medicina Regenerativa/métodos , Engenharia Tecidual , Alicerces Teciduais
6.
ACS Appl Bio Mater ; 3(2): 945-951, 2020 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-35019296

RESUMO

Gellan gum-based hydrogels display limited cell adhesion ability due to the absence of cell-anchorage points usually present in proteins found in the extracellular matrix (ECM). This issue limits their use in the biomedical field as scaffolds to promote tissue repair. Our work addresses this challenge by investigating the use of polydopamine (pDA) as a bioactive layer to improve the surface and biological properties of gellan gum-based hydrogels cross-linked using carbodiimide chemistry. Upon treatment with a pDA layer, the hydrogel displayed an increase in wettability and swelling properties. This change in physical properties had a direct impact on the biological properties of the scaffolds. Precisely, human adipose-derived stem cells (hASCs) seeded on the pDA coated gellan gum hydrogels displayed larger cell area, increased proliferation rate, and enhanced gene expression of focal adhesion and cytoskeletal proteins. Overall, the findings of this research support the use of pDA coating as a possible approach to improve the biological features of gellan gum-based scaffolds and modulate stem cell morphology and proliferation.

7.
ACS Appl Mater Interfaces ; 10(30): 24955-24962, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-29969894

RESUMO

Hydrogel surface properties can be modified to form bioactive interfaces to modulate the osteogenic differentiation of stem cells. In this work, a hydrogel made of gelatin methacrylamide (GelMA) and alginate was designed and tested as a scaffold to control stem-cell osteogenic differentiation. The hydrogel's surface was treated with polydopamine (pDA) to create an adhesive layer for the adsorption of the osteoinductive drug dexamethasone (Dex). The presence of the pDA coating enhanced Dex adsorption and retention over 21 days. This effect resulted in a delay in the osteogenic differentiation of hASCs cultured on the hydrogel treated with a pDA layer.


Assuntos
Indóis/química , Polímeros/química , Diferenciação Celular , Células Cultivadas , Hidrogéis , Osteogênese , Células-Tronco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA