Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Molecules ; 27(13)2022 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-35807549

RESUMO

Plant bioactive compounds, particularly apigenin, have therapeutic potential and functional activities that aid in the prevention of infectious diseases in many mammalian bodies and promote tumor growth inhibition. Apigenin is a flavonoid with low toxicities and numerous bioactive properties due to which it has been considered as a traditional medicine for decades. Apigenin shows synergistic effects in combined treatment with sorafenib in the HepG2 human cell line (HCC) in less time and statistically reduces the viability of tumor cells, migration, gene expression and apoptosis. The combination of anti-cancerous drugs with apigenin has shown health promoting potential against various cancers. It can prevent cell mobility, maintain the cell cycle and stimulate the immune system. Apigenin also suppresses mTOR activity and raises the UVB-induced phagocytosis and reduces the cancerous cell proliferation and growth. It also has a high safety threshold, and active (anti-cancer) doses can be gained by consuming a vegetable and apigenin rich diet. Apigenin also boosted autophagosome formation, decreased cell proliferation and activated autophagy by preventing the activity of the PI3K pathway, specifically in HepG2 cells. This paper provides an updated overview of apigenin's beneficial anti-inflammatory, antibacterial, antiviral, and anticancer effects, making it a step in the right direction for therapeutics. This study also critically analyzed the effect of apigenin on cancer cell signaling pathways including the PI3K/AKT/MTOR, JAK/STAT, NF-κB and ERK/MAPK pathways.


Assuntos
Apigenina , Fosfatidilinositol 3-Quinases , Animais , Apigenina/farmacologia , Apoptose , Linhagem Celular Tumoral , Proliferação de Células , Humanos , Mamíferos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
2.
Appl Nanosci ; 12(11): 3127-3140, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677529

RESUMO

The diagnosis of novel coronavirus (COVID-19) has gained the spotlight of the world's scientific community since December 2019 and it remains an important issue due to the emergence of novel variants around the globe. Early diagnosis of coronavirus is captious to prevent and hard to control. This pandemic can be eradicated by implementing suppressing strategies which can lead to better outcomes and more lives being saved. Therefore, the analysis showed that COVID-19 can only be managed by adopting public health measures, such as testing, isolation and social distancing. Much work has been done to diagnose coronavirus. Various testing technologies have been developed, opted and modified for rapid and accurate detection. The advanced molecular diagnosis relies on the detection of SARS-CoV-2 as it has been considered the main causative agent of this pandemic. Studies have shown that several molecular tests are considered essential for the confirmation of coronavirus infection. Various serology-based tests are also used in the detection and diagnosis of coronavirus including point-of-care assays and high-throughput enzyme immunoassays that aid in the diagnosis of COVID-19. Both these assays are time-consuming and have less diagnostic accuracy. Nanotechnology has the potential to develop new strategies to combat COVID-19 by developing diagnostics and therapeutics. In this review, we have focused on the nanotechnology-based detection techniques including nanoparticles and biosensors to obstruct the spread of SARS-CoV-2.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA