Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Caries Res ; 54(1): 43-54, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31533102

RESUMO

Optical coherence tomography (OCT) is a noninvasive, high-resolution, cross-sectional imaging technique. To date, OCT has been demonstrated in several areas of dentistry, primarily using wavelengths around 1,300 nm, low numerical aperture (NA) imaging lenses, and detectors insensitive to the polarization of light. The objective of this study is to compare the performance of three commercially available OCT systems operating with alternative wavelengths, imaging lenses, and detectors for OCT imaging of dental enamel. Spectral-domain (SD) OCT systems with (i) 840 nm (Lumedica, OQ LabScope 1.0), (ii) 1,300 nm (Thorlabs, Tel320) center wavelengths, and (iii) a swept-source (SS) OCT system (Thorlabs OCS1300SS) centered at 1,325 nm with optional polarization-sensitive detection were used. Low NA (0.04) and high NA (0.15) imaging lenses were used with system (iii). Healthy in vivo and in vitrohuman enamel and eroded in vitro bovine enamel specimens were imaged. The Tel320 system achieved greater imaging depth than the OQ LabScope 1.0, on average imaging 2.6 times deeper into the tooth (n = 10). The low NA lens provided a larger field of view and depth of focus, while the high NA lens provided higher lateral resolution and greater contrast. Polarization-sensitive imaging eliminated birefringent banding artifacts that can appear in conventional OCT scans. In summary, this study illustrates the performance of three commercially available OCT systems, objective lenses, and imaging modes and how these can affect imaging depth, resolution, field of view, and contrast in enamel. Users investigating OCT for dental applications should consider these factors when selecting an OCT system for clinical or basic science studies.


Assuntos
Tomografia de Coerência Óptica , Animais , Bovinos , Esmalte Dentário/diagnóstico por imagem , Dureza
2.
Appl Opt ; 57(22): E224-E231, 2018 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-30117906

RESUMO

Optical coherence tomography (OCT) angiography is a well-established in vivo imaging technique to assess the overall vascular morphology of tissues and is an emerging field of research for the assessment of blood flow dynamics and functional parameters such as oxygen saturation. In this study, we present a modified scanning-based correlation mapping OCT using a 200 kHz high-speed swept-source OCT system operating at 1300 nm and demonstrate its wide field-imaging capability in ocular angiographic studies.


Assuntos
Angiofluoresceinografia/métodos , Microcirculação/fisiologia , Disco Óptico/irrigação sanguínea , Vasos Retinianos/diagnóstico por imagem , Tomografia de Coerência Óptica/métodos , Estudos de Viabilidade , Humanos , Imagens de Fantasmas , Vasos Retinianos/fisiologia
3.
Biophys J ; 110(2): 493-502, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26789771

RESUMO

Normal hearing in mammals depends on sound amplification by outer hair cells (OHCs) presumably by their somatic motility and force production. However, the role of OHC force production in cochlear amplification and frequency tuning are not yet fully understood. Currently, available OHC manipulation techniques for physiological or clinical studies are limited by their invasive nature, lack of precision, and poor temporal-spatial resolution. To overcome these limitations, we explored an optogenetic approach based on channelrhodopsin 2 (ChR-2), a direct light-activated nonselective cation channel originally discovered in Chlamydomonas reinhardtii. Three approaches were compared: 1) adeno-associated virus-mediated in utero transfer of the ChR-2 gene into the developing murine otocyst, 2) expression of ChR-2(H134R) in an auditory cell line (HEI-OC1), and 3) expression of ChR-2 in the OHCs of a mouse line carrying a ChR-2 conditional allele. Whole cell recording showed that blue light (470 nm) elicited the typical nonselective cation current of ChR-2 with reversal potential around zero in both mouse OHCs and HEI-OC1 cells and generated depolarization in both cell types. In addition, pulsed light stimulation (10 Hz) elicited a 1:1 repetitive depolarization and ChR-2 currents in mouse OHCs and HEI-OC1 cells, respectively. The time constant of depolarization in OHCs, 1.45 ms, is 10 times faster than HEI-OC1 cells, which allowed light stimulation up to rates of 10/s to elicit corresponding membrane potential changes. Our study demonstrates that ChR-2 can successfully be expressed in mouse OHCs and HEI-OC1 cells and that these present a typical light-sensitive current and depolarization. However, the amount of ChR-2 current induced in our in vivo experiments was insufficient to result in measurable cochlear effects.


Assuntos
Células Ciliadas Auditivas Externas/metabolismo , Optogenética/métodos , Potenciais de Ação , Animais , Linhagem Celular , Channelrhodopsins , Células Ciliadas Auditivas Externas/fisiologia , Camundongos
4.
Lasers Surg Med ; 48(1): 77-82, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26612183

RESUMO

BACKGROUND AND OBJECTIVES: Monitoring the curing kinetics of light-activated resin is a key area of research. These resins are used in restorative applications and particularly in dental applications. They can undergo volumetric shrinkage due to poor control of the depth dependent curing process, modulated by the intensity and duration of the curing light source. This often results in the formation of marginal gaps, causing pain and damage to the restoration site. In this study, we demonstrate the capabilities of a correlation method applied using a multiple references optical coherence tomography (MR-OCT) architecture to monitor the curing of the resin. STUDY DESIGN/MATERIALS AND METHODS: A MR-OCT system is used in this study to monitor the curing of the resin. The system operates at the center wavelength of 1310 nm with an A-scan rate of 1200 A-scans per second. The axial and lateral resolution of the system is ∼13 µm and ∼27 µm. The method to determine the intensity correlation between adjacent B-frames is based on the Pearson correlation coefficient for a region of interest. Calculating the correlation coefficient for multiple B-frames related to the first B-frame at regular spaced time points, shows for a noncured resin a reduction of the correlation coefficient over time due to Brownian motion. The time constant of the reduction of the correlation value is a measure for the progress of the polymerization during LED light irradiation of the resin. The proposed approach is potentially a low-cost, powerful and unique optical imaging modality for measuring the curing behavior of dental resin and other resins, coatings, and adhesives in medical and industrial applications. RESULTS: To demonstrate the proposed method to monitor the curing process, a light-activated resin composite from GRADIA DIRECT ANTERIOR (GC Corporation, Japan) is studied. The curing time of resin was measured and monitored as a function of depth. The correlation coefficient method is highly sensitive to Brownian motion. The process of curing results in a change in intensity as measured by the MR-OCT signal and hence can be monitored using this method. CONCLUSIONS: These results show that MR-OCT has the potential to measure the curing time and monitor the curing process as a function of depth. Moreover, MR-OCT as a product has potential to be compact, low-cost and to fit into a smartphone. Using such a device for monitoring the curing of the resin will be suitable for dentists in stationary and mobile clinical settings.


Assuntos
Resinas Compostas/farmacocinética , Lâmpadas de Polimerização Dentária , Tomografia de Coerência Óptica
5.
Appl Opt ; 54(18): 5634-8, 2015 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-26193006

RESUMO

Optical coherence tomography (OCT) is emerging as a powerful noncontact imaging technique, allowing high-quality cross-sectional imaging of scattering specimens nondestructively. However, the complexity and cost of current embodiments of an OCT system limit its use in various nondestructive testing (NDT) applications at resource-limited settings. In this paper, we demonstrate the feasibility of a novel low-cost OCT system for a range of nondestructive testing (NDT) applications. The proposed imaging system is based on an enhanced time-domain OCT system with a low cost and small form factor reference arm optical delay, called multiple reference OCT (MR-OCT), which uses a miniature voice coil actuator and a partial mirror for extending the axial scan range. The proposed approach is potentially a low-cost, compact, and unique optical imaging modality for a range of NDT applications in a low-resource setting. Using this method, we demonstrated the capability of MR-OCT to perform cross-sectional and volumetric imaging at 1200 A-scans per second.

6.
Opt Express ; 20(4): 4710-25, 2012 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-22418228

RESUMO

Amplitude decorrelation measurement is sensitive to transverse flow and immune to phase noise in comparison to Doppler and other phase-based approaches. However, the high axial resolution of OCT makes it very sensitive to the pulsatile bulk motion noise in the axial direction. To overcome this limitation, we developed split-spectrum amplitude-decorrelation angiography (SSADA) to improve the signal-to-noise ratio (SNR) of flow detection. The full OCT spectrum was split into several narrower bands. Inter-B-scan decorrelation was computed using the spectral bands separately and then averaged. The SSADA algorithm was tested on in vivo images of the human macula and optic nerve head. It significantly improved both SNR for flow detection and connectivity of microvascular network when compared to other amplitude-decorrelation algorithms.


Assuntos
Angiografia/métodos , Tomografia de Coerência Óptica/métodos , Algoritmos , Humanos , Imageamento Tridimensional , Macula Lutea/irrigação sanguínea , Disco Óptico/irrigação sanguínea , Razão Sinal-Ruído , Análise Espectral
7.
Opt Lett ; 37(5): 981-3, 2012 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-22378459

RESUMO

We describe a functional imaging paradigm that uses photothermal optical coherence tomography (PT-OCT) to detect indocyanine green (ICG)-encapsulated biocompatible poly(lactic-co-glycolic) acid (PLGA) nanoparticles embedded in highly scattering tissue phantoms with high resolution and sensitivity. The ICG-loaded PLGA nanoparticles were fabricated using a modified emulsification solvent diffusion method. With a 20 kHz axial scan rate, PT-OCT based on spectral-domain interferometric configuration at 1310 nm was used to detect phase changes induced by a 808 nm photothermal excitation of ICG-encapsulated PLGA nanoparticles. An algorithm based on Fourier transform analysis of differential phase of the spectral interferogram was developed for detecting the depth resolved localized photothermal signal. Excellent contrast difference was observed with PT-OCT between phantoms containing different concentrations of ICG-encapsulated PLGA nanoparticles. This technique has the potential to provide simultaneous structural and molecular-targeted imaging with excellent signal-to-noise for various clinical applications.


Assuntos
Materiais Biocompatíveis/química , Verde de Indocianina/química , Ácido Láctico/química , Nanopartículas/química , Ácido Poliglicólico/química , Tomografia de Coerência Óptica/métodos , Estudos de Viabilidade , Imagens de Fantasmas , Copolímero de Ácido Poliláctico e Ácido Poliglicólico
8.
Sci Rep ; 12(1): 18357, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319677

RESUMO

This investigation aimed to quantitatively measure the changes in inflammation of subjects with healthy and unhealthy gums during a period of induced gingivitis. A total of 30 subjects (15 healthy, 15 with gum inflammation) were enlisted and given oral exams by a dental hygienist. Baseline measurements were acquired before a 3-week period of oral hygiene abstinence. The lobene modified gingival index scoring was used for inflammation scoring and hyperspectral spatial frequency domain imaging was used to quantitatively measure oxy- and deoxygenated blood volume fraction at two time points: at Baseline and after 3 weeks of oral hygiene abstinence. We found that abstaining from oral hygiene causes a near proportional increase in oxygenated and deoxygenated blood volume fraction for healthy individuals. For individuals who started the study with mild to moderate gingivitis, increases in blood volume were mainly due to deoxygenated blood.


Assuntos
Gengivite , Humanos , Índice Periodontal , Inflamação/complicações , Índice de Placa Dentária
9.
J Biomed Opt ; 27(10)2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36221178

RESUMO

Significance: Spectroscopic and structural imaging of tissue layers is important for investigating tissue health. However, investigating superficial tissue is difficult using optical imaging, due to the convolved absorption and backscatter of light from deeper layers. Aim: This report investigates the effects of hydration and desiccation of ex vivo porcine skin on the reflectance of polarized light at different wavelengths (light-emitting diodes). Approach: We developed a spectroscopic polarized imaging system to investigate submicron changes in tissue structures. By separating polarized from depolarized backscattered light, submicron structural changes in subsurface and deeper tissue layers can be separated and monitored. Results: The results demonstrate that (1) polarized light reflectance is about 2%, consistent with ∼6 scattering events, on average; (2) there was little wavelength dependence to the reflectance of polarized light; (3) increased hydration leads to a modest increase in total reflectance (from 0.8 to 0.9), whereas desiccation had little effect; however, hydration did not affect polarized reflectance, but desiccation slightly lowered polarized reflectance. Conclusions: Higher scattering from the reticular dermis was likely due to swelling of collagen fiber bundles in the dermal layers, which increased fibril spacing. The epidermal skin surface showed little change due to the stratum corneum resisting desiccation and maintaining hydration.


Assuntos
Epiderme , Pele , Colágeno , Derme , Epiderme/diagnóstico por imagem , Pele/diagnóstico por imagem , Análise Espectral , Suínos
10.
Biomed Opt Express ; 13(8): 4247-4260, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-36032575

RESUMO

Due to rod-like hydroxyapatite crystal organizations, dental enamel is optically anisotropic, i.e., birefringent. Healthy enamel is known to be intrinsically negatively birefringent. However, when demineralization of enamel occurs, a considerable number of inter-crystallite spaces would be created between the crystallites in the enamel, which could lead to a sign reversion in birefringence of the enamel structure. We propose that this sign reversion can be leveraged in polarization sensitive OCT (PSOCT) imaging to differentiate early caries lesions from healthy enamel. In this study using PSOCT, we first confirm that the change in birefringence sign (negative to positive) can lead to a 90-degree alteration in the local axis orientation because of the switch between the fast and slow optic axes. We then demonstrate, for the first time, that the local axis orientation can be utilized to map and visualize the WSLs from the healthy enamel with a unique contrast. Moreover, the sharp alteration in local axis orientation gives a clear boundary between the WSLs and the healthy enamel, providing an opportunity to automatically segment the three-dimensional WSLs from the healthy enamel, enabling the characterization of their size and depth information in an intuitive way, which may aid clinical decision making and treatment planning.

11.
Biomed Opt Express ; 13(6): 3629-3646, 2022 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-35781964

RESUMO

There remains a clinical need for an accurate and non-invasive imaging tool for intraoral evaluation of dental conditions. Optical coherence tomography (OCT) is a potential candidate to meet this need, but the design of current OCT systems limits their utility in the intraoral examinations. The inclusion of light-induced autofluorescence (LIAF) can expedite the image collection process and provides a large field of view for viewing the condition of oral tissues. This study describes a novel LIAF-OCT system equipped with a handheld probe designed for intraoral examination of microstructural (via OCT) and microvascular information (via OCT angiography, OCTA). The handheld probe is optimized for use in clinical studies, maintaining the ability to detect and image changes in the condition of oral tissue (e.g., hard tissue damage, presence of dental restorations, plaque, and tooth stains). The real-time LIAF provides guidance for OCT imaging to achieve a field of view of approximately 6.9 mm × 7.8 mm, and a penetration depth of 1.5 mm to 3 mm depending on the scattering property of the target oral tissue. We demonstrate that the proposed system is successful in capturing reliable depth-resolved images from occlusal and palatal surfaces and offers added design features that can enhance its usability in clinical settings.

12.
Biomed Opt Express ; 12(11): 6954-6968, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34858691

RESUMO

A multimodal, hyperspectral imaging system was built for diagnostics of oral tissues. The system, termed Hyperspectral-Fluorescence-Spatial Frequency Domain Imaging (Hy-F-SFDI), combines the principles of spatial frequency domain imaging, quantitative light fluorescence, and CIELAB color measurement. Hy-F-SFDI employs a compact LED projector, excitation LED, and a 16 channel hyperspectral camera mounted on a custom platform for tissue imaging. A two layer Monte Carlo approach was used to generate a reference table for quick tissue analysis. To demonstrate the clinical capabilities of Hy-F-SFDI, we used the system to quantify gingival tissue hemoglobin volume fraction, detect caries, bacterial activity, and measure tooth color of a volunteer at different time points. Hy-F-SFDI was able to measure quantitative changes in tissue parameters.

13.
J Biophotonics ; 14(12): e202100191, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34453488

RESUMO

Gingivitis is highly prevalent in adults, and if left untreated, can progress to periodontitis. In this article, we present an interesting case study where the resolution of gingivitis was followed over a period of 10 days using optical coherence tomography (OCT) and light-induced autofluorescence (LIAF). We demonstrate that OCT and its functional angiography can distinctively capture the changes during the resolution of gingivitis; while LIAF can detect red-fluorescent signals associated with mature plaque present at the inflamed site. The acute inflammatory region showed evidence of angiogenesis based on the quantification of vessel density and number; while no angiogenesis was detected within the less inflamed region. Gingival thickness showed a reduction of 140 ± 26 µm on average, measured between the peak gingivitis event and the period wherein the inflammation was resolved. Vessels in the angiogenesis site was found to reduce exponentially. The mildly inflamed site showed a decreasing trend in the vessel size, which however was within the error of the measurement.


Assuntos
Gengivite , Periodontite , Adulto , Angiografia , Gengiva , Gengivite/diagnóstico por imagem , Humanos , Tomografia de Coerência Óptica
14.
J Biophotonics ; 13(7): e202000026, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32191393

RESUMO

We report the development of an integrated multifunctional imaging system capable of providing anatomical (optical coherence tomography, OCT), functional (OCT angiography, OCTA) and molecular imaging (light-induced autofluorescence, LIAF) for in vivo dental applications. Blue excitation light (405 nm) was used for LIAF imaging, while the OCT was powered by a 1310 nm swept laser source. A red-green-blue digital camera, with a 450 nm cut-on broadband optical filter, was used for LIAF detection. The exciting light source and camera were integrated directly with the OCT scanning probe. The integrated system used two noninvasive imaging modalities to improve the speed of in vivo OCT data collection and to better target the regions of interest. The newly designed system maintained the ability to detect differences between healthy and hypomineralized teeth, identify dental biofilm and visualize the microvasculature of gingival tissue. The development of the integrated OCT-LIAF system provides an opportunity to conduct clinical studies more efficiently, examining changes in oral conditions over time.


Assuntos
Angiografia , Tomografia de Coerência Óptica , Microvasos , Imagem Molecular , Imagem Multimodal
15.
Biomed Opt Express ; 11(8): 4536-4547, 2020 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-32923062

RESUMO

The change in gingival tissue volume may be used to indicate changes in gingival inflammation, which may be useful for the clinical assessment of gingival health. Properly quantifying gingival tissue volume requires a robust technique for accurate registration and segmentation of longitudinally captured 3-dimensional (3D) images. In this paper, a semi-automated registration and segmentation method for micrometer resolution measurement of gingival-tissue volume is proposed for 3D optical coherence tomography (OCT) imaging. For quantification, relative changes in gingiva tissue volume are measured based on changes in the gingiva surface height using the tooth surface as a reference. This report conducted repeatability tests on this method drawn from repeated scans in one patient, indicating an error of the point cloud registration method for oral OCT imaging is 63.08 ± 4.52µm (1σ), and the measurement error of the gingival tissue average thickness is -3.40 ± 21.85µm (1σ).

16.
J Biophotonics ; 11(12): e201800242, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30112807

RESUMO

Gingiva is the soft tissue that surrounds and protects the teeth. Healthy gingiva provides an effective barrier to periodontal insults to deeper tissue, thus is an important indicator to a patient's periodontal health. Current methods in assessing gingival tissue health, including visual observation and physical examination with probing on the gingiva, are qualitative and subjective. They may become cumbersome when more complex cases are involved, such as variations in gingival biotypes where feature and thickness of the gingiva are considered. A noninvasive imaging technique providing depth-resolved structural and vascular information is necessary for an improved assessment of gingival tissue and more accurate diagnosis of periodontal status. We propose a three-dimensional (3D) imaging technique, optical coherence tomography (OCT), to perform in situ imaging on human gingiva. Ten volunteers (five male, five female, age 25-35) were recruited; and the labial gingival tissues of upper incisors were scanned using the combined use of state-of-the-art swept-source OCT and OCT angiography (OCTA). Information was collected describing the 3D tissue microstructure and capillary vasculature of the gingiva within a penetration depth of up to 2 mm. Results indicate significant structural and vascular differences between the two extreme gingival biotypes (ie, thick and thin gingiva), and demonstrate special features of vascular arrangement and characteristics in gingival inflammation. Within the limit of this study, the OCT/OCTA technique is feasible in quantifying different attributes of gingival biotypes and the severity of gingival inflammation.


Assuntos
Angiografia , Gengiva/diagnóstico por imagem , Tomografia de Coerência Óptica , Adulto , Feminino , Voluntários Saudáveis , Humanos , Imageamento Tridimensional , Incisivo , Masculino
17.
J Biophotonics ; 11(7): e201700385, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29570942

RESUMO

For both fundamental study of biological processes and early diagnosis of diseases, information about nanoscale changes in tissue and cell structure is crucial. Nowadays, almost all currently known nanoscopy methods rely upon the contrast created by fluorescent stains attached to the object or molecule of interest. This causes limitations due to the impact of the label on the object and its environment, as well as its applicability in vivo, particularly in humans. In this paper, a new label-free approach to visualize small structure with nano-sensitivity to structural alterations is introduced. Numerically synthesized profiles of the axial spatial frequencies are used to probe the structure within areas whose size can be beyond the diffraction resolution limit. Thereafter, nanoscale structural alterations within such areas can be visualized and objects, including biological ones, can be investigated with sub-wavelength resolution, in vivo, in their natural environment. Some preliminary results, including numerical simulations and experiments, which demonstrate the nano-sensitivity and super-resolution ability of our approach, are presented.


Assuntos
Imagem Óptica , Razão Sinal-Ruído , Imageamento Tridimensional
18.
J Biomed Opt ; 21(4): 46004, 2016 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-27071415

RESUMO

To facilitate regular assessment of the microcirculation in vivo, noninvasive imaging techniques such as nailfold capillaroscopy are required in clinics. Recently, a correlation mapping technique has been applied to optical coherence tomography (OCT), which extends the capabilities of OCT to microcirculation morphology imaging. This technique, known as correlation mapping optical coherence tomography, has been shown to extract parameters, such as capillary density and vessel diameter, and key clinical markers associated with early changes in microvascular diseases. However, OCT has limited spatial resolution in both the transverse and depth directions. Here, we extend this correlation mapping technique to other microscopy modalities, including confocal microscopy, and take advantage of the higher spatial resolution offered by these modalities. The technique is achieved as a processing step on microscopy images and does not require any modification to the microscope hardware. Results are presented which show that this correlation mapping microscopy technique can extend the capabilities of conventional microscopy to enable mapping of vascular networks in vivo with high spatial resolution in both the transverse and depth directions.


Assuntos
Processamento de Imagem Assistida por Computador/métodos , Microcirculação/fisiologia , Microscopia Confocal/métodos , Imagem Óptica/métodos , Adulto , Antebraço/irrigação sanguínea , Antebraço/diagnóstico por imagem , Humanos , Masculino , Imagens de Fantasmas
19.
Biomed Opt Express ; 6(3): 668-89, 2015 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-25798295

RESUMO

Current clinical intravascular optical coherence tomography (IV-OCT) imaging systems have limited in-vivo flow imaging capability because of non-uniform catheter rotation and inadequate A-line scan density. Thus any flow-localisation method that seeks to identify sites of variation within the OCT image data-sets, whether that is in amplitude or phase, produces non-representative correlation (or variance) maps. In this study, both mean and the variation within a set of cross-correlation maps, for static OCT imaging was used to differentiate flow from nonflow regions. Variation was quantified by use of standard deviation. The advantage of this approach is its ability to image flow, even in the presence of motion artifacts. The ability of this technique to suppress noise and capture flow maps was demonstrated by imaging microflow in an ex-vivo porcine coronary artery model, by nailfold capillary imaging and in-vivo microvessel imaging from within the human coronary sinus.

20.
J Biomed Opt ; 20(5): 051021, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25536121

RESUMO

Photoacoustic imaging (PAI) with a linear-array-based probe can provide a convenient means of imaging the human microcirculation within its native structural context and adds functional information. PAI using a multielement linear transducer array combined with multichannel collecting system was used for in vivo volumetric imaging of the blood microcirculation, the total concentration of hemoglobin (HbT), and the hemoglobin oxygen saturation (sO2) within human tissue. Three-dimensional (3-D) PA and ultrasound (US) volumetric scans were acquired from the forearm skin by linearly translating the transducer with a stepper motor over a region of interest, while capturing two-dimensional images using 15, 21, and 40 MHz frequency transducer probes. For the microvasculature imaging, PA images were acquired at 800- and 1064-nm wavelengths. For the HbT and sO2 estimates, PA images were collected at 750- and 850-nm wavelengths. 3-D microcirculation, HbT, and sO2 maps of the forearm skin were obtained from normal subjects. The linear-array-based PAI has been found promising in terms of resolution, imaging depth, and imaging speed for in vivo microcirculation imaging within human skin. We believe that a reflection type probe, similar to existing clinical US probes, is most likely to succeed in real clinical applications. Its advantages include ease of use, speed, and familiarity for radiographers and clinicians.


Assuntos
Imageamento Tridimensional/métodos , Microcirculação , Microscopia Acústica/métodos , Pele/diagnóstico por imagem , Pele/patologia , Ultrassonografia/métodos , Antebraço/patologia , Voluntários Saudáveis , Humanos , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/instrumentação , Microscopia Acústica/instrumentação , Óptica e Fotônica , Oxigênio/química , Reprodutibilidade dos Testes , Transdutores , Ultrassonografia/instrumentação
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA