Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
1.
Proc Natl Acad Sci U S A ; 115(9): E1991-E2000, 2018 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-29444861

RESUMO

Electron microscope studies have shown that the switched-off state of myosin II in muscle involves intramolecular interaction between the two heads of myosin and between one head and the tail. The interaction, seen in both myosin filaments and isolated molecules, inhibits activity by blocking actin-binding and ATPase sites on myosin. This interacting-heads motif is highly conserved, occurring in invertebrates and vertebrates, in striated, smooth, and nonmuscle myosin IIs, and in myosins regulated by both Ca2+ binding and regulatory light-chain phosphorylation. Our goal was to determine how early this motif arose by studying the structure of inhibited myosin II molecules from primitive animals and from earlier, unicellular species that predate animals. Myosin II from Cnidaria (sea anemones, jellyfish), the most primitive animals with muscles, and Porifera (sponges), the most primitive of all animals (lacking muscle tissue) showed the same interacting-heads structure as myosins from higher animals, confirming the early origin of the motif. The social amoeba Dictyostelium discoideum showed a similar, but modified, version of the motif, while the amoeba Acanthamoeba castellanii and fission yeast (Schizosaccharomyces pombe) showed no head-head interaction, consistent with the different sequences and regulatory mechanisms of these myosins compared with animal myosin IIs. Our results suggest that head-head/head-tail interactions have been conserved, with slight modifications, as a mechanism for regulating myosin II activity from the emergence of the first animals and before. The early origins of these interactions highlight their importance in generating the inhibited (relaxed) state of myosin in muscle and nonmuscle cells.


Assuntos
Miosina Tipo II/antagonistas & inibidores , Actinas/química , Trifosfato de Adenosina/química , Motivos de Aminoácidos , Animais , Evolução Biológica , Cálcio/química , Linhagem Celular , Biologia Computacional , Microscopia Crioeletrônica , Dictyostelium , Processamento de Imagem Assistida por Computador , Insetos , Microscopia Eletrônica , Miosina Tipo II/química , Fosforilação , Poríferos , Ligação Proteica , Schizosaccharomyces , Cifozoários , Anêmonas-do-Mar , Perus
2.
Biochem Biophys Res Commun ; 524(1): 198-204, 2020 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-31983430

RESUMO

Thick filaments from some striated muscles are regulated by phosphorylation of myosin regulatory light chains (RLCs). A tarantula thick filament quasi-atomic model achieved by cryo-electron microscopy has advanced our understanding on how this regulation occurs. In native thick filaments, an asymmetric intramolecular interaction between the actin-binding region of one myosin head ("blocked") and the converter region of the other head ("free") switches both heads off, establishing the myosin interacting-heads motif (IHM). This structural finding, together with motility assays, sequence analysis, and mass spectrometry (MS) observations have suggested a cooperative phosphorylation activation (CPA) mechanism for thick filament activation. In the CPA mechanism, some myosin free heads are phosphorylated constitutively in Ser35 by protein kinase C (PKC) and -under Ca2+ control - others (free or blocked) heads temporally on Ser45 by myosin light chain kinase (MLCK), in a way that explains both force development and post-tetanic potentiation in tarantula striated muscle. We tested this model using MS to verify if Ca2+-activation phosphorylates de novo un-phosphorylated Ser35 heads. For this purpose, we standardized an approach based on 18O isotopic ATP labeling to accurately detect by MS-MS the RLC phosphorylation under Ca2+-activation. MS spectra showed de novo18O incorporation only on Ser45 but not on Ser35. As the constitutive Ser35 phosphorylation cannot be dephosphorylated, this result suggests that the number of RLCs on free heads with constitutively phosphorylated Ser35 does remain constant on Ca2+-activation supporting that the myosin has a basal activation and force modulation or potentiation is controlled by MLCK Ser45 phosphorylation.


Assuntos
Marcação por Isótopo , Miosinas/metabolismo , Isótopos de Oxigênio/metabolismo , Serina/metabolismo , Aranhas/metabolismo , Sequência de Aminoácidos , Animais , Cadeias Leves de Miosina/química , Cadeias Leves de Miosina/metabolismo , Peptídeos/química , Peptídeos/metabolismo , Fosforilação
3.
Proc Natl Acad Sci U S A ; 112(42): E5660-8, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26443857

RESUMO

Muscle tissues are classically divided into two major types, depending on the presence or absence of striations. In striated muscles, the actin filaments are anchored at Z-lines and the myosin and actin filaments are in register, whereas in smooth muscles, the actin filaments are attached to dense bodies and the myosin and actin filaments are out of register. The structure of the filaments in smooth muscles is also different from that in striated muscles. Here we have studied the structure of myosin filaments from the smooth muscles of the human parasite Schistosoma mansoni. We find, surprisingly, that they are indistinguishable from those in an arthropod striated muscle. This structural similarity is supported by sequence comparison between the schistosome myosin II heavy chain and known striated muscle myosins. In contrast, the actin filaments of schistosomes are similar to those of smooth muscles, lacking troponin-dependent regulation. We conclude that schistosome muscles are hybrids, containing striated muscle-like myosin filaments and smooth muscle-like actin filaments in a smooth muscle architecture. This surprising finding has broad significance for understanding how muscles are built and how they evolved, and challenges the paradigm that smooth and striated muscles always have distinctly different components.


Assuntos
Músculo Liso/metabolismo , Miosinas/metabolismo , Schistosoma mansoni/metabolismo , Sequência de Aminoácidos , Animais , Microscopia Eletrônica , Dados de Sequência Molecular , Músculo Liso/ultraestrutura , Miosinas/química , Filogenia , Homologia de Sequência de Aminoácidos
4.
J Struct Biol ; 193(1): 45-54, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26592473

RESUMO

Single particle analysis is widely used for three-dimensional reconstruction of helical filaments. Near-atomic resolution has been obtained for several well-ordered filaments. However, it is still a challenge to achieve high resolution for filaments with flexible subunits and a large axial rise per subunit relative to pixel size. Here, we describe an approach that improves the resolution in such cases. In filaments with a large axial rise, many segments must be shifted a long distance along the filament axis to match with a reference projection, potentially causing loss of alignment accuracy and hence resolution. In our study of myosin filaments, we overcame this problem by pre-determining the axial positions of myosin head crowns within segments to decrease the alignment error. In addition, homogeneous, well-ordered segments were selected from the raw data set by checking the assigned azimuthal rotation angle of segments in each filament against those expected for perfect helical symmetry. These procedures improved the resolution of the filament reconstruction from 30 Å to 13 Å. This approach could be useful in other helical filaments with a large axial rise and/or flexible subunits.


Assuntos
Microscopia Crioeletrônica/métodos , Citoesqueleto/metabolismo , Processamento de Imagem Assistida por Computador/métodos , Miosinas/metabolismo , Citoesqueleto de Actina/metabolismo , Animais , Contração Muscular/fisiologia , Aranhas , Difração de Raios X
5.
Biophys J ; 105(9): 2114-22, 2013 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-24209856

RESUMO

Myosin filaments from many muscles are activated by phosphorylation of their regulatory light chains (RLCs). Structural analysis of relaxed tarantula thick filaments shows that the RLCs of the interacting free and blocked myosin heads are in different environments. This and other data suggested a phosphorylation mechanism in which Ser-35 of the free head is exposed and constitutively phosphorylated by protein kinase C, whereas the blocked head is hidden and unphosphorylated; on activation, myosin light chain kinase phosphorylates the monophosphorylated free head followed by the unphosphorylated blocked head, both at Ser-45. Our goal was to test this model of phosphorylation. Mass spectrometry of quickly frozen, intact muscles showed that only Ser-35 was phosphorylated in the relaxed state. The location of this constitutively phosphorylated Ser-35 was analyzed by immunofluorescence, using antibodies specific for unphosphorylated or phosphorylated Ser-35. In the relaxed state, myofibrils were labeled by anti-pSer-35 but not by anti-Ser-35, whereas in rigor, labeling was similar with both. This suggests that only pSer-35 is exposed in the relaxed state, while in rigor, Ser-35 is also exposed. In the interacting-head motif of relaxed filaments, only the free head RLCs are exposed, suggesting that the constitutive pSer-35 is on the free heads, consistent with the proposed mechanism.


Assuntos
Aracnídeos , Proteínas de Artrópodes/química , Proteínas de Artrópodes/metabolismo , Miosinas/química , Miosinas/metabolismo , Actinas/metabolismo , Sequência de Aminoácidos , Animais , Proteínas de Artrópodes/isolamento & purificação , Glicerol/química , Modelos Moleculares , Dados de Sequência Molecular , Quinase de Cadeia Leve de Miosina/metabolismo , Miosinas/isolamento & purificação , Fosforilação , Proteína Quinase C/metabolismo , Serina/metabolismo , Ureia/química
6.
Viruses ; 15(2)2023 02 17.
Artigo em Inglês | MEDLINE | ID: mdl-36851772

RESUMO

The SARS-CoV-2 pandemic has again shown that structural biology plays an important role in understanding biological mechanisms and exploiting structural data for therapeutic interventions. Notably, previous work on SARS-related glycoproteins has paved the way for the rapid structural determination of the SARS-CoV-2 S glycoprotein, which is the main target for neutralizing antibodies. Therefore, all vaccine approaches aimed to employ S as an immunogen to induce neutralizing antibodies. Like all enveloped virus glycoproteins, SARS-CoV-2 S native prefusion trimers are in a metastable conformation, which primes the glycoprotein for the entry process via membrane fusion. S-mediated entry is associated with major conformational changes in S, which can expose many off-target epitopes that deviate vaccination approaches from the major aim of inducing neutralizing antibodies, which mainly target the native prefusion trimer conformation. Here, we review the viral glycoprotein stabilization methods developed prior to SARS-CoV-2, and applied to SARS-CoV-2 S, in order to stabilize S in the prefusion conformation. The importance of structure-based approaches is highlighted by the benefits of employing stabilized S trimers versus non-stabilized S in vaccines with respect to their protective efficacy.


Assuntos
COVID-19 , Humanos , COVID-19/prevenção & controle , SARS-CoV-2 , Anticorpos Neutralizantes , Epitopos , Glicoproteínas
7.
Nat Struct Mol Biol ; 30(1): 81-90, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-36604498

RESUMO

The endosomal sorting complex required for transport (ESCRT) is a highly conserved protein machinery that drives a divers set of physiological and pathological membrane remodeling processes. However, the structural basis of ESCRT-III polymers stabilizing, constricting and cleaving negatively curved membranes is yet unknown. Here we present cryo-EM structures of membrane-coated CHMP2A-CHMP3 filaments from Homo sapiens of two different diameters at 3.3 and 3.6 Å resolution. The structures reveal helical filaments assembled by CHMP2A-CHMP3 heterodimers in the open ESCRT-III conformation, which generates a partially positive charged membrane interaction surface, positions short N-terminal motifs for membrane interaction and the C-terminal VPS4 target sequence toward the tube interior. Inter-filament interactions are electrostatic, which may facilitate filament sliding upon VPS4-mediated polymer remodeling. Fluorescence microscopy as well as high-speed atomic force microscopy imaging corroborate that VPS4 can constrict and cleave CHMP2A-CHMP3 membrane tubes. We therefore conclude that CHMP2A-CHMP3-VPS4 act as a minimal membrane fission machinery.


Assuntos
Complexos Endossomais de Distribuição Requeridos para Transporte , Polímeros , Humanos , Complexos Endossomais de Distribuição Requeridos para Transporte/química , Polímeros/metabolismo , Proteínas de Transporte/metabolismo , Transporte Proteico
8.
Cell Rep Med ; 3(2): 100528, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35233549

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has caused an ongoing global health crisis. Here, we present as a vaccine candidate synthetic SARS-CoV-2 spike (S) glycoprotein-coated lipid vesicles that resemble virus-like particles. Soluble S glycoprotein trimer stabilization by formaldehyde cross-linking introduces two major inter-protomer cross-links that keep all receptor-binding domains in the "down" conformation. Immunization of cynomolgus macaques with S coated onto lipid vesicles (S-LVs) induces high antibody titers with potent neutralizing activity against the vaccine strain, Alpha, Beta, and Gamma variants as well as T helper (Th)1 CD4+-biased T cell responses. Although anti-receptor-binding domain (RBD)-specific antibody responses are initially predominant, the third immunization boosts significant non-RBD antibody titers. Challenging vaccinated animals with SARS-CoV-2 shows a complete protection through sterilizing immunity, which correlates with the presence of nasopharyngeal anti-S immunoglobulin G (IgG) and IgA titers. Thus, the S-LV approach is an efficient and safe vaccine candidate based on a proven classical approach for further development and clinical testing.


Assuntos
Vacinas contra COVID-19/administração & dosagem , COVID-19/prevenção & controle , SARS-CoV-2/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinação/métodos , Vacinas de Partículas Semelhantes a Vírus/administração & dosagem , Animais , Anticorpos Neutralizantes/imunologia , Anticorpos Antivirais/imunologia , COVID-19/epidemiologia , COVID-19/imunologia , COVID-19/virologia , Vacinas contra COVID-19/imunologia , Chlorocebus aethiops , Modelos Animais de Doenças , Células HEK293 , Humanos , Imunoglobulina A/imunologia , Imunoglobulina G/imunologia , Lipossomos , Macaca fascicularis , Masculino , Pandemias/prevenção & controle , Células Th1/imunologia , Resultado do Tratamento , Vacinas de Partículas Semelhantes a Vírus/imunologia , Células Vero
9.
Pathogens ; 11(1)2021 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-35055970

RESUMO

The S. mansoni adult worm n-butanol extract (Sm-AWBE) has been previously shown to contain specific S. mansoni antigens that have been used for immunodiagnosis of schistosomiasis in solid phase alkaline phosphatase immunoassay (APIA) and western blot (WB) analyses. Sm-AWBE was also used in immunoprotection studies against a fatal live-cercariae challenge in experimental mouse vaccination (~43% protection). The Sm-AWBE fraction was prepared by mixing adult worm membranous suspensions with aqueous-saturated n-butanol, centrifuging and recovering n-butanol-resistant proteins in the aqueous phase. Here we report a preliminary identification of Sm-AWBE protein components as revealed from a qualitative proteomic study after processing Sm-AWBE by 1D-gel electrophoresis, in-gel and in-solution tryptic digestions, and mass spectrometry analyses. We identified 33 proteins in Sm-AWBE, all previously known S. mansoni proteins and antigens; among them, immunomodulatory proteins and proteins mostly involved in host-parasite interactions. About 81.8% of the identified Sm-AWBE proteins are antigenic. STRING analysis showed a set of Sm-AWBE proteins configuring a small network of interactive proteins and a group of proteins without interactions. Functional groups of proteins included muscle contraction, antioxidant, GPI-anchored phosphoesterases, regulatory 14-3-3, various enzymes and stress proteins. The results widen the possibilities to design novel antigen combinations for better diagnostic and immunoprotective strategies for schistosomiasis control.

10.
Vaccines (Basel) ; 9(7)2021 Jul 06.
Artigo em Inglês | MEDLINE | ID: mdl-34358165

RESUMO

Stabilization of the HIV-1 Envelope glycoprotein trimer (Env) in its native pre-fusion closed conformation is regarded as one of several requirements for the induction of neutralizing antibody (nAb) responses, which, in turn, will most likely be a prerequisite for the development of an efficacious preventive vaccine. Here, we systematically analyzed how the stepwise stabilization of a clade C consensus (ConC) Env immunogen impacts biochemical and biophysical protein traits such as antigenicity, thermal stability, structural integrity, and particle size distribution. The increasing degree of conformational rigidification positively correlates with favorable protein characteristics, leading to optimized homogeneity of the protein preparations, increased thermal stability, and an overall favorable binding profile of structure-dependent broadly neutralizing antibodies (bnAbs) and non-neutralizing antibodies (non-nAbs). We confirmed that increasing the structural integrity and stability of the Env trimers positively correlates with the quality of induced antibody responses by the immunogens. These and other data contribute to the selection of ConCv5 KIKO as novel Env immunogens for use within the European Union's H2020 Research Consortium EHVA (European HIV Alliance) for further preclinical analysis and phase 1 clinical development.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA