Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Eur Heart J ; 41(12): 1249-1257, 2020 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-31386109

RESUMO

AIMS: We investigated the relationship between clinically assessed left ventricular ejection fraction (LVEF) and survival in a large, heterogeneous clinical cohort. METHODS AND RESULTS: Physician-reported LVEF on 403 977 echocardiograms from 203 135 patients were linked to all-cause mortality using electronic health records (1998-2018) from US regional healthcare system. Cox proportional hazards regression was used for analyses while adjusting for many patient characteristics including age, sex, and relevant comorbidities. A dataset including 45 531 echocardiograms and 35 976 patients from New Zealand was used to provide independent validation of analyses. During follow-up of the US cohort, 46 258 (23%) patients who had undergone 108 578 (27%) echocardiograms died. Overall, adjusted hazard ratios (HR) for mortality showed a u-shaped relationship for LVEF with a nadir of risk at an LVEF of 60-65%, a HR of 1.71 [95% confidence interval (CI) 1.64-1.77] when ≥70% and a HR of 1.73 (95% CI 1.66-1.80) at LVEF of 35-40%. Similar relationships with a nadir at 60-65% were observed in the validation dataset as well as for each age group and both sexes. The results were similar after further adjustments for conditions associated with an elevated LVEF, including mitral regurgitation, increased wall thickness, and anaemia and when restricted to patients reported to have heart failure at the time of the echocardiogram. CONCLUSION: Deviation of LVEF from 60% to 65% is associated with poorer survival regardless of age, sex, or other relevant comorbidities such as heart failure. These results may herald the recognition of a new phenotype characterized by supra-normal LVEF.


Assuntos
Insuficiência Cardíaca , Função Ventricular Esquerda , Feminino , Humanos , Masculino , Nova Zelândia/epidemiologia , Prognóstico , Modelos de Riscos Proporcionais , Fatores de Risco , Volume Sistólico
2.
Magn Reson Med ; 79(4): 2205-2215, 2018 04.
Artigo em Inglês | MEDLINE | ID: mdl-28734017

RESUMO

PURPOSE: To evaluate the importance of strain-correcting stimulated echo acquisition mode echo-planar imaging cardiac diffusion tensor imaging. METHODS: Healthy pigs (n = 11) were successfully scanned with a 3D cine displacement-encoded imaging with stimulated echoes and a monopolar-stimulated echo-planar imaging diffusion tensor imaging sequence at 3 T during diastasis, peak systole, and strain sweet spots in a midventricular short-axis slice. The same diffusion tensor imaging sequence was repeated ex vivo after arresting the hearts in either a relaxed (KCl-induced) or contracted (BaCl2 -induced) state. The displacement-encoded imaging with stimulated echoes data were used to strain-correct the in vivo cardiac diffusion tensor imaging in diastole and systole. The orientation of the primary (helix angles) and secondary (E2A) diffusion eigenvectors was compared with and without strain correction and to the strain-free ex vivo data. RESULTS: Strain correction reduces systolic E2A significantly when compared without strain correction and ex vivo (median absolute E2A = 34.3° versus E2A = 57.1° (P = 0.01), E2A = 60.5° (P = 0.006), respectively). The systolic distribution of E2A without strain correction is closer to the contracted ex vivo distribution than with strain correction, root mean square deviation of 0.027 versus 0.038. CONCLUSIONS: The current strain-correction model amplifies the contribution of microscopic strain to diffusion resulting in an overcorrection of E2A. Results show that a new model that considers cellular rearrangement is required. Magn Reson Med 79:2205-2215, 2018. © 2017 International Society for Magnetic Resonance in Medicine.


Assuntos
Imagem de Tensor de Difusão , Coração/diagnóstico por imagem , Algoritmos , Animais , Simulação por Computador , Diástole , Imagem de Difusão por Ressonância Magnética , Imagem Ecoplanar , Interpretação de Imagem Assistida por Computador , Processamento de Imagem Assistida por Computador , Imageamento Tridimensional , Imagem Cinética por Ressonância Magnética , Respiração , Respiração Artificial , Software , Estresse Mecânico , Suínos , Sístole
3.
J Cardiovasc Magn Reson ; 20(1): 63, 2018 09 13.
Artigo em Inglês | MEDLINE | ID: mdl-30208894

RESUMO

BACKGROUND: Cardiovascular magnetic resonance (CMR) feature tracking is increasingly used to quantify cardiac mechanics from cine CMR imaging, although validation against reference standard techniques has been limited. Furthermore, studies have suggested that commonly-derived metrics, such as peak global strain (reported in 63% of feature tracking studies), can be quantified using contours from just two frames - end-diastole (ED) and end-systole (ES) - without requiring tracking software. We hypothesized that mechanics derived from feature tracking would not agree with those derived from a reference standard (displacement-encoding with stimulated echoes (DENSE) imaging), and that peak strain from feature tracking would agree with that derived using simple processing of only ED and ES contours. METHODS: We retrospectively identified 88 participants with 186 pairs of DENSE and balanced steady state free precession (bSSFP) image slices acquired at the same locations across two institutions. Left ventricular (LV) strains, torsion, and dyssynchrony were quantified from both feature tracking (TomTec Imaging Systems, Circle Cardiovascular Imaging) and DENSE. Contour-based strains from bSSFP images were derived from ED and ES contours. Agreement was assessed with Bland-Altman analyses and coefficients of variation (CoV). All biases are reported in absolute percentage. RESULTS: Comparison results were similar for both vendor packages (TomTec and Circle), and thus only TomTec Imaging System data are reported in the abstract for simplicity. Compared to DENSE, mid-ventricular circumferential strain (Ecc) from feature tracking had acceptable agreement (bias: - 0.4%, p = 0.36, CoV: 11%). However, feature tracking significantly overestimated the magnitude of Ecc at the base (bias: - 4.0% absolute, p < 0.001, CoV: 18%) and apex (bias: - 2.4% absolute, p = 0.01, CoV: 15%), underestimated torsion (bias: - 1.4 deg/cm, p < 0.001, CoV: 41%), and overestimated dyssynchrony (bias: 26 ms, p < 0.001, CoV: 76%). Longitudinal strain (Ell) had borderline-acceptable agreement (bias: - 0.2%, p = 0.77, CoV: 19%). Contour-based strains had excellent agreement with feature tracking (biases: - 1.3-0.2%, CoVs: 3-7%). CONCLUSION: Compared to DENSE as a reference standard, feature tracking was inaccurate for quantification of apical and basal LV circumferential strains, longitudinal strain, torsion, and dyssynchrony. Feature tracking was only accurate for quantification of mid LV circumferential strain. Moreover, feature tracking is unnecessary for quantification of whole-slice strains (e.g. base, apex), since simplified processing of only ED and ES contours yields very similar results to those derived from feature tracking. Current feature tracking technology therefore has limited utility for quantification of cardiac mechanics.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Contração Miocárdica , Disfunção Ventricular Esquerda/diagnóstico por imagem , Função Ventricular Esquerda , Adolescente , Adulto , Fenômenos Biomecânicos , Criança , Bases de Dados Factuais , Feminino , Humanos , Interpretação de Imagem Assistida por Computador/normas , Kentucky , Imagem Cinética por Ressonância Magnética/normas , Masculino , Philadelphia , Valor Preditivo dos Testes , Padrões de Referência , Reprodutibilidade dos Testes , Estudos Retrospectivos , Torção Mecânica , Disfunção Ventricular Esquerda/fisiopatologia , Adulto Jovem
4.
J Magn Reson Imaging ; 45(3): 786-794, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-27458823

RESUMO

PURPOSE: To determine the optimal respiratory navigator gating configuration for the quantification of left ventricular strain using spiral cine displacement encoding with stimulated echoes (DENSE) MRI. MATERIALS AND METHODS: Two-dimensional spiral cine DENSE was performed on a 3 Tesla MRI using two single-navigator configurations (retrospective, prospective) and a combined "dual-navigator" configuration in 10 healthy adults and 20 healthy children. The adults also underwent breathhold DENSE as a reference standard for comparisons. Peak left ventricular strains, signal-to-noise ratio (SNR), and navigator efficiency were compared. Subjects also underwent dual-navigator gating with and without visual feedback to determine the effect on navigator efficiency. RESULTS: There were no differences in circumferential, radial, and longitudinal strains between navigator-gated and breathhold DENSE (P = 0.09-0.95) (as confidence intervals, retrospective: [-1.0%-1.1%], [-7.4%-2.0%], [-1.0%-1.2%]; prospective: [-0.6%-2.7%], [-2.8%-8.3%], [-0.3%-2.9%]; dual: [-1.6%-0.5%], [-8.3%-3.2%], [-0.8%-1.9%], respectively). The dual configuration maintained SNR compared with breathhold acquisitions (16 versus 18, P = 0.06). SNR for the prospective configuration was lower than for the dual navigator in adults (P = 0.004) and children (P < 0.001). Navigator efficiency was higher (P < 0.001) for both retrospective (54%) and prospective (56%) configurations compared with the dual configuration (35%). Visual feedback improved the dual configuration navigator efficiency to 55% (P < 0.001). CONCLUSION: When quantifying left ventricular strains using spiral cine DENSE MRI, a dual navigator configuration results in the highest SNR in adults and children. In adults, a retrospective configuration has good navigator efficiency without a substantial drop in SNR. Prospective gating should be avoided because it has the lowest SNR. Visual feedback represents an effective option to maintain navigator efficiency while using a dual navigator configuration. LEVEL OF EVIDENCE: 2 J. Magn. Reson. Imaging 2017;45:786-794.


Assuntos
Técnicas de Imagem de Sincronização Cardíaca/métodos , Técnicas de Imagem por Elasticidade/métodos , Ventrículos do Coração/diagnóstico por imagem , Aumento da Imagem/métodos , Imagem Cinética por Ressonância Magnética/métodos , Processamento de Sinais Assistido por Computador , Função Ventricular Esquerda/fisiologia , Adolescente , Módulo de Elasticidade/fisiologia , Feminino , Humanos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estresse Mecânico , Resistência à Tração/fisiologia , Adulto Jovem
5.
J Cardiovasc Magn Reson ; 19(1): 49, 2017 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-28659144

RESUMO

BACKGROUND: Pediatric obesity is a growing public health problem, which is associated with increased risk of cardiovascular disease and premature death. Left ventricular (LV) remodeling (increased myocardial mass and thickness) and contractile dysfunction (impaired longitudinal strain) have been documented in obese children, but little attention has been paid to the right ventricle (RV). We hypothesized that obese/overweight children would have evidence of RV remodeling and contractile dysfunction. METHODS: One hundred and three children, ages 8-18 years, were prospectively recruited and underwent cardiovascular magnetic resonance (CMR), including both standard cine imaging and displacement encoding with stimulated echoes (DENSE) imaging, which allowed for quantification of RV geometry and function/mechanics. RV free wall longitudinal strain was quantified from the end-systolic four-chamber DENSE image. Linear regression was used to quantify correlations of RV strain with LV strain and measurements of body composition (adjusted for sex and height). Analysis of variance was used to study the relationship between RV strain and LV remodeling types (concentric remodeling, eccentric/concentric hypertrophy). RESULTS: The RV was sufficiently visualized with DENSE in 70 (68%) subjects, comprising 36 healthy weight (13.6 ± 2.7 years) and 34 (12.1 ± 2.9 years) obese/overweight children. Obese/overweight children had a 22% larger RV mass index (8.2 ± 0.9 vs 6.7 ± 1.1 g/m2.7, p < 0.001) compared to healthy controls. RV free wall longitudinal strain was impaired in obese/overweight children (-16 ± 4% vs -19 ± 5%, p = 0.02). Ten (14%) out of 70 children had LV concentric hypertrophy, and these children had the most impaired RV longitudinal strain compared to those with normal LV geometry (-13 ± 4% vs -19 ± 5%, p = 0.002). RV longitudinal strain was correlated with LV longitudinal strain (r = 0.34, p = 0.004), systolic blood pressure (r = 0.33, p = 0.006), as well as BMI z-score (r = 0.28, p = 0.02), waist (r = 0.31, p = 0.01), hip (r = 0.40, p = 0.004) and abdominal (r = 0.38, p = 0.002) circumference, height and sex adjusted. CONCLUSIONS: Obese/overweight children have evidence of RV remodeling (increased RV mass) and RV contractile dysfunction (impaired free wall longitudinal strain). Moreover, RV longitudinal strain correlates with LV longitudinal strain, and children with LV concentric hypertrophy show the most impaired RV function. These results suggest there may be a common mechanism underlying both remodeling and dysfunction of the left and right ventricles in obese/overweight children.


Assuntos
Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética , Contração Miocárdica , Obesidade Infantil/complicações , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Direita/diagnóstico por imagem , Função Ventricular Esquerda , Função Ventricular Direita , Remodelação Ventricular , Adolescente , Criança , Feminino , Humanos , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Interpretação de Imagem Assistida por Computador , Kentucky , Modelos Lineares , Masculino , Variações Dependentes do Observador , Obesidade Infantil/diagnóstico , Obesidade Infantil/fisiopatologia , Pennsylvania , Valor Preditivo dos Testes , Estudos Prospectivos , Reprodutibilidade dos Testes , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/fisiopatologia
6.
J Cardiovasc Magn Reson ; 19(1): 100, 2017 Dec 11.
Artigo em Inglês | MEDLINE | ID: mdl-29228952

RESUMO

BACKGROUND: Patients with repaired tetralogy of Fallot (TOF) have progressive, adverse biventricular remodeling, leading to abnormal contractile mechanics. Defining the mechanisms underlying this dysfunction, such as diffuse myocardial fibrosis, may provide insights into poor long-term outcomes. We hypothesized that left ventricular (LV) diffuse fibrosis is related to impaired LV mechanics. METHODS: Patients with TOF were evaluated with cardiac magnetic resonance in which modified Look-Locker (MOLLI) T1-mapping and spiral cine Displacement encoding (DENSE) sequences were acquired at three LV short-axis positions. Linear mixed modeling was used to define the association between regional LV mechanics from DENSE based on regional T1-derived diffuse fibrosis measures, such as extracellular volume fraction (ECV). RESULTS: Forty patients (26 ± 11 years) were included. LV ECV was generally within normal range (0.24 ± 0.05). For LV mechanics, peak circumferential strains (-15 ± 3%) and dyssynchrony indices (16 ± 8 ms) were moderately impaired, while peak radial strains (29 ± 8%) were generally normal. After adjusting for patient age, sex, and regional LV differences, ECV was associated with log-adjusted LV dyssynchrony index (ß = 0.67) and peak LV radial strain (ß = -0.36), but not LV circumferential strain. Moreover, post-contrast T1 was associated with log-adjusted LV diastolic circumferential strain rate (ß = 0.37). CONCLUSIONS: We observed several moderate associations between measures of fibrosis and impaired mechanics, particularly the LV dyssynchrony index and peak radial strain. Diffuse fibrosis may therefore be a causal factor in some ventricular dysfunction in TOF.


Assuntos
Procedimentos Cirúrgicos Cardíacos , Contração Miocárdica , Miocárdio/patologia , Tetralogia de Fallot/cirurgia , Disfunção Ventricular Esquerda/etiologia , Função Ventricular Esquerda , Remodelação Ventricular , Adolescente , Adulto , Fenômenos Biomecânicos , Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Estudos Transversais , Feminino , Fibrose , Humanos , Imagem Cinética por Ressonância Magnética , Masculino , Fatores de Risco , Tetralogia de Fallot/complicações , Tetralogia de Fallot/diagnóstico por imagem , Tetralogia de Fallot/fisiopatologia , Fatores de Tempo , Resultado do Tratamento , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/fisiopatologia , Adulto Jovem
7.
J Cardiovasc Magn Reson ; 19(1): 25, 2017 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-28245864

RESUMO

BACKGROUND: Left ventricular (LV) torsion is an important indicator of cardiac function that is limited by high inter-test variability (50% of the mean value). We hypothesized that this high inter-test variability is partly due to inconsistent breath-hold positions during serial image acquisitions, which could be significantly improved by using a respiratory navigator for cardiovascular magnetic resonance (CMR) based quantification of LV torsion. METHODS: We assessed respiratory-related variability in measured LV torsion with two distinct experimental protocols. First, 17 volunteers were recruited for CMR with cine displacement encoding with stimulated echoes (DENSE) in which a respiratory navigator was used to measure and then enforce variability in end-expiratory position between all LV basal and apical acquisitions. From these data, we quantified the inter-test variability of torsion in the absence and presence of enforced end-expiratory position variability, which established an upper bound for the expected torsion variability. For the second experiment (in 20 new, healthy volunteers), 10 pairs of cine DENSE basal and apical images were each acquired from consecutive breath-holds and consecutive navigator-gated scans (with a single acceptance position). Inter-test variability of torsion was compared between the breath-hold and navigator-gated scans to quantify the variability due to natural breath-hold variation. To demonstrate the importance of these variability reductions, we quantified the reduction in sample size required to detect a clinically meaningful change in LV torsion with the use of a respiratory navigator. RESULTS: The mean torsion was 3.4 ± 0.2°/cm. From the first experiment, enforced variability in end-expiratory position translated to considerable variability in measured torsion (0.56 ± 0.34°/cm), whereas inter-test variability with consistent end-expiratory position was 57% lower (0.24 ± 0.16°/cm, p < 0.001). From the second experiment, natural respiratory variability from consecutive breath-holds translated to a variability in torsion of 0.24 ± 0.10°/cm, which was significantly higher than the variability from navigator-gated scans (0.18 ± 0.06°/cm, p = 0.02). By using a respiratory navigator with DENSE, theoretical sample sizes were reduced from 66 to 16 and 26 to 15 as calculated from the two experiments. CONCLUSIONS: A substantial portion (22-57%) of the inter-test variability of LV torsion can be reduced by using a respiratory navigator to ensure a consistent breath-hold position between image acquisitions.


Assuntos
Ventrículos do Coração/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética , Mecânica Respiratória , Técnicas de Imagem de Sincronização Respiratória , Função Ventricular Esquerda , Adulto , Idoso , Fenômenos Biomecânicos , Suspensão da Respiração , Feminino , Voluntários Saudáveis , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Fatores de Tempo , Torção Mecânica , Adulto Jovem
8.
J Cardiovasc Magn Reson ; 19(1): 86, 2017 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-29117866

RESUMO

BACKGROUND: Children with obesity have hypertrophic cardiac remodeling. Hypertension is common in pediatric obesity, and may independently contribute to hypertrophy. We hypothesized that both the degree of obesity and ambulatory blood pressure (ABP) would independently associate with measures of hypertrophic cardiac remodeling in children. METHODS: Children, aged 8-17 years, prospectively underwent cardiovascular magnetic resonance (CMR) and ABP monitoring. Left ventricular (LV) mass indexed to height2.7 (LVMI), myocardial thickness and end-diastolic volume were quantified from a 3D LV model reconstructed from cine balanced steady state free precession images. Categories of remodeling were determined based on cutoff values for LVMI and mass/volume. Principal component analysis was used to define a "hypertrophy score" to study the continuous relationship between concentric hypertrophy and ABP. RESULTS: Seventy-two children were recruited, and 68 of those (37 healthy weight and 31 obese/overweight) completed both CMR and ABP monitoring. Obese/overweight children had increased LVMI (27 ± 4 vs 22 ± 3 g/m2.7, p < 0.001), myocardial thickness (5.6 ± 0.9 vs 4.9 ± 0.7 mm, p < 0.001), mass/volume (0.69 ± 0.1 vs 0.61 ± 0.06, p < 0.001), and hypertrophy score (1.1 ± 2.2 vs -0.96 ± 1.1, p < 0.001). Thirty-five percent of obese/overweight children had concentric hypertrophy. Ambulatory hypertension was observed in 26% of the obese/overweight children and none of the controls while masked hypertension was observed in 32% of the obese/overweight children and 16% of the controls. Univariate linear regression showed that BMI z-score, systolic BP (24 h, day and night), and systolic load correlated with LVMI, thickness, mass/volume and hypertrophy score, while 24 h and nighttime diastolic BP and load also correlated with thickness and mass/volume. Multivariate analysis showed body mass index z-score and systolic blood pressure were both independently associated with left ventricular mass index (ß=0.54 [p < 0.001] and 0.22 [p = 0.03]), thickness (ß=0.34 [p < 0.001] and 0.26 [p = 0.001]) and hypertrophy score (ß=0.47 and 0.36, both p < 0.001). CONCLUSIONS: In children, both the degree of obesity and ambulatory blood pressures are independently associated with measures of cardiac hypertrophic remodeling, however the correlations were generally stronger for the degree of obesity. This suggests that interventions targeted at weight loss or obesity-associated co-morbidities including hypertension may be effective in reversing or preventing cardiac remodeling in obese children.


Assuntos
Pressão Sanguínea , Hipertensão/etiologia , Hipertrofia Ventricular Esquerda/etiologia , Obesidade Infantil/complicações , Função Ventricular Esquerda , Remodelação Ventricular , Adolescente , Fatores Etários , Monitorização Ambulatorial da Pressão Arterial , Índice de Massa Corporal , Distribuição de Qui-Quadrado , Criança , Estudos Transversais , Feminino , Humanos , Hipertensão/diagnóstico , Hipertensão/fisiopatologia , Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Hipertrofia Ventricular Esquerda/fisiopatologia , Modelos Lineares , Imagem Cinética por Ressonância Magnética , Masculino , Análise Multivariada , Obesidade Infantil/diagnóstico , Obesidade Infantil/fisiopatologia , Análise de Componente Principal , Estudos Prospectivos , Fatores de Risco , Índice de Gravidade de Doença
9.
J Cardiovasc Magn Reson ; 18(1): 28, 2016 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-27165194

RESUMO

BACKGROUND: Obesity affects nearly one in five children and is associated with increased risk of premature death. Obesity-related heart disease contributes to premature death. We aimed to use cardiovascular magnetic resonance (CMR) to comprehensively characterize the changes in cardiac geometry and function in obese children. METHODS AND RESULTS: Forty-one obese/overweight (age 12 ± 3 years, 56 % female) and 29 healthy weight children (age 14 ± 3 years, 41 % female) underwent CMR, including both standard cine imaging and displacement encoded imaging, for a complete assessment of left ventricular (LV) structure and function. After adjusting for age, LV mass index was 23 % greater (27 ± 4 g/m(2.7) vs 22 ± 3 g/m(2.7), p <0.001) and the LV myocardium was 10 % thicker (5.6 ± 0.8 mm vs 5.1 ± 0.8 mm, p <0.001) in the obese/overweight children. This evidence of cardiac remodeling was present in obese children as young as age 8. Twenty four percent of obese/overweight children had concentric hypertrophy, 59 % had normal geometry and 17 % had either eccentric hypertrophy or concentric remodeling. LV mass index, thickness, ejection fraction and peak longitudinal and circumferential strains all correlated with epicardial adipose tissue after adjusting for height and gender (all p <0.05). Peak longitudinal and circumferential strains showed a significant relationship with the type of LV remodeling, and were most impaired in children with concentric hypertrophy (p <0.001 and p = 0.003, respectively). CONCLUSIONS: Obese children show evidence of significant cardiac remodeling and dysfunction, which begins as young as age 8. Obese children with concentric hypertrophy and impaired strain may represent a particularly high risk subgroup that demands further investigation.


Assuntos
Hipertrofia Ventricular Esquerda/diagnóstico por imagem , Imagem Cinética por Ressonância Magnética , Obesidade Infantil/complicações , Disfunção Ventricular Esquerda/diagnóstico por imagem , Função Ventricular Esquerda , Remodelação Ventricular , Adiposidade , Adolescente , Idade de Início , Fenômenos Biomecânicos , Estudos de Casos e Controles , Criança , Estudos Transversais , Feminino , Humanos , Hipertrofia Ventricular Esquerda/etiologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Contração Miocárdica , Variações Dependentes do Observador , Obesidade Infantil/fisiopatologia , Valor Preditivo dos Testes , Estudos Prospectivos , Reprodutibilidade dos Testes , Fatores de Risco , Estresse Mecânico , Volume Sistólico , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/fisiopatologia
10.
J Cardiovasc Magn Reson ; 18(1): 49, 2016 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-27549809

RESUMO

BACKGROUND: Patients with repaired tetralogy of Fallot (rTOF) suffer from progressive ventricular dysfunction decades after their surgical repair. We hypothesized that measures of ventricular strain and dyssynchrony would predict deterioration of ventricular function in patients with rTOF. METHODS: A database search identified all patients at a single institution with rTOF who underwent cardiovascular magnetic resonance (CMR) at least twice, >6 months apart, without intervening surgical or catheter procedures. Seven primary predictors were derived from the first CMR using a custom feature tracking algorithm: left (LV), right (RV) and inter-ventricular dyssynchrony, LV and RV peak global circumferential strains, and LV and RV peak global longitudinal strains. Three outcomes were defined, whose changes were assessed over time: RV end-diastolic volume, and RV and LV ejection fraction. Multivariate linear mixed models were fit to investigate relationships of outcomes to predictors and ten potential baseline confounders. RESULTS: One hundred fifty-three patients with rTOF (23 ± 14 years, 50 % male) were included. The mean follow-up duration between the first and last CMR was 2.9 ± 1.3 years. After adjustment for confounders, none of the 7 primary predictors were significantly associated with change over time in the 3 outcome variables. Only 1-17 % of the variability in the change over time in the outcome variables was explained by the baseline predictors and potential confounders. CONCLUSIONS: In patients with repaired tetralogy of Fallot, ventricular dyssynchrony and global strain derived from cine CMR were not significantly related to changes in ventricular size and function over time. The ability to predict deterioration in ventricular function in patients with rTOF using current methods is limited.


Assuntos
Procedimentos Cirúrgicos Cardíacos/efeitos adversos , Imagem Cinética por Ressonância Magnética , Tetralogia de Fallot/cirurgia , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Direita/diagnóstico por imagem , Função Ventricular Esquerda , Função Ventricular Direita , Adolescente , Algoritmos , Fenômenos Biomecânicos , Criança , Bases de Dados Factuais , Progressão da Doença , Feminino , Humanos , Interpretação de Imagem Assistida por Computador , Kentucky , Modelos Lineares , Masculino , Análise Multivariada , Valor Preditivo dos Testes , Estudos Retrospectivos , Medição de Risco , Fatores de Risco , Estresse Mecânico , Volume Sistólico , Tetralogia de Fallot/complicações , Tetralogia de Fallot/diagnóstico por imagem , Tetralogia de Fallot/fisiopatologia , Fatores de Tempo , Resultado do Tratamento , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/fisiopatologia , Disfunção Ventricular Direita/etiologia , Disfunção Ventricular Direita/fisiopatologia , Adulto Jovem
11.
J Cardiovasc Magn Reson ; 18(1): 54, 2016 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-27599620

RESUMO

BACKGROUND: Advanced cardiovascular magnetic resonance (CMR) acquisitions often require long scan durations that necessitate respiratory navigator gating. The tradeoff of navigator gating is reduced scan efficiency, particularly when the patient's breathing patterns are inconsistent, as is commonly seen in children. We hypothesized that engaging pediatric participants with a navigator-controlled videogame to help control breathing patterns would improve navigator efficiency and maintain image quality. METHODS: We developed custom software that processed the Siemens respiratory navigator image in real-time during CMR and represented diaphragm position using a cartoon avatar, which was projected to the participant in the scanner as visual feedback. The game incentivized children to breathe such that the avatar was positioned within the navigator acceptance window (±3 mm) throughout image acquisition. Using a 3T Siemens Tim Trio, 50 children (Age: 14 ± 3 years, 48 % female) with no significant past medical history underwent a respiratory navigator-gated 2D spiral cine displacement encoding with stimulated echoes (DENSE) CMR acquisition first with no feedback (NF) and then with the feedback game (FG). Thirty of the 50 children were randomized to undergo extensive off-scanner training with the FG using a MRI simulator, or no off-scanner training. Navigator efficiency, signal-to-noise ratio (SNR), and global left-ventricular strains were determined for each participant and compared. RESULTS: Using the FG improved average navigator efficiency from 33 ± 15 to 58 ± 13 % (p < 0.001) and improved SNR by 5 % (p = 0.01) compared to acquisitions with NF. There was no difference in navigator efficiency (p = 0.90) or SNR (p = 0.77) between untrained and trained participants for FG acquisitions. Circumferential and radial strains derived from FG acquisitions were slightly reduced compared to NF acquisitions (-16 ± 2 % vs -17 ± 2 %, p < 0.001; 40 ± 10 % vs 44 ± 11 %, p = 0.005, respectively). There were no differences in longitudinal strain (p = 0.38). CONCLUSIONS: Use of a respiratory navigator feedback game during navigator-gated CMR improved navigator efficiency in children from 33 to 58 %. This improved efficiency was associated with a 5 % increase in SNR for spiral cine DENSE. Extensive off-scanner training was not required to achieve the improvement in navigator efficiency.


Assuntos
Diafragma/fisiologia , Ventrículos do Coração/diagnóstico por imagem , Processamento de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Mecânica Respiratória , Função Ventricular Esquerda , Jogos de Vídeo , Adolescente , Fatores Etários , Fenômenos Biomecânicos , Criança , Diafragma/anatomia & histologia , Retroalimentação Psicológica , Feminino , Frequência Cardíaca , Ventrículos do Coração/fisiopatologia , Humanos , Kentucky , Masculino , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Software , Estresse Mecânico , Fatores de Tempo
12.
J Cardiovasc Magn Reson ; 17(1): 5, 2015 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-25634468

RESUMO

BACKGROUND: Displacement Encoding with Stimulated Echoes (DENSE) encodes displacement into the phase of the magnetic resonance signal. Due to the stimulated echo, the signal is inherently low and fades through the cardiac cycle. To compensate, a spiral acquisition has been used at 1.5T. This spiral sequence has not been validated at 3T, where the increased signal would be valuable, but field inhomogeneities may result in measurement errors. We hypothesized that spiral cine DENSE is valid at 3T and tested this hypothesis by measuring displacement errors at both 1.5T and 3T in vivo. METHODS: Two-dimensional spiral cine DENSE and tagged imaging of the left ventricle were performed on ten healthy subjects at 3T and six healthy subjects at 1.5T. Intersection points were identified on tagged images near end-systole. Displacements from the DENSE images were used to project those points back to their origins. The deviation from a perfect grid was used as a measure of accuracy and quantified as root-mean-squared error. This measure was compared between 3T and 1.5T with the Wilcoxon rank sum test. Inter-observer variability of strains and torsion quantified by DENSE and agreement between DENSE and harmonic phase (HARP) were assessed by Bland-Altman analyses. The signal to noise ratio (SNR) at each cardiac phase was compared between 3T and 1.5T with the Wilcoxon rank sum test. RESULTS: The displacement accuracy of spiral cine DENSE was not different between 3T and 1.5T (1.2 ± 0.3 mm and 1.2 ± 0.4 mm, respectively). Both values were lower than the DENSE pixel spacing of 2.8 mm. There were no substantial differences in inter-observer variability of DENSE or agreement of DENSE and HARP between 3T and 1.5T. Relative to 1.5T, the SNR at 3T was greater by a factor of 1.4 ± 0.3. CONCLUSIONS: The spiral cine DENSE acquisition that has been used at 1.5T to measure cardiac displacements can be applied at 3T with equivalent accuracy. The inter-observer variability and agreement of DENSE-derived peak strains and torsion with HARP is also comparable at both field strengths. Future studies with spiral cine DENSE may take advantage of the additional SNR at 3T.


Assuntos
Ventrículos do Coração/anatomia & histologia , Aumento da Imagem/métodos , Processamento de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Contração Miocárdica , Voluntários Saudáveis , Humanos
13.
J Cardiovasc Magn Reson ; 17: 93, 2015 Nov 04.
Artigo em Inglês | MEDLINE | ID: mdl-26538111

RESUMO

BACKGROUND: Displacement Encoding with Stimulated Echoes (DENSE) encodes displacement into the phase of the magnetic resonance signal. The encoding frequency (ke) maps the measured phase to tissue displacement while the strength of the encoding gradients affects image quality. 2D cine DENSE studies have used a ke of 0.10 cycles/mm, which is high enough to remove an artifact-generating echo from k-space, provide high sensitivity to tissue displacements, and dephase the blood pool. However, through-plane dephasing can remove the unwanted echo and dephase the blood pool without relying on high ke. Additionally, the high sensitivity comes with the costs of increased phase wrapping and intra-voxel dephasing. We hypothesized that ke below 0.10 cycles/mm can be used to improve image characteristics and provide accurate measures of cardiac mechanics. METHODS: Spiral cine DENSE images were obtained for 10 healthy subjects and 10 patients with a history of heart disease on a 3 T Siemens Trio. A mid-ventricular short-axis image was acquired with different ke: 0.02, 0.04, 0.06, 0.08, and 0.10 cycles/mm. Peak twist, circumferential strain, and radial strain were compared between acquisitions employing different ke using Bland-Altman analyses and coefficients of variation. The percentage of wrapped pixels in the phase images at end-systole was calculated for each ke. The dephasing of the blood signal and signal to noise ratio (SNR) were also calculated and compared. RESULTS: Negligible differences were seen in strains and twist for all ke between 0.04 and 0.10 cycles/mm. These differences were of the same magnitude as inter-test differences. Specifically, the acquisitions with 0.04 cycles/mm accurately quantified cardiac mechanics and had zero phase wrapping. Compared to 0.10 cycles/mm, the acquisitions with 0.04 cycles/mm had 9 % greater SNR and negligible differences in blood pool dephasing. CONCLUSIONS: For 2D cine DENSE with through-plane dephasing, the encoding frequency can be lowered to 0.04 cycles/mm without compromising the quantification of twist or strain. The amount of wrapping can be reduced with this lower value to greatly simplify the input to unwrapping algorithms. The strain and twist results from studies using different encoding frequencies can be directly compared.


Assuntos
Cardiopatias/diagnóstico , Imagem Cinética por Ressonância Magnética/métodos , Contração Miocárdica , Função Ventricular , Adolescente , Adulto , Algoritmos , Artefatos , Fenômenos Biomecânicos , Estudos de Casos e Controles , Feminino , Cardiopatias/patologia , Cardiopatias/fisiopatologia , Humanos , Interpretação de Imagem Assistida por Computador , Masculino , Pessoa de Meia-Idade , Valor Preditivo dos Testes , Reprodutibilidade dos Testes , Razão Sinal-Ruído , Estresse Mecânico , Adulto Jovem
14.
J Cardiovasc Magn Reson ; 17: 57, 2015 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-26170046

RESUMO

BACKGROUND: Despite marked benefits in many heart failure patients, a considerable proportion of patients treated with cardiac resynchronization therapy (CRT) fail to respond appropriately. Recently, a "U-shaped" (type II) wall motion pattern identified by cardiovascular magnetic resonance (CMR) has been associated with improved CRT response compared to a homogenous (type I) wall motion pattern. There is also evidence that a left ventricular (LV) lead localized to the latest contracting LV site predicts superior response, compared to an LV lead localized remotely from the latest contracting LV site. METHODS: We prospectively evaluated patients undergoing CRT with pre-procedural CMR to determine the presence of type I and type II wall motion patterns and pre-procedural echocardiography to determine end systolic volume (ESV). We assessed the final LV lead position on post-procedural fluoroscopic images to determine whether the lead was positioned concordant to or remote from the latest contracting LV site. CRT response was defined as a ≥ 15% reduction in ESV on a 6 month follow-up echocardiogram. RESULTS: The study included 33 patients meeting conventional indications for CRT with a mean New York Heart Association class of 2.8 ± 0.4 and mean LV ejection fraction of 28 ± 9%. Overall, 55% of patients were echocardiographic responders by ESV criteria. Patients with both a type II pattern and an LV lead concordant to the latest contracting site (T2CL) had a response rate of 92%, compared to a response rate of 33% for those without T2CL (p = 0.003). T2CL was the only independent predictor of response on multivariate analysis (odds ratio 18, 95% confidence interval 1.6-206; p = 0.018). T2CL resulted in significant incremental improvement in prediction of echocardiographic response (increase in the area under the receiver operator curve from 0.69 to 0.84; p = 0.038). CONCLUSIONS: The presence of a type II wall motion pattern on CMR and a concordant LV lead predicts superior CRT response. Improving patient selection by evaluating wall motion pattern and targeting LV lead placement may ultimately improve the response rate to CRT.


Assuntos
Dispositivos de Terapia de Ressincronização Cardíaca , Terapia de Ressincronização Cardíaca , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/terapia , Imagem Cinética por Ressonância Magnética , Contração Miocárdica , Função Ventricular Esquerda , Idoso , Área Sob a Curva , Fenômenos Biomecânicos , Ecocardiografia , Eletrocardiografia , Feminino , Insuficiência Cardíaca/fisiopatologia , Humanos , Interpretação de Imagem Assistida por Computador , Modelos Logísticos , Masculino , Pessoa de Meia-Idade , Análise Multivariada , Razão de Chances , Valor Preditivo dos Testes , Estudos Prospectivos , Curva ROC , Reprodutibilidade dos Testes , Volume Sistólico , Fatores de Tempo , Resultado do Tratamento
15.
J Cardiovasc Magn Reson ; 17: 75, 2015 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-26310667

RESUMO

BACKGROUND: Obesity is a risk factor for cardiovascular disease. There is evidence of impaired left ventricular (LV) function associated with obesity, which may relate to cardiovascular mortality, but some studies have reported no dysfunction. Ventricular function data are generally acquired under resting conditions, which could mask subtle differences and potentially contribute to these contradictory findings. Furthermore, abnormal ventricular mechanics (strains, strain rates, and torsion) may manifest prior to global changes in cardiac function (i.e., ejection fraction) and may therefore represent more sensitive markers of cardiovascular disease. This study evaluated LV mechanics under both resting and stress conditions with the hypothesis that the LV mechanical dysfunction associated with obesity is exacerbated with stress and manifested at earlier stages of disease compared to baseline. METHODS: C57BL/6J mice were randomized to a high-fat or control diet (60 %, 10 % kcal from fat, respectively) for varying time intervals (n = 7 - 10 subjects per group per time point, 100 total; 4 - 55 weeks on diet). LV mechanics were quantified under baseline (resting) and/or stress conditions (40 µg/kg/min continuous infusion of dobutamine) using cine displacement encoding with stimulated echoes (DENSE) with 7.4 ms temporal resolution on a 7 T Bruker ClinScan. Peak strain, systolic strain rates, and torsion were quantified. A linear mixed model was used with Benjamini-Hochberg adjustments for multiple comparisons. RESULTS: Reductions in LV peak longitudinal strain at baseline were first observed in the obese group after 42 weeks, with no differences in systolic strain rates or torsion. Conversely, reductions in longitudinal strain and circumferential and radial strain rates were seen under inotropic stress conditions after only 22 weeks on diet. Furthermore, stress cardiovascular magnetic resonance (CMR) evaluation revealed supranormal values of LV radial strain and torsion in the obese group early on diet, followed by later deficits. CONCLUSIONS: Differences in left ventricular mechanics in obese mice are exacerbated under stress conditions. Stress CMR demonstrated a broader array of mechanical dysfunction and revealed these differences at earlier time points. Thus, it may be important to evaluate cardiac function in the setting of obesity under stress conditions to fully elucidate the presence of ventricular dysfunction.


Assuntos
Cardiotônicos/administração & dosagem , Dieta Hiperlipídica , Dobutamina/administração & dosagem , Imagem Cinética por Ressonância Magnética , Contração Miocárdica/efeitos dos fármacos , Obesidade/complicações , Estresse Fisiológico , Disfunção Ventricular Esquerda/diagnóstico , Função Ventricular Esquerda/efeitos dos fármacos , Animais , Fenômenos Biomecânicos , Modelos Animais de Doenças , Infusões Intravenosas , Modelos Lineares , Masculino , Camundongos Endogâmicos C57BL , Valor Preditivo dos Testes , Fatores de Risco , Estresse Mecânico , Fatores de Tempo , Torção Mecânica , Disfunção Ventricular Esquerda/etiologia , Disfunção Ventricular Esquerda/fisiopatologia
16.
J Magn Reson Imaging ; 39(4): 958-65, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24123528

RESUMO

PURPOSE: To develop a robust method to assess regional mechanical dyssynchrony from cine short-axis MR images. Cardiac resynchronization therapy (CRT) is an effective treatment for patients with heart failure and evidence of left-ventricular (LV) dyssynchrony. Patient response to CRT is greatest when the LV pacing lead is placed in the most dyssynchronous segment. Existing techniques for assessing regional dyssynchrony require difficult acquisition and/or postprocessing. Our goal was to develop a widely applicable and robust method to assess regional mechanical dyssynchrony. MATERIALS AND METHODS: Using the endocardial boundary, radial displacement curves (RDCs) were generated throughout the LV. Cross-correlation was used to determine the delay time between each RDC and a patient-specific reference. Delay times were projected onto the American Heart Association 17-segment model creating a regional dyssynchrony map. Our method was tested in 10 normal individuals and 10 patients enrolled for CRT (QRS > 120 ms, NYHA III-IV, EF < 35%). RESULTS: Delay times over the LV were 23.9 ± 33.8 ms and 93.1 ± 99.9 ms (P < 0.001) in normal subjects and patients, respectively. Interobserver reproducibility for segment averages was 6.8 ± 39.3 ms and there was 70% agreement in identifying the latest contracting segment. CONCLUSION: We have developed a method that can reliably calculate regional delay times from cine steady-state free-precession (SSFP) images. Maps of regional dyssynchrony could be used to identify the latest-contracting segment to assist in CRT lead implantation.


Assuntos
Insuficiência Cardíaca/diagnóstico , Interpretação de Imagem Assistida por Computador/métodos , Imagem Cinética por Ressonância Magnética/métodos , Reconhecimento Automatizado de Padrão/métodos , Disfunção Ventricular Esquerda/diagnóstico , Adulto , Idoso , Algoritmos , Feminino , Insuficiência Cardíaca/complicações , Humanos , Aumento da Imagem/métodos , Masculino , Pessoa de Meia-Idade , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Disfunção Ventricular Esquerda/complicações
17.
J Cardiovasc Magn Reson ; 16: 4, 2014 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-24393383

RESUMO

BACKGROUND: It is important to understand the relationship between electrical and mechanical ventricular activation in CRT patients. By measuring local electrical activation at multiple locations within the coronary veins and myocardial contraction at the same locations in the left ventricle, we determined the relationship between electrical and mechanical activation at potential left ventricular pacing locations. METHODS: In this study, mechanical contraction times were computed using high temporal resolution cine cardiovascular magnetic resonance (CMR) data, while electrical activation times were derived from intra-procedural local electrograms. RESULTS: In our cohort, there was a strong correlation between electrical and mechanical delay times within each patient (R2=0.78 ± 0.23). Additionally, the latest electrically activated location corresponded with the latest mechanically contracting location in 91% of patients. CONCLUSIONS: This study provides initial evidence that our method of obtaining non-invasive mechanical activation patterns accurately reflects the underlying electromechanical substrate of intraventricular dyssynchrony.


Assuntos
Terapia de Ressincronização Cardíaca , Sistema de Condução Cardíaco/fisiopatologia , Insuficiência Cardíaca/terapia , Contração Miocárdica , Disfunção Ventricular Esquerda/terapia , Função Ventricular Esquerda , Potenciais de Ação , Angiografia Coronária , Eletrocardiografia , Insuficiência Cardíaca/diagnóstico , Insuficiência Cardíaca/fisiopatologia , Humanos , Imagem Cinética por Ressonância Magnética , Valor Preditivo dos Testes , Resultado do Tratamento , Disfunção Ventricular Esquerda/diagnóstico , Disfunção Ventricular Esquerda/fisiopatologia
18.
J Cardiovasc Magn Reson ; 16: 94, 2014 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-25430079

RESUMO

BACKGROUND: Cardiovascular magnetic resonance using displacement encoding with stimulated echoes (DENSE) is capable of assessing advanced measures of cardiac mechanics such as strain and torsion. A potential hurdle to widespread clinical adoption of DENSE is the time required to manually segment the myocardium during post-processing of the images. To overcome this hurdle, we proposed a radical approach in which only three contours per image slice are required for post-processing (instead of the typical 30-40 contours per image slice). We hypothesized that peak left ventricular circumferential, longitudinal and radial strains and torsion could be accurately quantified using this simplified analysis. METHODS AND RESULTS: We tested our hypothesis on a large multi-institutional dataset consisting of 541 DENSE image slices from 135 mice and 234 DENSE image slices from 62 humans. We compared measures of cardiac mechanics derived from the simplified post-processing to those derived from original post-processing utilizing the full set of 30-40 manually-defined contours per image slice. Accuracy was assessed with Bland-Altman limits of agreement and summarized with a modified coefficient of variation. The simplified technique showed high accuracy with all coefficients of variation less than 10% in humans and 6% in mice. The accuracy of the simplified technique was also superior to two previously published semi-automated analysis techniques for DENSE post-processing. CONCLUSIONS: Accurate measures of cardiac mechanics can be derived from DENSE cardiac magnetic resonance in both humans and mice using a simplified technique to reduce post-processing time by approximately 94%. These findings demonstrate that quantifying cardiac mechanics from DENSE data is simple enough to be integrated into the clinical workflow.


Assuntos
Cardiopatias/diagnóstico , Interpretação de Imagem Assistida por Computador , Imagem Cinética por Ressonância Magnética , Contração Miocárdica , Função Ventricular Esquerda , Animais , Automação , Fenômenos Biomecânicos , Modelos Animais de Doenças , Cardiopatias/fisiopatologia , Humanos , Kentucky , Camundongos , Valor Preditivo dos Testes , Estudos Retrospectivos , Estresse Mecânico , Fatores de Tempo , Torção Mecânica , Virginia , Fluxo de Trabalho
19.
Am J Physiol Heart Circ Physiol ; 304(3): H473-86, 2013 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-23203971

RESUMO

Spontaneous plaque rupture in mouse models of atherosclerosis is controversial, although numerous studies have discussed so-called "vulnerable plaque" phenotypes in mice. We compared the morphology and biomechanics of two acute and one chronic murine model of atherosclerosis to human coronaries of the thin-cap fibroatheroma (TCFA) phenotype. Our acute models were apolipoprotein E-deficient (ApoE(-/-)) and LDL receptor-deficient (LDLr(-/-)) mice, both fed a high-fat diet for 8 wk with simultaneous infusion of angiotensin II (ANG II), and our chronic mouse model was the apolipoprotein E-deficient strain fed a regular chow diet for 1 yr. We found that the mouse plaques from all three models exhibited significant morphological differences from human TCFA plaques, including the plaque burden, plaque thickness, eccentricity, and amount of the vessel wall covered by lesion as well as significant differences in the relative composition of plaques. These morphological differences suggested that the distribution of solid mechanical stresses in the walls may differ as well. Using a finite-element analysis computational solid mechanics model, we computed the relative distribution of stresses in the walls of murine and human plaques and found that although human TCFA plaques have the highest stresses in the thin fibrous cap, murine lesions do not have such stress distributions. Instead, local maxima of stresses were on the media and adventitia, away from the plaque. Our results suggest that if plaque rupture is possible in mice, it may be driven by a different mechanism than mechanics.


Assuntos
Aterosclerose/patologia , Placa Aterosclerótica/patologia , Angiotensina II/farmacologia , Animais , Apolipoproteínas E/genética , Aterosclerose/genética , Fenômenos Biomecânicos , Calcinose/patologia , Simulação por Computador , Gorduras na Dieta/toxicidade , Humanos , Processamento de Imagem Assistida por Computador , Camundongos , Camundongos Knockout , Modelos Biológicos , Fenótipo , Placa Aterosclerótica/genética , Receptores de LDL/genética , Receptores de LDL/fisiologia , Estresse Mecânico
20.
Circulation ; 121(18): 1985-91, 2010 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-20421518

RESUMO

BACKGROUND: Numerous criteria believed to define a positive response to cardiac resynchronization therapy have been used in the literature. No study has investigated agreement among these response criteria. We hypothesized that the agreement among the various response criteria would be poor. METHODS AND RESULTS: A literature search was conducted with the keywords "cardiac resynchronization" and "response." The 50 publications with the most citations were reviewed. After the exclusion of editorials and reviews, 17 different primary response criteria were identified from 26 relevant articles. The agreement among 15 of these 17 response criteria was assessed in 426 patients from the Predictors of Response to Cardiac Resynchronization Therapy (PROSPECT) study with Cohen's kappa-coefficient (2 response criteria were not calculable from PROSPECT data). The overall response rate ranged from 32% to 91% for the 15 response criteria. Ninety-nine percent of patients showed a positive response according to at least 1 of the 15 criteria, whereas 94% were classified as a nonresponder by at least 1 criterion. kappa-Values were calculated for all 105 possible comparisons among the 15 response criteria and classified into standard ranges: Poor agreement (kappa< or =0.4), moderate agreement (0.4 or =0.75). Seventy-five percent of the comparisons showed poor agreement, 21% showed moderate agreement, and only 4% showed strong agreement. CONCLUSIONS: The 26 most-cited publications on predicting response to cardiac resynchronization therapy define response using 17 different criteria. Agreement between different methods to define response to cardiac resynchronization therapy is poor 75% of the time and strong only 4% of the time, which severely limits the ability to generalize results over multiple studies.


Assuntos
Estimulação Cardíaca Artificial , Insuficiência Cardíaca/mortalidade , Insuficiência Cardíaca/terapia , Modelos Estatísticos , Avaliação de Resultados em Cuidados de Saúde/métodos , Insuficiência Cardíaca/diagnóstico por imagem , Humanos , Valor Preditivo dos Testes , Ultrassonografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA