Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Kidney Int ; 95(5): 1153-1166, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30827514

RESUMO

All nephrons in the mammalian kidney arise from a transient nephron progenitor population that is lost close to the time of birth. The generation of new nephron progenitors and their maintenance in culture are central to the success of kidney regenerative strategies. Using a lentiviral screening approach, we previously generated a human induced nephron progenitor-like state in vitro using a pool of six transcription factors. Here, we sought to develop a more efficient approach for direct reprogramming of human cells that could be applied in vivo. PiggyBac transposons are a non-viral integrating gene delivery system that is suitable for in vivo use and allows for simultaneous delivery of multiple genes. Using an inducible piggyBac transposon system, we optimized a protocol for the direct reprogramming of HK2 cells to induced nephron progenitor-like cells with expression of only 3 transcription factors (SNAI2, EYA1, and SIX1). Culture in conditions supportive of the nephron progenitor state further increased the expression of nephron progenitor genes. The refined protocol was then applied to primary human renal epithelial cells, which integrated into developing nephron structures in vitro and in vivo. Such inducible reprogramming to nephron progenitor-like cells could facilitate direct cellular reprogramming for kidney regeneration.


Assuntos
Reprogramação Celular/genética , Elementos de DNA Transponíveis/genética , Engenharia Genética/métodos , Néfrons/fisiologia , Regeneração/genética , Células Cultivadas , Técnicas de Transferência de Genes , Proteínas de Homeodomínio/genética , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/genética , Proteínas Nucleares/genética , Cultura Primária de Células , Proteínas Tirosina Fosfatases/genética , Fatores de Transcrição da Família Snail/genética
2.
J Am Soc Nephrol ; 26(1): 81-94, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24904087

RESUMO

We previously described a mesenchymal stem cell (MSC)-like population within the adult mouse kidney that displays long-term colony-forming efficiency, clonogenicity, immunosuppression, and panmesodermal potential. Although phenotypically similar to bone marrow (BM)-MSCs, kidney MSC-like cells display a distinct expression profile. FACS sorting from Hoxb7/enhanced green fluorescent protein (GFP) mice identified the collecting duct as a source of kidney MSC-like cells, with these cells undergoing an epithelial-to-mesenchymal transition to form clonogenic, long-term, self-renewing MSC-like cells. Notably, after extensive passage, kidney MSC-like cells selectively integrated into the aquaporin 2-positive medullary collecting duct when microinjected into the kidneys of neonatal mice. No epithelial integration was observed after injection of BM-MSCs. Indeed, kidney MSC-like cells retained a capacity to form epithelial structures in vitro and in vivo, and conditioned media from these cells supported epithelial repair in vitro. To investigate the origin of kidney MSC-like cells, we further examined Hoxb7(+) fractions within the kidney across postnatal development, identifying a neonatal interstitial GFP(lo) (Hoxb7(lo)) population displaying an expression profile intermediate between epithelium and interstitium. Temporal analyses with Wnt4(GCE/+):R26(tdTomato/+) mice revealed evidence for the intercalation of a Wnt4-expressing interstitial population into the neonatal collecting duct, suggesting that such intercalation may represent a normal developmental mechanism giving rise to a distinct collecting duct subpopulation. These results extend previous observations of papillary stem cell activity and collecting duct plasticity and imply a role for such cells in collecting duct formation and, possibly, repair.


Assuntos
Células Epiteliais/citologia , Túbulos Renais Coletores/citologia , Rim/metabolismo , Células-Tronco Mesenquimais/citologia , Animais , Células da Medula Óssea/citologia , Diferenciação Celular , Proliferação de Células , Separação Celular , Condrócitos/citologia , Colágeno/metabolismo , Cães , Transição Epitelial-Mesenquimal , Feminino , Citometria de Fluxo , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Proteínas de Fluorescência Verde/metabolismo , Proteínas de Homeodomínio/metabolismo , Túbulos Renais/citologia , Células Madin Darby de Rim Canino , Camundongos , Osteócitos/citologia , Fenótipo
3.
J Am Soc Nephrol ; 24(9): 1424-34, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23766537

RESUMO

Direct reprogramming involves the enforced re-expression of key transcription factors to redefine a cellular state. The nephron progenitor population of the embryonic kidney gives rise to all cells within the nephron other than the collecting duct through a mesenchyme-to-epithelial transition, but this population is exhausted around the time of birth. Here, we sought to identify the conditions under which adult proximal tubule cells could be directly transcriptionally reprogrammed to nephron progenitors. Using a combinatorial screen for lineage-instructive transcription factors, we identified a pool of six genes (SIX1, SIX2, OSR1, EYA1, HOXA11, and SNAI2) that activated a network of genes consistent with a cap mesenchyme/nephron progenitor phenotype in the adult proximal tubule (HK2) cell line. Consistent with these reprogrammed cells being nephron progenitors, we observed differential contribution of the reprogrammed population into the Six2(+) nephron progenitor fields of an embryonic kidney explant. Dereplication of the pool suggested that SNAI2 can suppress E-CADHERIN, presumably assisting in the epithelial-to-mesenchymal transition (EMT) required to form nephron progenitors. However, neither TGFß-induced EMT nor SNAI2 overexpression alone was sufficient to create this phenotype, suggesting that additional factors are required. In conclusion, these results suggest that reinitiation of kidney development from a population of adult cells by generating embryonic progenitors may be feasible, opening the way for additional cellular and bioengineering approaches to renal repair and regeneration.


Assuntos
Diferenciação Celular/fisiologia , Túbulos Renais Proximais/citologia , Néfrons/embriologia , Células-Tronco/citologia , Fatores de Transcrição/fisiologia , Transcrição Gênica/genética , Caderinas/genética , Caderinas/fisiologia , Transição Epitelial-Mesenquimal/fisiologia , Testes Genéticos/métodos , Células HEK293 , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/fisiologia , Humanos , Túbulos Renais Proximais/fisiologia , Néfrons/citologia , Fenótipo , Fatores de Transcrição da Família Snail , Fatores de Transcrição/genética
4.
Growth Horm IGF Res ; 22(1): 6-16, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22197584

RESUMO

OBJECTIVE: IGF-1 is an important regulator of postnatal growth in mammals. In mice, a non-circulating, locally acting isoform of IGF-1, IGF-1Ea, has been documented as a central regulator of muscle regeneration and has been shown to improve repair in the heart and skin. In this study, we examine whether local production of IGF1-Ea protein improves tubular repair after renal ischemia reperfusion injury. DESIGN: Transgenic mice in which the proximal-tubule specific promoter Sglt2 was driving the expression of an Igf-1Ea transgene. These animals were treated with an ischemic-reperfusion injury and the response at 24h and 5days compared with wildtype littermates. RESULTS: Transgenic mice demonstrated rapid and enhanced renal injury in comparison to wild type mice. Five days after injury the wild type and low expressing Igf-1Ea transgenic mice showed significant tubular recovery, while high expressing Igf-1Ea transgenic mice displayed significant tubular damage. This marked injury was accompanied by a two-fold increase in the number of F4/80 positive macrophages and a three-fold increase in the number of Gr1-positive neutrophils in the kidney. At the molecular level, Igf-1Ea expression resulted in significant up-regulation of proinflammatory cytokines such as TNF-α and Ccl2. Expression of Nfatc1 was also delayed, suggesting reduced tubular proliferation after kidney injury. CONCLUSIONS: These data indicate that, unlike the muscle, heart and skin, elevated levels of IGF-1Ea in the proximal tubules exacerbates ischemia reperfusion injury resulting in increased recruitment of macrophages and neutrophils and delays repair in a renal setting.


Assuntos
Fator de Crescimento Insulin-Like I/metabolismo , Túbulos Renais Proximais/metabolismo , Rim/irrigação sanguínea , Traumatismo por Reperfusão/metabolismo , Animais , Inflamação/metabolismo , Fator de Crescimento Insulin-Like I/genética , Camundongos , Camundongos Transgênicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo
5.
Stem Cell Res ; 8(1): 58-73, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22099021

RESUMO

Cells resembling bone marrow mesenchymal stem cells (MSC) have been isolated from many organs but their functional relationships have not been thoroughly examined. Here we compared the immunophenotype, gene expression, multipotency and immunosuppressive potential of MSC-like colony-forming cells from adult murine bone marrow (bmMSC), kidney (kCFU-F) and heart (cCFU-F), cultured under uniform conditions. All populations showed classic MSC morphology and in vitro mesodermal multipotency. Of the two solid organ-specific CFU-F, only kCFU-F displayed suppression of T-cell alloreactivity in vitro, albeit to a lesser extent than bmMSC. Quantitative immunophenotyping using 81 phycoerythrin-conjugated CD antibodies demonstrated that all populations contained high percentages of cells expressing diagnostic MSC surface markers (Sca1, CD90.2, CD29, CD44), as well as others noted previously on murine MSC (CD24, CD49e, CD51, CD80, CD81, CD105). Illumina microarray expression profiling and bioinformatic analysis indicated a correlation of gene expression of 0.88-0.92 between pairwise comparisons. All populations expressed approximately 66% of genes in the pluripotency network (Plurinet), presumably reflecting their stem-like character. Furthermore, all populations expressed genes involved in immunomodulation, homing and tissue repair, suggesting these as conserved functions for MSC-like cells in solid organs. Despite this molecular congruence, strong biases in gene and protein expression and pathway activity were seen, suggesting organ-specific functions. Hence, tissue-derived MSC may also retain unique properties potentially rendering them more appropriate as cellular therapeutic agents for their organ of origin.


Assuntos
Células da Medula Óssea/citologia , Imunofenotipagem/métodos , Rim/citologia , Células-Tronco Mesenquimais/citologia , Miocárdio/citologia , Transcriptoma/genética , Animais , Células da Medula Óssea/metabolismo , Forma Celular , Ensaio de Unidades Formadoras de Colônias , Epitopos/imunologia , Perfilação da Expressão Gênica , Regulação da Expressão Gênica , Redes Reguladoras de Genes/genética , Terapia de Imunossupressão , Células-Tronco Mesenquimais/metabolismo , Camundongos , Especificidade de Órgãos/genética , Células-Tronco Pluripotentes/citologia , Células-Tronco Pluripotentes/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA