Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 51(13): 7412-7421, 2017 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-28570062

RESUMO

While the biogeochemical forces influencing the weathering of spilled oil have been investigated for decades, the environmental fate and effects of "oxyhydrocarbons" in sand patties deposited on beaches are not well-known. We collected sand patties deposited in the swash zone on Gulf of Mexico beaches following the Deepwater Horizon oil spill. When sand patties were exposed to simulated sunlight, a larger concentration of dissolved organic carbon was leached into seawater than the corresponding dark controls. This result was consistent with the general ease of movement of seawater through the sand patties as shown with a 35SO42- radiotracer. Ultrahigh-resolution mass spectrometry, as well as optical measurements revealed that the chemical composition of dissolved organic matter (DOM) leached from the sand patties under dark and irradiated conditions were substantially different, but neither had a significant inhibitory influence on the endogenous rate of aerobic or anaerobic microbial respiratory activity. Rather, the dissolved organic photooxidation products stimulated significantly more microbial O2 consumption (113 ± 4 µM) than either the dark (78 ± 2 µM) controls or the endogenous (38 µM ± 4) forms of DOM. The changes in the DOM quality and quantity were consistent with biodegradation as an explanation for the differences. These results confirm that sand patties undergo a gradual dissolution of DOM in both the dark and in the light, but photooxidation accelerates the production of water-soluble polar organic compounds that are relatively more amenable to aerobic biodegradation. As such, these processes represent previously unrecognized advanced weathering stages that are important in the ultimate transformation of spilled crude oil.


Assuntos
Biodegradação Ambiental , Poluição por Petróleo , Poluentes Químicos da Água , Petróleo , Tempo (Meteorologia)
2.
Appl Microbiol Biotechnol ; 101(16): 6517-6529, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28597336

RESUMO

Offshore oil-producing platforms are designed for efficient and cost-effective separation of oil from water. However, design features and operating practices may create conditions that promote the proliferation and spread of biocorrosive microorganisms. The microbial communities and their potential for metal corrosion were characterized for three oil production platforms that varied in their oil-water separation processes, fluid recycling practices, and history of microbially influenced corrosion (MIC). Microbial diversity was evaluated by 16S rRNA gene sequencing, and numbers of total bacteria, archaea, and sulfate-reducing bacteria (SRB) were estimated by qPCR. The rates of 35S sulfate reduction assay (SRA) were measured as a proxy for metal biocorrosion potential. A variety of microorganisms common to oil production facilities were found, but distinct communities were associated with the design of the platform and varied with different locations in the processing stream. Stagnant, lower temperature (<37 °C) sites in all platforms had more SRB and higher SRA compared to samples from sites with higher temperatures and flow rates. However, high (5 mmol L-1) levels of hydrogen sulfide and high numbers (107 mL-1) of SRB were found in only one platform. This platform alone contained large separation tanks with long retention times and recycled fluids from stagnant sites to the beginning of the oil separation train, thus promoting distribution of biocorrosive microorganisms. These findings tell us that tracking microbial sulfate-reducing activity and community composition on off-shore oil production platforms can be used to identify operational practices that inadvertently promote the proliferation, distribution, and activity of biocorrosive microorganisms.


Assuntos
Archaea/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Incrustação Biológica , Metais/metabolismo , Indústria de Petróleo e Gás , Petróleo/microbiologia , Microbiologia da Água , Archaea/genética , Archaea/metabolismo , Bactérias/genética , Bactérias/metabolismo , Corrosão , Sulfeto de Hidrogênio/análise , Consórcios Microbianos , Indústria de Petróleo e Gás/economia , RNA Ribossômico 16S/genética , Sulfatos/metabolismo
3.
Environ Microbiol ; 18(8): 2604-19, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27198766

RESUMO

Anaerobic microbial biodegradation of recalcitrant, water-insoluble substrates, such as paraffins, presents unique metabolic challenges. To elucidate this process, a methanogenic consortium capable of mineralizing long-chain n-paraffins (C28 -C50 ) was enriched from San Diego Bay sediment. Analysis of 16S rRNA genes indicated the dominance of Syntrophobacterales (43%) and Methanomicrobiales (26%). Metagenomic sequencing allowed draft genome assembly of dominant uncultivated community members belonging to the bacterial genus Smithella and the archaeal genera Methanoculleus and Methanosaeta. Five contigs encoding homologs of the catalytic subunit of alkylsuccinate synthase (assA) were detected. Additionally, mRNA transcripts for these genes, including a homolog binned within the 'Smithella' sp. SDB genome scaffold, were detected via RT-PCR, implying that paraffins are activated via 'fumarate addition'. Metabolic reconstruction and comparison with genome scaffolds of uncultivated n-alkane degrading 'Smithella' spp. are consistent with the hypothesis that syntrophically growing 'Smithella' spp. may achieve reverse electron transfer by coupling the reoxidation of ETFred to a membrane-bound FeS oxidoreductase functioning as an ETF:menaquinone oxidoreductase. Subsequent electron transfer could proceed via a periplasmic formate dehydrogenase and/or hydrogenase, allowing energetic coupling to hydrogenotrophic methanogens such as Methanoculleus. Ultimately, these data provide fundamental insight into the energy conservation mechanisms that dictate interspecies interactions salient to methanogenic alkane mineralization.


Assuntos
Alcanos/metabolismo , Deltaproteobacteria/metabolismo , Fumaratos/metabolismo , Methanomicrobiales/metabolismo , Parafina/metabolismo , Biodegradação Ambiental , Deltaproteobacteria/classificação , Deltaproteobacteria/genética , Metabolismo Energético/fisiologia , Genoma Arqueal/genética , Genoma Bacteriano/genética , Metagenômica , Methanomicrobiales/classificação , Methanomicrobiales/genética , Oxirredutases/genética , Oxirredutases/metabolismo , Filogenia , RNA Ribossômico 16S/genética
4.
Int J Syst Evol Microbiol ; 66(3): 1242-1248, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26704417

RESUMO

A mesophilic deltaproteobacterium, designated strain SPRT, was isolated from a methanogenic consortium capable of degrading long-chain paraffins. Cells were motile, vibrio-shaped, and occurred singly, in pairs or in clusters. Strain SPRT did not metabolize hydrocarbons but grew fermentatively on pyruvate and oxaloacetate and autotrophically with H2 and CO2. Thiosulfate served as a terminal electron acceptor, but sulfate or sulfite did not. The organism required at least 10 g NaCl l- 1 and a small amount of yeast extract (0.001%) for growth. Optimal growth was observed between 30 and 37 °C and a pH range from 6.0 to 7.2. The DNA G+C content of SPRT's genome was 52.02 mol%. Based on 16S rRNA gene sequence analysis, strain SPRT was distinct from previously described Deltaproteobacteria, exhibiting the closest affiliation to Desulfarculus baarsii DSM 2075T and Desulfocarbo indianensis SCBMT, with only 91% similarity between their respective 16S gene sequences. In silico genome comparison supported the distinctiveness between strain SPRT and both Desulfocarbo indianensis SCBMT and Desulfarculus baarsii DSM 2075T. Based on physiological differences, as well as phylogenetic and genomic comparisons, we propose to classify SPRT as the type strain ( = DSM 100305T = JCM 30857T) of a novel species of a new genus with the name Dethiosulfatarculus sandiegensis gen. nov., sp. nov.

5.
Environ Sci Technol ; 50(9): 4844-53, 2016 05 03.
Artigo em Inglês | MEDLINE | ID: mdl-27058258

RESUMO

Fuels that biodegrade too easily can exacerbate through-wall pitting corrosion of pipelines and tanks and result in unintentional environmental releases. We tested the biological stability of two emerging naval biofuels (camelina-JP5 and Fischer-Tropsch-F76) and their potential to exacerbate carbon steel corrosion in seawater incubations with and without a hydrocarbon-degrading sulfate-reducing bacterium. The inclusion of sediment or the positive control bacterium in the incubations stimulated a similar pattern of sulfate reduction with different inocula. However, the highest rates of sulfate reduction were found in incubations amended with camelina-JP5 [(57.2 ± 2.2)-(80.8 ± 8.1) µM/day] or its blend with petroleum-JP5 (76.7 ± 2.4 µM/day). The detection of a suite of metabolites only in the fuel-amended incubations confirmed that alkylated benzene hydrocarbons were metabolized via known anaerobic mechanisms. Most importantly, general (r(2) = 0.73) and pitting (r(2) = 0.69) corrosion were positively correlated with sulfate loss in the incubations. Thus, the anaerobic biodegradation of labile fuel components coupled with sulfate respiration greatly contributed to the biocorrosion of carbon steel. While all fuels were susceptible to anaerobic metabolism, special attention should be given to camelina-JP5 biofuel due to its relatively rapid biodegradation. We recommend that this biofuel be used with caution and that whenever possible extended storage periods should be avoided.


Assuntos
Carbono , Aço , Biodegradação Ambiental , Corrosão , Água do Mar/microbiologia
6.
Biofouling ; 30(7): 823-35, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25115517

RESUMO

Microbially influenced corrosion (MIC) has long been implicated in the deterioration of carbon steel in oil and gas pipeline systems. The authors sought to identify and characterize sessile biofilm communities within a high-temperature oil production pipeline, and to compare the profiles of the biofilm community with those of the previously analyzed planktonic communities. Eubacterial and archaeal 16S rRNA sequences of DNA recovered from extracted pipeline pieces, termed 'cookies,' revealed the presence of thermophilic sulfidogenic anaerobes, as well as mesophilic aerobes. Electron microscopy and elemental analysis of cookies confirmed the presence of sessile cells and chemical constituents consistent with corrosive biofilms. Mass spectrometry of cookie acid washes identified putative hydrocarbon metabolites, while surface profiling revealed pitting and general corrosion damage. The results suggest that in an established closed system, the biofilm taxa are representative of the planktonic eubacterial and archaeal community, and that sampling and monitoring of the planktonic bacterial population can offer insight into biocorrosion activity. Additionally, hydrocarbon biodegradation is likely to sustain these communities. The importance of appropriate sample handling and storage procedures to oilfield MIC diagnostics is highlighted.


Assuntos
Archaea/fisiologia , Fenômenos Fisiológicos Bacterianos , Biofilmes/classificação , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Corrosão , DNA Bacteriano/genética , Indústrias Extrativas e de Processamento , RNA Ribossômico 16S/genética , Aço/química
7.
Environ Sci Technol ; 47(11): 6052-62, 2013 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-23614475

RESUMO

Ultralow sulfur diesel (ULSD) fuel has been integrated into the worldwide fuel infrastructure to help meet a variety of environmental regulations. However, desulfurization alters the properties of diesel fuel in ways that could potentially impact its biological stability. Fuel desulfurization might predispose ULSD to biodeterioration relative to sulfur-rich fuels and in marine systems accelerate rates of sulfate reduction, sulfide production, and carbon steel biocorrosion. To test such prospects, an inoculum from a seawater-compensated ballast tank was amended with fuel from the same ship or with refinery fractions of ULSD, low- (LSD), and high sulfur diesel (HSD) and monitored for sulfate depletion. The rates of sulfate removal in incubations amended with the refinery fuels were elevated relative to the fuel-unamended controls but statistically indistinguishable (∼50 µM SO4/day), but they were found to be roughly twice as fast (∼100 µM SO4/day) when the ship's own diesel was used as a source of carbon and energy. Thus, anaerobic hydrocarbon metabolism likely occurred in these incubations regardless of fuel sulfur content. Microbial community structure from each incubation was also largely independent of the fuel amendment type, based on molecular analysis of 16S rRNA sequences. Two other inocula known to catalyze anaerobic hydrocarbon metabolism showed no differences in fuel-associated sulfate reduction or methanogenesis rates between ULSD, LSD, and HSD. These findings suggest that the stability of diesel is independent of the fuel organosulfur compound status and reasons for the accelerated biocorrosion associated with the use of ULSD should be sought elsewhere.


Assuntos
Gasolina/análise , Consórcios Microbianos/genética , Água do Mar/microbiologia , Aço , Enxofre/análise , Anaerobiose , Biodegradação Ambiental , Corrosão , Hidrocarbonetos/metabolismo , Dados de Sequência Molecular , RNA Ribossômico 16S , Água do Mar/química , Navios , Sulfatos/química , Enxofre/química
8.
Environ Microbiol ; 14(7): 1762-71, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22429327

RESUMO

Two thermophilic archaea, strain PK and strain MG, were isolated from a culture enriched at 80°C from the inner surface material of a hot oil pipeline. Strain PK could ferment complex organic nitrogen sources (e.g. yeast extract, peptone, tryptone) and was able to reduce elemental sulfur (S°), Fe(3+) and Mn(4+) . Phylogenetic analysis revealed that the organism belonged to the order Thermococcales. Incubations of this strain with elemental iron (Fe°) resulted in the abiotic formation of ferrous iron and the accumulation of volatile fatty acids during yeast extract fermentation. The other isolate, strain MG, was a H(2) :CO(2) -utilizing methanogen, phylogenetically affiliated with the genus Methanothermobacter family. Co-cultures of the strains grew as aggregates that produced CH(4) without exogenous H(2) amendment. The co-culture produced the same suite but greater concentrations of fatty acids from yeast extract than did strain PK alone. Thus, the physiological characteristics of organisms both alone and in combination could conceivably contribute to pipeline corrosion. The Thermococcus strain PK could reduce elemental sulfur to sulfide, produce fatty acids and reduce ferric iron. The hydrogenotrophic methanogen strain MG enhanced fatty acid production by fermentative organisms but could not couple the dissolution Fe° with the consumption of water-derived H(2) like other methanogens.


Assuntos
Archaea/metabolismo , Compostos Férricos/metabolismo , Petróleo/microbiologia , Archaea/genética , Técnicas de Cocultura , Corrosão , DNA Arqueal/genética , Ácidos Graxos/biossíntese , Fermentação , Temperatura Alta , Metano/biossíntese , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
9.
Environ Microbiol ; 14(3): 754-64, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22040260

RESUMO

Toluene is a model compound used to study the anaerobic biotransformation of aromatic hydrocarbons. Reports indicate that toluene is transformed via fumarate addition to form benzylsuccinate or by unknown mechanisms to form hydroxylated intermediates under methanogenic conditions. We investigated the mechanism(s) of syntrophic toluene metabolism by a newly described methanogenic enrichment from a gas condensate-contaminated aquifer. Pyrosequencing of 16S rDNA revealed that the culture was comprised mainly of Clostridiales. The predominant methanogens affiliated with the Methanomicrobiales. Methane production from toluene ranged from 72% to 79% of that stoichiometrically predicted. Isotope studies using (13)C(7) toluene showed that benzylsuccinate and benzoate transiently accumulated revealing that members of this consortium can catalyse fumarate addition and subsequent reactions. Detection of a BssA gene fragment in this culture further supported fumarate addition as a mechanism of toluene activation. Transient formation of cresols, benzylalcohol, hydroquinone and methylhydroquinone suggested alternative mechanism(s) for toluene metabolism. However, incubations of the consortium with (18)O-H(2)O showed that the hydroxyl group in these metabolites did not originate from water and abiotic control experiments revealed abiotic formation of hydroxylated species due to reactions of toluene with sulfide and oxygen. Our results suggest that toluene is activated by fumarate addition, presumably by the dominant Clostridiales.


Assuntos
Metano/metabolismo , Tolueno/metabolismo , Anaerobiose , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Biodegradação Ambiental , Carbono-Carbono Liases/genética , Carbono-Carbono Liases/metabolismo , Cresóis/metabolismo , Fumaratos/metabolismo , Succinatos/metabolismo
10.
Environ Sci Technol ; 46(11): 5824-33, 2012 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-22533634

RESUMO

The functional gene diversity and structure of microbial communities in a shallow landfill leachate-contaminated aquifer were assessed using a comprehensive functional gene array (GeoChip 3.0). Water samples were obtained from eight wells at the same aquifer depth immediately below a municipal landfill or along the predominant downgradient groundwater flowpath. Functional gene richness and diversity immediately below the landfill and the closest well were considerably lower than those in downgradient wells. Mantel tests and canonical correspondence analysis (CCA) suggested that various geochemical parameters had a significant impact on the subsurface microbial community structure. That is, leachate from the unlined landfill impacted the diversity, composition, structure, and functional potential of groundwater microbial communities as a function of groundwater pH, and concentrations of sulfate, ammonia, and dissolved organic carbon (DOC). Historical geochemical records indicate that all sampled wells chronically received leachate, and the increase in microbial diversity as a function of distance from the landfill is consistent with mitigation of the impact of leachate on the groundwater system by natural attenuation mechanisms.


Assuntos
Bactérias/genética , Genes Bacterianos/genética , Variação Genética , Água Subterrânea/microbiologia , Análise de Sequência com Séries de Oligonucleotídeos/métodos , Poluentes Químicos da Água/análise , Poluição da Água/análise , Biodegradação Ambiental , Ciclo do Carbono/genética , Análise por Conglomerados , Monitoramento Ambiental , Água Subterrânea/química , Compostos Orgânicos/análise , Enxofre/metabolismo
11.
Biofouling ; 28(9): 1003-10, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22978494

RESUMO

Investigating the susceptibility of various fuels to anaerobic biodegradation has become complicated with the recognition that the fuels themselves are not sterile. Bacterial DNA could be obtained when various fuels were filtered through a hydrophobic teflon (0.22 µm) membrane filter. Bacterial 16S rRNA genes from these preparations were PCR amplified, cloned, and the resulting libraries sequenced to identify the fuel-borne bacterial communities. The most common sequence, found in algal- and camelina-based biofuels as well as in ultra-low sulfur diesel (ULSD) and F76 diesel, was similar to that of a Tumebacillus. The next most common sequence was similar to Methylobacterium and was found in the biofuels and ULSD. Higher level phylogenetic groups included representatives of the Firmicutes (Bacillus, Lactobacillus and Streptococcus), several Actinobacteria, Deinococcus-Thermus, Chloroflexi, Cyanobacteria, Bacteroidetes, Alphaproteobacteria (Methylobacterium and Sphingomonadales), Betaproteobacteria (Oxalobacteraceae and Burkholderiales) and Deltaproteobacteria. All of the fuel-associated bacterial sequences, except those obtained from a few facultative microorganisms, were from aerobes and only remotely affiliated with sequences that resulted from anaerobic successional events evident when ULSD was incubated with a coastal seawater and sediment inoculum. Thus, both traditional and alternate fuel formulations harbor a characteristic microflora, but these microorganisms contributed little to the successional patterns that ultimately resulted in fuel decomposition, sulfide formation and metal biocorrosion. The findings illustrate the value of molecular approaches to track the fate of bacteria that might come in contact with fuels and potentially contribute to corrosion problems throughout the energy value chain.


Assuntos
Bactérias/classificação , Bactérias/genética , Biodegradação Ambiental , Biocombustíveis/microbiologia , Corrosão , RNA Ribossômico 16S/genética , Análise de Sequência de DNA/métodos , Bactérias/isolamento & purificação , Técnicas de Tipagem Bacteriana , Biodiversidade , DNA Bacteriano , Genes de RNAr , Reação em Cadeia da Polimerase
12.
Biofouling ; 28(5): 465-78, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22594394

RESUMO

Experiments were designed to evaluate the corrosion-related consequences of storing/transporting fatty acid methyl ester (FAME) alternative diesel fuel in contact with natural seawater. Coastal Key West, FL (KW), and Persian Gulf (PG) seawaters, representing an oligotrophic and a more organic- and inorganic mineral-rich environment, respectively, were used in 60 day incubations with unprotected carbon steel. The original microflora of the two seawaters were similar with respect to major taxonomic groups but with markedly different species. After exposure to FAME diesel, the microflora of the waters changed substantially, with Clostridiales (Firmicutes) becoming dominant in both. Despite low numbers of sulphate-reducing bacteria in the original waters and after FAME diesel exposure, sulphide levels and corrosion increased markedly due to microbial sulphide production. Corrosion morphology was in the form of isolated pits surrounded by an intact, passive surface with the deepest pits associated with the fuel/seawater interface in the KW exposure. In the presence of FAME diesel, the highest corrosion rates measured by linear polarization occurred in the KW exposure correlating with significantly higher concentrations of sulphur and chlorine (presumed sulphide and chloride, respectively) in the corrosion products.


Assuntos
Bactérias/classificação , Bactérias/metabolismo , Gasolina/análise , Água do Mar/química , Água do Mar/microbiologia , Aço/química , Sulfetos/metabolismo , Bactérias/genética , Corrosão , Ésteres/metabolismo , Ácidos Graxos/metabolismo , Genes de RNAr , Hidrocarbonetos/metabolismo , Dados de Sequência Molecular , Reação em Cadeia da Polimerase , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
13.
Environ Microbiol ; 13(4): 1078-90, 2011 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-21261797

RESUMO

The oil-water-gas environments of oil production facilities harbour abundant and diverse microbial communities that can participate in deleterious processes such as biocorrosion. Several molecular methods, including pyrosequencing of 16S rRNA libraries, were used to characterize the microbial communities from an oil production facility on the Alaskan North Slope. The communities in produced water and a sample from a 'pig envelope' were compared in order to identify specific populations or communities associated with biocorrosion. The 'pigs' are used for physical mitigation of pipeline corrosion and fouling and the samples are enriched in surface-associated solids (i.e. paraffins, minerals and biofilm) and coincidentally, microorganisms (over 10(5) -fold). Throughout the oil production facility, bacteria were more abundant (10- to 150-fold) than archaea, with thermophilic members of the phyla Firmicutes (Thermoanaerobacter and Thermacetogenium) and Synergistes (Thermovirga) dominating the community. However, the structure (relative abundances of taxa) of the microbial community in the pig envelope was distinct due to the increased relative abundances of the genera Thermacetogenium and Thermovirga. The data presented here suggest that bulk fluid is representative of the biofilm communities associated with biocorrosion but that certain populations are more abundant in biofilms, which should be the focus of monitoring and mitigation strategies.


Assuntos
Archaea/crescimento & desenvolvimento , Bactérias/crescimento & desenvolvimento , Biofilmes , Petróleo/microbiologia , Filogenia , Archaea/classificação , Archaea/genética , Bactérias/classificação , Bactérias/genética , Corrosão , DNA Arqueal/genética , DNA Bacteriano/genética , Biblioteca Gênica , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
14.
Microorganisms ; 9(9)2021 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-34576889

RESUMO

Sulfate-reducing bacteria (SRB) often exist as cell aggregates and in biofilms surrounded by a matrix of extracellular polymeric substances (EPSs). The chemical composition of EPSs may facilitate hydrophobic substrate biodegradation and promote microbial influenced corrosion (MIC). Although EPSs from non-hydrocarbon-degrading SRB have been studied; the chemical composition of EPSs from hydrocarbon-degrading SRBs has not been reported. The isolated EPSs from the sulfate-reducing alkane-degrading bacterium Desulfoglaeba alkanexedens ALDC was characterized with scanning and fluorescent microscopy, nuclear magnetic resonance spectroscopy (NMR), and by colorimetric chemical assays. Specific fluorescent staining and 1H NMR spectroscopy revealed that the fundamental chemical structure of the EPS produced by D. alkanexedens is composed of pyranose polysaccharide and cyclopentanone in a 2:1 ratio. NMR analyses indicated that the pyranose ring structure is bonded by 1,4 connections with the cyclopentanone directly bonded to one pyranose ring. The presence of cyclopentanone presumably increases the hydrophobicity of the EPS that may facilitate the accessibility of hydrocarbon substrates to aggregating cells or cells in a biofilm. Weight loss and iron dissolution experiments demonstrated that the EPS did not contribute to the corrosivity of D. alkanexedens cells.

15.
Environ Microbiol ; 12(11): 3074-86, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20602630

RESUMO

Petrochemical and geological evidence suggest that petroleum in most reservoirs is anaerobically biodegraded to some extent. However, the conditions for this metabolism and the cultivation of the requisite microorganisms are rarely established. Here, we report on microbial hydrocarbon metabolism in two distinct oilfields on the North Slope of Alaska (designated Fields A and B). Signature anaerobic hydrocarbon metabolites were detected in produced water from the two oilfields offering evidence of in situ biodegradation activity. Rate measurements revealed that sulfate reduction was an important electron accepting process in Field A (6-807 µmol S l(-1) day(-1)), but of lesser consequence in Field B (0.1-10 µmol S l(-1) day(-1)). Correspondingly, enrichments established at 55°C with a variety of hydrocarbon mixtures showed relatively high sulfate consumption but low methane production in Field A incubations, whereas the opposite was true of the Field B enrichments. Repeated transfer of a Field B enrichment showed ongoing methane production in the presence of crude oil that correlated with ≥ 50% depletion of several component hydrocarbons. Molecular-based microbial community analysis of the methanogenic oil-utilizing consortium revealed five bacterial taxa affiliating with the orders Thermotogales, Synergistales, Deferribacterales (two taxa) and Thermoanaerobacterales that have known fermentative or syntrophic capability and one methanogen that is most closely affiliated with uncultured clones in the H(2)-using family Methanobacteriaceae. The findings demonstrate that oilfield-associated microbial assemblages can metabolize crude oil under the thermophilic and anaerobic conditions prevalent in many petroleum reservoirs.


Assuntos
Archaea/genética , Bactérias Anaeróbias/genética , Metano/biossíntese , Consórcios Microbianos , Petróleo , Sulfatos/metabolismo , Alaska , Anaerobiose , Archaea/classificação , Archaea/isolamento & purificação , Archaea/metabolismo , Bactérias Anaeróbias/classificação , Bactérias Anaeróbias/isolamento & purificação , Bactérias Anaeróbias/metabolismo , Sequência de Bases , Biodegradação Ambiental , Crescimento Quimioautotrófico , Temperatura Alta , Hidrocarbonetos/metabolismo , Dados de Sequência Molecular , Oxirredução , Petróleo/análise , Petróleo/metabolismo , Petróleo/microbiologia , Filogenia , RNA Ribossômico 16S/análise , RNA Ribossômico 16S/genética
16.
Appl Environ Microbiol ; 76(10): 3124-34, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20348302

RESUMO

Microbial processes are crucial for ecosystem maintenance, yet documentation of these processes in complex open field sites is challenging. Here we used a multidisciplinary strategy (site geochemistry, laboratory biodegradation assays, and field extraction of molecular biomarkers) to deduce an ongoing linkage between aromatic hydrocarbon biodegradation and nitrogen cycling in a contaminated subsurface site. Three site wells were monitored over a 10-month period, which revealed fluctuating concentrations of nitrate, ammonia, sulfate, sulfide, methane, and other constituents. Biodegradation assays performed under multiple redox conditions indicated that naphthalene metabolism was favored under aerobic conditions. To explore in situ field processes, we measured metabolites of anaerobic naphthalene metabolism and expressed mRNA transcripts selected to document aerobic and anaerobic microbial transformations of ammonia, nitrate, and methylated aromatic contaminants. Gas chromatography-mass spectrometry detection of two carboxylated naphthalene metabolites and transcribed benzylsuccinate synthase, cytochrome c nitrite reductase, and ammonia monooxygenase genes indicated that anaerobic metabolism of aromatic compounds and both dissimilatory nitrate reduction to ammonia (DNRA) and nitrification occurred in situ. These data link formation (via DNRA) and destruction (via nitrification) of ammonia to in situ cycling of nitrogen in this subsurface habitat, where metabolism of aromatic pollutants has led to accumulation of reduced metabolic end products (e.g., ammonia and methane).


Assuntos
Bactérias , Biodegradação Ambiental , Biomarcadores/análise , Hidrocarbonetos Aromáticos/metabolismo , Nitrogênio/metabolismo , Poluentes Químicos da Água/metabolismo , Aerobiose , Amônia/metabolismo , Anaerobiose , Bactérias/classificação , Bactérias/genética , Bactérias/metabolismo , Ecossistema , Água Doce/análise , Cromatografia Gasosa-Espectrometria de Massas , Perfilação da Expressão Gênica , Regulação Bacteriana da Expressão Gênica , Metano/metabolismo , Dados de Sequência Molecular , Naftalenos/metabolismo , Nitratos/metabolismo , Filogenia
17.
Environ Sci Technol ; 44(19): 7287-94, 2010 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-20504044

RESUMO

Hydrocarbon-degrading microorganisms play an important role in the natural attenuation of spilled petroleum in a variety of anoxic environments. The role of benzylsuccinate synthase (BSS) in aromatic hydrocarbon degradation and its use as a biomarker for field investigations are well documented. The recent discovery of alkylsuccinate synthase (ASS) allows the opportunity to test whether its encoding gene, assA, can serve as a comparable biomarker of anaerobic alkane degradation. Degenerate assA- and bssA-targeted PCR primers were designed in order to survey the diversity of genes associated with aromatic and aliphatic hydrocarbon biodegradation in petroleum-impacted environments and enrichment cultures. DNA was extracted from an anaerobic alkane-degrading isolate (Desulfoglaeba alkenexedens ALDC), hydrocarbon-contaminated river and aquifer sediments, a paraffin-degrading enrichment, and a propane-utilizing mixed culture. Partial assA and bssA genes were PCR amplified, cloned, and sequenced, yielding several novel clades of assA genes. These data expand the range of alkane-degrading conditions for which relevant gene sequences are available and indicate that considerable diversity of assA genes can be found in hydrocarbon-impacted environments. The detection of genes associated with anaerobic alkane degradation in conjunction with the in situ detection of alkylsuccinate metabolites was also demonstrated. Comparable molecular signals of assA/bssA were not found when environmental metagenome databases of uncontaminated sites were searched. These data confirm that the assA gene is a useful biomarker for anaerobic alkane metabolism.


Assuntos
Carbono-Carbono Liases/genética , Poluentes Ambientais/toxicidade , Hidrocarbonetos/toxicidade , Proteobactérias/enzimologia , Sequência de Bases , Biodegradação Ambiental , Primers do DNA , Poluentes Ambientais/metabolismo , Hidrocarbonetos/metabolismo , Filogenia , Reação em Cadeia da Polimerase , Proteobactérias/genética , Proteobactérias/metabolismo , RNA Ribossômico 16S/genética
18.
Microbiol Resour Announc ; 9(17)2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32327521

RESUMO

Anaerobic alkane metabolism is critical in multiple environmental and industrial sectors, including environmental remediation, energy production, refined fuel stability, and biocorrosion. Here, we report the complete gap-closed genome sequence for a model n-alkane-degrading anaerobe, Desulfoglaeba alkanexedens ALDC.

19.
FEMS Microbiol Ecol ; 95(8)2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31281924

RESUMO

Community compositional changes and the corrosion of carbon steel in the presence of different electron donor and acceptor combinations were examined with a methanogenic consortium enriched for its ability to mineralize paraffins. Despite cultivation in the absence of sulfate, metagenomic analysis revealed the persistence of several sulfate-reducing bacterial taxa. Upon sulfate amendment, the consortium was able to couple C28H58 biodegradation with sulfate reduction. Comparative analysis suggested that Desulforhabdus and/or Desulfovibrio likely supplanted methanogens as syntrophic partners needed for C28H58 mineralization. Further enrichment in the absence of a paraffin revealed that the consortium could also utilize carbon steel as a source of electrons. The severity of both general and localized corrosion increased in the presence of sulfate, regardless of the electron donor utilized. With carbon steel as an electron donor, Desulfobulbus dominated in the consortium and electrons from iron accounted for ∼92% of that required for sulfate reduction. An isolated Desulfovibrio spp. was able to extract electrons from iron and accelerate corrosion. Thus, hydrogenotrophic partner microorganisms required for syntrophic paraffin metabolism can be readily substituted depending on the availability of an external electron acceptor and a single paraffin-degrading consortium harbored microbes capable of both chemical and electrical microbially influenced iron corrosion.


Assuntos
Deltaproteobacteria/metabolismo , Desulfovibrio/metabolismo , Ferro/metabolismo , Parafina/metabolismo , Aço/química , Anaerobiose/fisiologia , Corrosão , Consórcios Microbianos/fisiologia , Oxirredução , Sulfatos/metabolismo
20.
Appl Environ Microbiol ; 74(10): 3022-9, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18378655

RESUMO

World requirements for fossil energy are expected to grow by more than 50% within the next 25 years, despite advances in alternative technologies. Since conventional production methods retrieve only about one-third of the oil in place, either large new fields or innovative strategies for recovering energy resources from existing fields are needed to meet the burgeoning demand. The anaerobic biodegradation of n-alkanes to methane gas has now been documented in a few studies, and it was speculated that this process might be useful for recovering energy from existing petroleum reservoirs. We found that residual oil entrained in a marginal sandstone reservoir core could be converted to methane, a key component of natural gas, by an oil-degrading methanogenic consortium. Methane production required inoculation, and rates ranged from 0.15 to 0.40 micromol/day/g core (or 11 to 31 micromol/day/g oil), with yields of up to 3 mmol CH(4)/g residual oil. Concomitant alterations in the hydrocarbon profile of the oil-bearing core revealed that alkanes were preferentially metabolized. The consortium was found to produce comparable amounts of methane in the absence or presence of sulfate as an alternate electron acceptor. Cloning and sequencing exercises revealed that the inoculum comprised sulfate-reducing, syntrophic, and fermentative bacteria acting in concert with aceticlastic and hydrogenotrophic methanogens. Collectively, the cells generated methane from a variety of petroliferous rocks. Such microbe-based methane production holds promise for producing a clean-burning and efficient form of energy from underutilized hydrocarbon-bearing resources.


Assuntos
Archaea/metabolismo , Bactérias/metabolismo , Metano/metabolismo , Óleos/metabolismo , Microbiologia do Solo , Alcanos/metabolismo , Archaea/classificação , Archaea/genética , Archaea/isolamento & purificação , Bactérias/classificação , Bactérias/genética , Bactérias/isolamento & purificação , Clonagem Molecular , DNA Arqueal/química , DNA Arqueal/genética , DNA Bacteriano/química , DNA Bacteriano/genética , DNA Ribossômico/química , DNA Ribossômico/genética , Dados de Sequência Molecular , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA , Sulfatos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA