Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Genes Cells ; 29(4): 316-327, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38385597

RESUMO

Dectin-1 is a well-characterized C-type lectin receptor involved in anti-fungal immunity through the recognition of polysaccharides; however, molecular mechanisms and outcomes initiated through self-recognition have not been fully understood. Here, we purified a water-soluble fraction from mouse liver that acts as a Dectin-1 agonist. To address the physiological relevance of this recognition, we utilized sterile liver inflammation models. The CCl4-induced hepatitis model showed that Dectin-1 deficiency led to reduced inflammation through decreased inflammatory cell infiltration and lower pro-inflammatory cytokine levels. Moreover, in a NASH model induced by streptozotocin and a high-fat diet, hepatic inflammation and fibrosis were ameliorated in Dectin-1-deficient mice. The Dectin-1 agonist activity was increased in the water-soluble fraction from NASH mice, suggesting a potential pathogenic cycle between Dectin-1 activation and hepatitis progression. In vivo administration of the fraction into mice induced hepatic inflammation. These results highlight a role of self-recognition through Dectin-1 that triggers hepatic innate immune responses and contributes to the exacerbation of inflammation in pathogenic settings. Thus, the blockade of this axis may provide a therapeutic option for liver inflammatory diseases.


Assuntos
Hepatite , Lectinas Tipo C , Hepatopatia Gordurosa não Alcoólica , Animais , Camundongos , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Hepatopatia Gordurosa não Alcoólica/imunologia , Hepatopatia Gordurosa não Alcoólica/metabolismo , Água
2.
NMR Biomed ; 36(5): e4888, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36468685

RESUMO

Favipiravir (brand name Avigan), a widely known anti-influenza prodrug, is metabolized by endogenous enzymes of host cells to generate the active form, which exerts inhibition of viral RNA-dependent RNA polymerase activity; first, favipiravir is converted to its phosphoribosylated form, favipiravir-ribofuranosyl-5'-monophosphate (favipiravir-RMP), by hypoxanthine-guanine phosphoribosyltransferase (HGPRT). Because this phosphoribosylation reaction is the rate-determining step in the generation of the active metabolite, quantitative and real-time monitoring of the HGPRT-catalyzed reaction is essential to understanding the pharmacokinetics of favipiravir. However, assay methods enabling such monitoring have not been established. 19 F- or 31 P-based nuclear magnetic resonance (NMR) are powerful techniques for observation of intermolecular interactions, chemical reactions, and metabolism of molecules of interest, given that NMR signals of the heteronuclei sensitively reflect changes in the chemical environment of these moieties. Here, we demonstrated direct, sensitive, target-selective, nondestructive, and real-time observation of HGPRT-catalyzed conversion of favipiravir to favipiravir-RMP by performing time-lapse 19 F-NMR monitoring of the fluorine atom of favipiravir. In addition, we showed that 31 P-NMR can be used for real-time observation of the identical reaction by monitoring phosphorus atoms of the phosphoribosyl group of favipiravir-RMP and of the pyrophosphate product of that reaction. Furthermore, we demonstrated that NMR approaches permit the determination of general parameters of enzymatic activity such as Vmax and Km . This method not only can be widely employed in enzyme assays, but also may be of use in the screening and development of new favipiravir-analog antiviral prodrugs that can be phosphoribosylated more efficiently by HGPRT, which would increase the intracellular concentration of the drug's active form. The techniques demonstrated in this study would allow more detailed investigation of the pharmacokinetics of fluorinated drugs, and might significantly contribute to opening new avenues for widespread pharmaceutical studies.


Assuntos
Pró-Fármacos , Hipoxantina Fosforribosiltransferase/química , Hipoxantina Fosforribosiltransferase/genética , Hipoxantina Fosforribosiltransferase/metabolismo , Imagem com Lapso de Tempo , Amidas , Espectroscopia de Ressonância Magnética , Catálise
3.
Proc Natl Acad Sci U S A ; 117(49): 31149-31156, 2020 12 08.
Artigo em Inglês | MEDLINE | ID: mdl-33229587

RESUMO

Protein design provides a stringent test for our understanding of protein folding. We previously described principles for designing ideal protein structures stabilized by consistent local and nonlocal interactions, based on a set of rules relating local backbone structures to tertiary packing motifs. The principles have made possible the design of protein structures having various topologies with high thermal stability. Whereas nonlocal interactions such as tight hydrophobic core packing have traditionally been considered to be crucial for protein folding and stability, the rules proposed by our previous studies suggest the importance of local backbone structures to protein folding. In this study, we investigated the robustness of folding of de novo designed proteins to the reduction of the hydrophobic core, by extensive mutation of large hydrophobic residues (Leu, Ile) to smaller ones (Val) for one of the designs. Surprisingly, even after 10 Leu and Ile residues were mutated to Val, this mutant with the core mostly filled with Val was found to not be in a molten globule state and fold into the same backbone structure as the original design, with high stability. These results indicate the importance of local backbone structures to the folding ability and high thermal stability of designed proteins and suggest a method for engineering thermally stabilized natural proteins.


Assuntos
Conformação Proteica , Engenharia de Proteínas , Dobramento de Proteína , Proteínas/ultraestrutura , Sequência de Aminoácidos/genética , Substituição de Aminoácidos/genética , Interações Hidrofóbicas e Hidrofílicas , Mutação/genética , Estabilidade Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Proteínas/química , Proteínas/genética , Termodinâmica
4.
Anal Biochem ; 639: 114521, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-34906540

RESUMO

NMR is a powerful tool for characterizing intermolecular interactions at atomic resolution. However, the nature of the complex interactions of membrane-binding proteins makes it difficult to elucidate the interaction mechanisms. Here, we demonstrated that structural and thermodynamic analyses using solution NMR spectroscopy and isothermal titration calorimetry (ITC) can clearly detect a specific interaction between the pleckstrin homology (PH) domain of ceramide transport protein (CERT) and phosphatidylinositol 4-monophosphate (PI4P) embedded in the lipid nanodisc, and distinguish the specific interaction from nonspecific interactions with the bulk surface of the lipid nanodisc. This NMR-ITC hybrid strategy provides detailed characterization of protein-lipid membrane interactions.


Assuntos
Bicamadas Lipídicas/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Fosfatos de Fosfatidilinositol/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Animais , Calorimetria/instrumentação , Calorimetria/métodos , Humanos , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética/instrumentação , Simulação de Dinâmica Molecular , Nanoestruturas/química , Fosfatos de Fosfatidilinositol/química , Ligação Proteica , Domínios Proteicos , Proteínas Serina-Treonina Quinases/química , Titulometria/instrumentação , Titulometria/métodos
5.
Chemistry ; 27(56): 14092-14099, 2021 Oct 07.
Artigo em Inglês | MEDLINE | ID: mdl-34302308

RESUMO

Covalent linking of side chains provides a method to produce cyclic or stapled peptides that are important in developing peptide-based drugs. A variety of crosslinking formats contribute to fixing the active conformer and prolonging its biological activity under physiological conditions. One format uses the cysteine thiol to participate in crosslinking through nucleophilic thiolate anions or thiyl radicals to form thioether and disulfide bonds. Removal of the S-protection from an S-protected Cys derivative generates the thiol, which functions as a nucleophile. S-Oxidation of a protected Cys allows the formation of a sulfoxide that operates as an umpolung electrophile. Herein, the applicability of S-p-methoxybenzyl Cys sulfoxide (Cys(MBzl)(O)) to the formation of a thioether linkage between tryptophan and Cys has been investigated. The reaction of peptides containing Cys(MBzl)(O) and Trp with trifluoromethanesulfonic acid (TFMSA) or methanesulfonic acid (MSA) in TFA in the presence of guanidine hydrochloride (Gn ⋅ HCl) proceeded to give cyclic or stapled peptides possessing the Cys-Trp thioether linkage. In this reaction, strong acids such as TFMSA or MSA are necessary to activate the sulfoxide. Additionally, Gn ⋅ HCl plays a critical role in producing an electrophilic Cys derivative that combines with the indole by aromatic electrophilic substitution. The findings led us to conclude that the less-electrophilic Cys(MBzl)(O) serves as an acid-activated umpolung of a Cys nucleophile and is useful for S-arylation-mediated peptide cyclization.


Assuntos
Cisteína , Sulfóxidos , Ciclização , Peptídeos
6.
J Biol Chem ; 293(28): 11206-11217, 2018 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-29848549

RESUMO

Sphingolipids such as ceramide are important constituents of cell membranes. The ceramide transfer protein (CERT) moves ceramide from the endoplasmic reticulum to the Golgi apparatus in a nonvesicular manner. Hyperphosphorylation of the serine-repeat motif (SRM) adjacent to the pleckstrin homology (PH) domain of CERT down-regulates the inter-organelle ceramide transport function of CERT. However, the mechanistic details of this down-regulation remain elusive. Using solution NMR and binding assays, we herein show that a hyperphosphorylation-mimetic CERT variant in which 10 serine/threonine residues of SRM had been replaced with glutamate residues (the 10E variant) displays an intramolecular interaction between SRM and positively charged regions of the PH domain, which are involved in the binding of this domain to phosphatidylinositol 4-monophosphate (PI4P). Of note, the binding of the PH domain to PI4P-embedded membranes was attenuated by the SRM 10E substitutions in cell-free assays. Moreover, the 10E substitutions reduced the Golgi-targeting activity of the PH-SRM construct in living cells. These results indicate that hyperphosphorylated SRM directly interacts with the surface of the PH domain in an intramolecular manner, thereby decreasing the PI4P-binding activity of the PH domain. In light of these findings, we propose that the hyperphosphorylation of SRM may trigger the dissociation of CERT from the Golgi apparatus, resulting in a functionally less active conformation of CERT.


Assuntos
Proteínas Sanguíneas/metabolismo , Membrana Celular/metabolismo , Ceramidas/metabolismo , Fosfatidilinositóis/metabolismo , Fosfoproteínas/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Serina/metabolismo , Sequência de Bases , Transporte Biológico , Proteínas Sanguíneas/química , Membrana Celular/química , Ceramidas/química , Cristalografia por Raios X , Retículo Endoplasmático/metabolismo , Complexo de Golgi/metabolismo , Células HeLa , Humanos , Fosfatidilinositóis/química , Fosfoproteínas/química , Fosforilação , Conformação Proteica , Proteínas Serina-Treonina Quinases/química , Serina/química
7.
Biochem Biophys Res Commun ; 512(1): 22-28, 2019 04 23.
Artigo em Inglês | MEDLINE | ID: mdl-30853177

RESUMO

The C-terminal Ig-domain of lamin A plays critical roles in cell function via interaction with proteins, DNA, and chromatin. Mutations in this domain are known to cause various diseases including Emery-Dreifuss muscular dystrophy (EDMD) and familial partial lipodystrophy (FPLD). Here we examined the biophysical and biochemical properties of mutant Ig-domains identified in patients with EDMD and FPLD. EDMD-related mutant Ig-domain showed decreased stability to heat and denaturant. This result was also confirmed by experiments using full-length mutant lamin A, although the decrease in melting temperature was much less than that of the mutant Ig-domain alone. The unstable EDMD Ig-domain disrupted the proper assembly of lamin A, resulting in abnormal paracrystal formation and decreased viscosity. In contrast, FPLD-related mutant Ig-domains were thermally stable, although they lost DNA binding function. Alanine substitution experiments revealed a functional domain of DNA binding in the Ig-domain. Thus, the overall biophysical property of Ig-domains is closely associated with clinical phenotype.


Assuntos
Lamina Tipo A/química , Distrofia Muscular de Emery-Dreifuss/metabolismo , Substituição de Aminoácidos , Fenômenos Biofísicos , DNA/química , DNA/metabolismo , Humanos , Técnicas In Vitro , Lamina Tipo A/genética , Lamina Tipo A/metabolismo , Lipodistrofia Parcial Familiar/genética , Lipodistrofia Parcial Familiar/metabolismo , Microscopia Eletrônica de Transmissão , Modelos Moleculares , Distrofia Muscular de Emery-Dreifuss/genética , Mutação , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Domínios Proteicos , Estabilidade Proteica , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo
8.
Biochemistry ; 57(26): 3576-3589, 2018 07 03.
Artigo em Inglês | MEDLINE | ID: mdl-29924600

RESUMO

Amino acid selective isotope labeling is an important nuclear magnetic resonance technique, especially for larger proteins, providing strong bases for the unambiguous resonance assignments and information concerning the structure, dynamics, and intermolecular interactions. Amino acid selective 15N labeling suffers from isotope dilution caused by metabolic interconversion of the amino acids, resulting in isotope scrambling within the target protein. Carbonyl 13C atoms experience less isotope scrambling than the main-chain 15N atoms do. However, little is known about the side-chain 13C atoms. Here, the 13C scrambling profiles of the Cα and side-chain carbons were investigated for 15N scrambling-prone amino acids, such as Leu, Ile, Tyr, Phe, Thr, Val, and Ala. The level of isotope scrambling was substantially lower in 13Cα and 13C side-chain labeling than in 15N labeling. We utilized this reduced scrambling-prone character of 13C as a simple and efficient method for amino acid selective 13C labeling using an Escherichia coli cold-shock expression system and high-cell density fermentation. Using this method, the 13C labeling efficiency was >80% for Leu and Ile, ∼60% for Tyr and Phe, ∼50% for Thr, ∼40% for Val, and 30-40% for Ala. 1H-15N heteronuclear single-quantum coherence signals of the 15N scrambling-prone amino acid were also easily filtered using 15N-{13Cα} spin-echo difference experiments. Our method could be applied to the assignment of the 55 kDa protein.


Assuntos
Aminoácidos/análise , Proteínas de Escherichia coli/química , Escherichia coli/química , Ressonância Magnética Nuclear Biomolecular/métodos , Isótopos de Carbono/análise , Marcação por Isótopo , Isótopos de Nitrogênio/análise
9.
Biochim Biophys Acta Biomembr ; 1860(3): 757-766, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-29273335

RESUMO

Amyloid fibrillation causes serious neurodegenerative diseases and amyloidosis; however, the detailed mechanisms by which the structural states of precursor proteins in a lipid membrane-associated environment contribute to amyloidogenesis still remains to be elucidated. We examined the relationship between structural states of intrinsically-disordered wild-type and mutant α-synuclein (αSN) and amyloidogenesis on two-types of model membranes. Highly-unstructured wild-type αSN (αSNWT) and a C-terminally-truncated mutant lacking negative charges (αSN103) formed amyloid fibrils on both types of membranes, the model membrane mimicking presynaptic vesicles (Mimic membrane) and the model membrane of 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC membrane). Unstructured αSNWT and αSN103 both bound to Mimic membranes in a helical conformation with similar binding affinity. Promotion and then inhibition of amyloidogenesis of αSNWT were observed as the concentration of Mimic lipids increased. We explain this by the two-state binding model: at lower lipid concentrations, binding of αSNWT to membranes enhances amyloidogenicity by increasing the local concentration of membrane-bound αSN and so promoting amyloid nucleation; at higher lipid concentrations, membrane-bound αSNWT is actually in a sense diluted by increasing the number of model membranes, which blocks amyloid fibrillation due to an insufficient bound population for productive nucleation. Meanwhile, αSN103 formed amyloid fibrils over the whole concentration of Mimic lipids used here without inhibition, revealing the importance of helical structures for binding affinity and negatively charged unstructured C-terminal region for modulating amyloidogenesis. We propose that membrane binding-induced initial conformations of αSN, its overall charge states, and the population of membrane-bound αSN are key determinants of amyloidogenesis on membranes.


Assuntos
Amiloide/biossíntese , Lipossomas Unilamelares , alfa-Sinucleína/química , Relação Dose-Resposta a Droga , Difusão Dinâmica da Luz , Humanos , Lipídeos de Membrana/química , Modelos Químicos , Ressonância Magnética Nuclear Biomolecular , Fosfatidilcolinas/química , Fosfatidiletanolaminas/química , Fosfatidilserinas/química , Ligação Proteica , Conformação Proteica , Deleção de Sequência , alfa-Sinucleína/genética
10.
Molecules ; 23(1)2018 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-29329228

RESUMO

A variety of nuclear magnetic resonance (NMR) applications have been developed for structure-based drug discovery (SBDD). NMR provides many advantages over other methods, such as the ability to directly observe chemical compounds and target biomolecules, and to be used for ligand-based and protein-based approaches. NMR can also provide important information about the interactions in a protein-ligand complex, such as structure, dynamics, and affinity, even when the interaction is too weak to be detected by ELISA or fluorescence resonance energy transfer (FRET)-based high-throughput screening (HTS) or to be crystalized. In this study, we reviewed current NMR techniques. We focused on recent progress in NMR measurement and sample preparation techniques that have expanded the potential of NMR-based SBDD, such as fluorine NMR (19F-NMR) screening, structure modeling of weak complexes, and site-specific isotope labeling of challenging targets.


Assuntos
Descoberta de Drogas/métodos , Espectroscopia de Ressonância Magnética/métodos , Preparações Farmacêuticas/química , Marcação por Isótopo , Estrutura Molecular , Proteínas/química
11.
J Biomol NMR ; 68(4): 271-279, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28756478

RESUMO

The preparation of stable isotope-labeled proteins is important for NMR studies, however, it is often hampered in the case of eukaryotic proteins which are not readily expressed in Escherichia coli. Such proteins are often conveniently investigated following post-expression chemical isotope tagging. Enzymatic 15N-labeling of glutamine side chains using transglutaminase (TGase) has been applied to several proteins for NMR studies. 19F-labeling is useful for interaction studies due to its high NMR sensitivity and susceptibility. Here, 19F-labeling of glutamine side chains using TGase and 2,2,2-trifluoroethylamine hydrochloride was established for use in an NMR study. This enzymatic 19F-labeling readily provided NMR detection of protein-drug and protein-protein interactions with complexes of about 100 kDa since the surface residues provided a good substrate for TGase. The 19F-labeling method was 3.5-fold more sensitive than 15N-labeling, and could be combined with other chemical modification techniques such as lysine 13C-methylation. 13C-dimethylated-19F-labeled FKBP12 provided more accurate information concerning the FK506 binding site.


Assuntos
Ressonância Magnética Nuclear Biomolecular/métodos , Proteína 1A de Ligação a Tacrolimo/química , Transglutaminases/química , Flúor , Humanos , Modelos Moleculares , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas
12.
Phys Chem Chem Phys ; 19(24): 16257-16266, 2017 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-28608875

RESUMO

We herein report the mechanism of amyloid formation of amyloid-ß (Aß) peptides on small (SUV) and large unilamellar vesicles (LUVs), which consist of 1-palmitoyl-2-oleoyl-sn-glycero-3-phosphocholine (POPC) lipids. Although Aß1-42 formed fibrils on SUVs at all POPC concentrations used, the lag time, elongation rate, maximum thioflavin T intensity, and fibrillar morphology were distinct, indicating polymorphic amyloid formation. LUVs, at low POPC concentrations, did not markedly affect fibrillation kinetics; however, increases in POPC concentrations suppressed amyloid formation. No significant differences in the thermal stabilities of Aß1-42 fibrils formed with and without vesicles were observed, although fibrils formed on SUVs showed some differences with dilution. SUVs markedly promoted Aß1-40 fibrillation by condensing Aß1-40, whereas no effects of LUVs on amyloidogenesis were detected. Salts greatly increased Aß1-40 amyloidogenicity on vesicles. We proposed comprehensive models for vesicle size-dependent Aß amyloidogenesis. Inhomogeneous packing defects in SUVs may induce distinct nucleation in the polymorphisms of amyloids and decreasing local concentrations of Aß with higher amounts of LUVs inhibits amyloid formation. We also pointed out that C-terminal hydrophobicity of Aß is important for amyloidogenesis on membranes.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Fragmentos de Peptídeos/metabolismo , Lipossomas Unilamelares/metabolismo , Doença de Alzheimer/metabolismo , Doença de Alzheimer/patologia , Peptídeos beta-Amiloides/química , Calorimetria , Dicroísmo Circular , Humanos , Cinética , Microscopia de Força Atômica , Fragmentos de Peptídeos/química , Fosfatidilcolinas/química , Lipossomas Unilamelares/química
13.
Biochem J ; 473(21): 3837-3854, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27551107

RESUMO

Although electrostatic interactions between negatively charged ferredoxin (Fd) and positively charged sulfite reductase (SiR) have been predominantly highlighted to characterize complex formation, the detailed nature of intermolecular forces remains to be fully elucidated. We investigated interprotein forces for the formation of an electron transfer complex between Fd and SiR and their relationship to SiR activity using various approaches over NaCl concentrations between 0 and 400 mM. Fd-dependent SiR activity assays revealed a bell-shaped activity curve with a maximum ∼40-70 mM NaCl and a reverse bell-shaped dependence of interprotein affinity. Meanwhile, intrinsic SiR activity, as measured in a methyl viologen-dependent assay, exhibited saturation above 100 mM NaCl. Thus, two assays suggested that interprotein interaction is crucial in controlling Fd-dependent SiR activity. Calorimetric analyses showed the monotonic decrease in interprotein affinity on increasing NaCl concentrations, distinguished from a reverse bell-shaped interprotein affinity observed from Fd-dependent SiR activity assay. Furthermore, Fd:SiR complex formation and interprotein affinity were thermodynamically adjusted by both enthalpy and entropy through electrostatic and non-electrostatic interactions. A residue-based NMR investigation on the addition of SiR to 15N-labeled Fd at the various NaCl concentrations also demonstrated that a combination of electrostatic and non-electrostatic forces stabilized the complex with similar interfaces and modulated the binding affinity and mode. Our findings elucidate that non-electrostatic forces are also essential for the formation and modulation of the Fd:SiR complex. We suggest that a complex configuration optimized for maximum enzymatic activity near physiological salt conditions is achieved by structural rearrangement through controlled non-covalent interprotein interactions.


Assuntos
Ferredoxinas/metabolismo , Sulfito Redutase (Ferredoxina)/metabolismo , Calorimetria , Dicroísmo Circular , Transporte de Elétrons/efeitos dos fármacos , Espectroscopia de Ressonância Magnética , Oxirredução/efeitos dos fármacos , Cloreto de Sódio/farmacologia , Termodinâmica
14.
Biochim Biophys Acta ; 1847(10): 1200-11, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26087388

RESUMO

Although acidic residues of ferredoxin (Fd) are known to be essential for activities of various Fd-dependent enzymes, including ferredoxin NADP(+) reductase (FNR) and sulfite reductase (SiR), through electrostatic interactions with basic residues of partner enzymes, non-electrostatic contributions such as hydrophobic forces remain largely unknown. We herein demonstrated that intermolecular hydrophobic and charge-charge interactions between Fd and enzymes were both critical for enzymatic activity. Systematic site-directed mutagenesis, which altered physicochemical properties of residues on the interfaces of Fd for FNR /SiR, revealed various changes in activities of both enzymes. The replacement of serine 43 of Fd to a hydrophobic residue (S43W) and charged residue (S43D) increased and decreased FNR activity, respectively, while S43W showed significantly lower SiR activity without affecting SiR activity by S43D, suggesting that hydrophobic and electrostatic interprotein forces affected FNR activity. Enzyme kinetics revealed that changes in FNR activity by mutating Fd correlated with Km, but not with kcat or activation energy, indicating that interprotein interactions determined FNR activity. Calorimetry-based binding thermodynamics between Fd and FNR showed different binding modes of FNR to wild-type, S43W, or S43D, which were controlled by enthalpy and entropy, as shown by the driving force plot. Residue-based NMR spectroscopy of (15)N FNR with Fds also revealed distinct binding modes of each complex based on different directions of NMR peak shifts with similar overall chemical shift differences. We proposed that subtle adjustments in both hydrophobic and electrostatic forces were critical for enzymatic activity, and these results may be applicable to protein-based electron transfer systems.

15.
Biochem Biophys Res Commun ; 477(4): 647-653, 2016 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-27349871

RESUMO

Humanin comprising 24 amino acid residues is a bioactive peptide that has been isolated from the brain tissue of patients with Alzheimer's disease. Humanin reportedly suppressed aging-related death of various cells due to amyloid fibrils and oxidative stress. There are reports that the cytoprotective activity of Humanin was remarkably enhanced by optical isomerization of the Ser14 residue from l to d form, but details of the molecular mechanism remained unclear. Here we demonstrated that Humanin d-Ser14 exhibited potent inhibitory activity against fibrillation of amyloid-ß and remarkably higher binding affinity for amyloid-ß than that of the Humanin wild-type and S14G mutant. In addition, we determined the solution structure of Humanin d-Ser14 by nuclear magnetic resonance (NMR) and showed that d-isomerization of the Ser14 residue enables drastic conformational rearrangement of Humanin. Furthermore, we identified an amyloid-ß-binding site on Humanin d-Ser14 at atomic resolution by NMR. These biophysical and high-resolution structural analyses clearly revealed structure-function relationships of Humanin and explained the driving force of the drastic conformational change and molecular basis of the potent anti-amyloid-ß fibrillation activity of Humanin caused by d-isomerization of the Ser14 residue. This is the first study to show correlations between the functional activity, tertiary structure, and partner recognition mode of Humanin and may lead to elucidation of the molecular mechanisms of the cytoprotective activity of Humanin.


Assuntos
Peptídeos beta-Amiloides/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ressonância Magnética Nuclear Biomolecular/métodos , Serina/metabolismo , Peptídeos beta-Amiloides/química , Dicroísmo Circular , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/química , Isomerismo , Microscopia Eletrônica de Transmissão , Serina/química
16.
Langmuir ; 32(8): 2010-22, 2016 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-26824789

RESUMO

Despite extensive studies on the folding and function of cytochrome c, the mechanisms underlying its aggregation remain largely unknown. We herein examined the aggregation behavior of the physiologically relevant two types of cytochrome c, metal-bound cytochrome c, and its fragment with high amyloidogenicity as predicted in alcohol/water mixtures. Although the aggregation propensity of holo cytochrome c was low due to high solubility, markedly unfolded apo cytochrome c, lacking the heme prosthetic group, strongly promoted the propensity for amorphous aggregation with increases in hydrophobicity. Silver-bound apo cytochrome c increased the capacity of fibrillar aggregation (i.e., protofibrils or immature fibrils) due to subtle structural changes of apo cytochrome c by strong binding of silver. However, mature amyloid fibrils were not detected for any of the cytochrome c variants or its fragment, even with extensive ultrasonication, which is a powerful amyloid inducer. These results revealed the intrinsically low amyloidogenicity of cytochrome c, which is beneficial for its homeostasis and function by facilitating the folding and minimizing irreversible amyloid formation. We propose that intrinsically low amyloidogenicity of cytochrome c is attributed to the low metastability of supersaturation. The phase diagram constructed based on solubility and aggregate type is useful for a comprehensive understanding of protein aggregation. Furthermore, amorphous aggregation, which is also viewed as a generic property of proteins, and amyloid fibrillation can be distinguished from each other by the metastability of supersaturation.

17.
J Biol Chem ; 289(41): 28569-78, 2014 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-25128531

RESUMO

Rac/Rop proteins are Rho-type small GTPases that act as molecular switches in plants. Recent studies have identified these proteins as key components in many major plant signaling pathways, such as innate immunity, pollen tube growth, and root hair formation. In rice, the Rac/Rop protein OsRac1 plays an important role in regulating the production of reactive oxygen species (ROS) by the NADPH oxidase OsRbohB during innate immunity. However, the molecular mechanism by which OsRac1 regulates OsRbohB remains unknown. Here, we report the crystal structure of OsRac1 complexed with the non-hydrolyzable GTP analog guanosine 5'-(ß,γ-imido)triphosphate at 1.9 Å resolution; this represents the first active-form structure of a plant small GTPase. To elucidate the ROS production in rice cells, structural information was used to design OsRac1 mutants that displayed reduced binding to OsRbohB. Only mutations in the OsRac1 Switch I region showed attenuated interactions with OsRbohB in vitro. In particular, Tyr(39) and Asp(45) substitutions suppressed ROS production in rice cells, indicating that these residues are critical for interaction with and activation of OsRbohB. Structural comparison of active-form OsRac1 with AtRop9 in its GDP-bound inactive form showed a large conformational difference in the vicinity of these residues. Our results provide new insights into the molecular mechanism of the immune response through OsRac1 and the various cellular responses associated with plant Rac/Rop proteins.


Assuntos
Guanilil Imidodifosfato/química , NADPH Oxidases/química , Oryza/química , Fosfatos de Fosfatidilinositol/química , Proteínas de Plantas/química , Proteínas rac1 de Ligação ao GTP/química , Sequência de Aminoácidos , Arabidopsis/enzimologia , Arabidopsis/genética , Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Regulação da Expressão Gênica de Plantas , Guanilil Imidodifosfato/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Proteínas Monoméricas de Ligação ao GTP/química , Proteínas Monoméricas de Ligação ao GTP/genética , Proteínas Monoméricas de Ligação ao GTP/metabolismo , Mutação , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Oryza/enzimologia , Oryza/genética , Oryza/imunologia , Oxirredução , Fosfatos de Fosfatidilinositol/metabolismo , Imunidade Vegetal , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Ligação Proteica , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Espécies Reativas de Oxigênio/química , Espécies Reativas de Oxigênio/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Transdução de Sinais , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
18.
J Biomol NMR ; 61(1): 55-64, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25428765

RESUMO

NMR structure determination of soluble proteins depends in large part on distance restraints derived from NOE. In this study, we examined the impact of paramagnetic relaxation enhancement (PRE)-derived distance restraints on protein structure determination. A high-resolution structure of the loop-rich soluble protein Sin1 could not be determined by conventional NOE-based procedures due to an insufficient number of NOE restraints. By using the 867 PRE-derived distance restraints obtained from the NOE-based structure determination procedure, a high-resolution structure of Sin1 could be successfully determined. The convergence and accuracy of the determined structure were improved by increasing the number of PRE-derived distance restraints. This study demonstrates that PRE-derived distance restraints are useful in the determination of a high-resolution structure of a soluble protein when the number of NOE constraints is insufficient.


Assuntos
Proteínas de Ligação a DNA/química , Ressonância Magnética Nuclear Biomolecular/instrumentação , Ressonância Magnética Nuclear Biomolecular/métodos , Proteínas de Schizosaccharomyces pombe/química , Schizosaccharomyces/química , Proteínas de Ligação a DNA/genética , Humanos , Schizosaccharomyces/genética , Proteínas de Schizosaccharomyces pombe/genética
19.
Anal Sci ; 40(5): 871-879, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38431921

RESUMO

Drug delivery systems (DDS) are important methods to maximize drug efficacy by enabling in vivo accumulation at the target site. Liposomes, which are nanoscale vesicles consisting of lipid bilayers, are widely used for clinical DDS. The lipid composition of an intact liposome is a significant factor that directly affects its characteristics and functions. Thus, it is important to develop quantitative or qualitative analytical methods to characterize the lipid composition. Nuclear magnetic resonance (NMR) of phosphorus (31P) is a particularly sensitive and non-destructive approach because phospholipid components have one 31P nucleus per molecule. Here, we demonstrate quantitative observations of individual phospholipids in intact liposomes via solution 31P-NMR. In addition, the 31P linewidths became narrower if the liposomes contained > 10 mol% of polyethylene glycol-(PEGylated) phospholipids, which also contributed to liposome down-sizing. Down-sizing and PEGylation are important strategies for efficient drug delivery. Hence, 31P-NMR can be used to analyze phospholipids in liposomes and related pharmaceutical preparations for quality control.

20.
Nat Struct Mol Biol ; 31(2): 275-282, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38177681

RESUMO

A wide range of de novo protein structure designs have been achieved, but the complexity of naturally occurring protein structures is still far beyond these designs. Here, to expand the diversity and complexity of de novo designed protein structures, we sought to develop a method for designing 'difficult-to-describe' α-helical protein structures composed of irregularly aligned α-helices like globins. Backbone structure libraries consisting of a myriad of α-helical structures with five or six helices were generated by combining 18 helix-loop-helix motifs and canonical α-helices, and five distinct topologies were selected for de novo design. The designs were found to be monomeric with high thermal stability in solution and fold into the target topologies with atomic accuracy. This study demonstrated that complicated α-helical proteins are created using typical building blocks. The method we developed will enable us to explore the universe of protein structures for designing novel functional proteins.


Assuntos
Dobramento de Proteína , Proteínas , Proteínas/química , Estrutura Secundária de Proteína , Conformação Proteica em alfa-Hélice
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA