RESUMO
Group B streptococcus (GBS) is a chain-forming commensal bacterium and opportunistic pathogen that resides in the gastrointestinal and genitourinary tract of healthy adults. GBS can cause various infections and related complications in pregnant and nonpregnant women, adults, and newborns. Investigations of the mechanisms by which GBS causes disease pathogenesis often utilize colony count assays to estimate bacterial population size in experimental models. In other streptococci, such as group A streptococcus and pneumococcus, variation in the chain length of the bacteria that can occur naturally or due to mutation can affect facets of pathogenesis, such as adherence to or colonization of a host. No studies have reported a relationship between GBS chain length and pathogenicity. Here, we used GBS strain 874391 and several derivative strains displaying longer chain-forming phenotypes (874391pgapC, 874391ΔcovR, 874391Δstp1) to assess the impact of chain length on bacterial population estimates based on the colony-forming unit (c.f.u.) assay. Disruption of GBS chains via bead beating or sonication in conjunction with fluorescence microscopy was used to compare chaining phenotypes pre- and post-disruption to detect long- and short-chain forms, respectively. We used a murine model of GBS colonization of the female reproductive tract to assess whether chaining may affect bacterial colonization dynamics in the host during chronic infection in vivo. Overall, we found that GBS exhibiting long-chain form can significantly affect population size estimates based on the colony count assay. Additionally, we found that the length of chaining of GBS can affect virulence in the reproductive tract colonization model. Collectively, these findings have implications for studies of GBS that utilize colony count assays to measure GBS populations and establish that chain length can affect infection dynamics and disease pathogenesis for this important opportunistic pathogen.
Assuntos
Infecções Estreptocócicas , Streptococcus agalactiae , Fatores de Virulência , Streptococcus agalactiae/genética , Streptococcus agalactiae/patogenicidade , Feminino , Infecções Estreptocócicas/microbiologia , Camundongos , Animais , Fatores de Virulência/genética , Fatores de Virulência/metabolismo , Humanos , Contagem de Colônia Microbiana , Virulência , Modelos Animais de Doenças , GravidezRESUMO
Metals such as copper (Cu) and zinc (Zn) are important trace elements that can affect bacterial cell physiology but can also intoxicate bacteria at high concentrations. Discrete genetic systems for management of Cu and Zn efflux have been described in several bacterial pathogens, including streptococci. However, insight into molecular cross-talk between systems for Cu and Zn management in bacteria that drive metal detoxification, is limited. Here, we describe a biologically consequential cross-system effect of metal management in group B Streptococcus (GBS) governed by the Cu-responsive copY regulator in response to Zn. RNAseq analysis of wild-type (WT) and copY-deficient GBS subjected to metal stress revealed unique transcriptional links between the systems for Cu and Zn detoxification. We show that the Cu-sensing role of CopY extends beyond Cu and enables CopY to regulate Cu and Zn stress responses that effect changes in gene function for central cellular processes, including riboflavin synthesis. CopY also supported GBS intracellular survival in human macrophages and virulence during disseminated infection in mice. In addition, we show a novel role for CovR in modulating GBS resistance to Zn intoxication. Identification of the Zn resistome of GBS using TraDIS revealed a suite of genes essential for GBS growth in metal stress. Several of the genes identified are novel to systems that support bacterial survival in metal stress and represent a diverse set of mechanisms that underpin microbial metal homeostasis during cell stress. Overall, this study reveals a new and important mechanism of cross-system complexity driven by CopY in bacteria to regulate cellular management of metal stress and survival.
Assuntos
Cobre , Zinco , Animais , Bactérias , Fenômenos Fisiológicos Celulares , Homeostase , Humanos , Camundongos , Streptococcus agalactiae/genéticaRESUMO
In many Gram-positive bacteria, the redox-sensing transcriptional repressor Rex controls central carbon and energy metabolism by sensing the intra cellular balance between the reduced and oxidized forms of nicotinamide adenine dinucleotide; the NADH/NAD+ ratio. Here, we report high-resolution crystal structures and characterization of a Rex ortholog (Gbs1167) in the opportunistic pathogen, Streptococcus agalactiae, also known as group B streptococcus (GBS). We present structures of Rex bound to NAD+ and to a DNA operator which are the first structures of a Rex-family member from a pathogenic bacterium. The structures reveal the molecular basis of DNA binding and the conformation alterations between the free NAD+ complex and DNA-bound form of Rex. Transcriptomic analysis revealed that GBS Rex controls not only central metabolism, but also expression of the monocistronic rex gene as well as virulence gene expression. Rex enhances GBS virulence after disseminated infection in mice. Mechanistically, NAD+ stabilizes Rex as a repressor in the absence of NADH. However, GBS Rex is unique compared to Rex regulators previously characterized because of its sensing mechanism: we show that it primarily responds to NAD+ levels (or growth rate) rather than to the NADH/NAD+ ratio. These results indicate that Rex plays a key role in GBS pathogenicity by modulating virulence factor gene expression and carbon metabolism to harvest nutrients from the host.
Assuntos
Proteínas de Bactérias/genética , Produtos do Gene rex/genética , NAD/deficiência , Regulon , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/patogenicidade , Virulência , Animais , Proteínas de Bactérias/química , Proteínas de Bactérias/metabolismo , Cristalografia por Raios X , Feminino , Perfilação da Expressão Gênica , Produtos do Gene rex/química , Produtos do Gene rex/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Ligação Proteica , Conformação Proteica , Infecções Estreptocócicas/metabolismoRESUMO
In bacteria, copper (Cu) can support metabolic processes as an enzymatic cofactor but can also cause cell damage if present in excess, leading to intoxication. In group B Streptococcus (GBS), a system for control of Cu efflux based on the prototypical cop operon supports survival during Cu stress. In some other bacteria, genetic systems additional to the cop operon are engaged during Cu stress and also contribute to the management of cellular Cu homeostasis. Here, we examined genetic systems beyond the cop operon in GBS for regions that contribute to survival of GBS in Cu stress using a forward genetic screen and probe of the entire bacterial genome. A high-density mutant library, generated using pGh9-ISS1, was used to expose GBS to Cu stress and compare it to nonexposed controls en masse. Eight genes were identified as essential for GBS survival in Cu stress, whereas five genes constrained GBS growth in Cu stress. The genes encode varied factors including enzymes for metabolism, cell wall synthesis, transporters, and cell signaling factors. Targeted mutation of the genes validated their roles in GBS resistance to Cu stress. Excepting copA, the genes identified are new to the area of bacterial metal ion intoxication. We conclude that a discrete and limited suite of genes beyond the cop operon in GBS contributes to a repertoire of mechanisms used to survive Cu stress in vitro and achieve cellular homeostasis. IMPORTANCE Genetic systems for copper (Cu) homeostasis in bacteria, including streptococci, are vital to survive metal ion stress. Genetic systems that underpin survival of GBS during Cu stress, beyond the archetypal cop operon for Cu management, are undefined. We show that Streptococcus resists Cu intoxication by utilizing a discrete and limited suite of genes beyond the cop operon, including several genes that are new to the area of bacterial cell metal ion homeostasis. The Cu resistome of GBS defined here enhances our understanding of metal ion homeostasis in GBS.
Assuntos
Cobre , Regulação Bacteriana da Expressão Gênica , Bactérias/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Cobre/metabolismo , Metais/metabolismo , Óperon , Streptococcus agalactiae/metabolismoRESUMO
BACKGROUND: Management of bladder cancer (BLCA) has not changed significantly in the past few decades, with platinum agent chemotherapy being used in most cases. Chemotherapy reduces tumor recurrence after resection, but debilitating toxicities render a large percentage of patients ineligible. Recently approved immunotherapy can improve outcomes in only a third of metastatic BLCA patients. Therefore, more options for therapy are needed. In this study, we explored the efficacy of PARP inhibitors (PARPi) as single agents or as combinations with platinum therapy. METHODS: We treated BLCA cells with PARPi (olaparib, niraparib, rucaparib, veliparib, or talazoparib) alone or as the combination of cisplatin with PARPi. We then measured their survival, proliferation, apoptosis, as well as their ability to form colonies. BLCA xenografts in male SCID mice were treated similarly, followed by the assessment of their growth, proliferation, and apoptosis. RESULTS: PARPi niraparib and talazoparib were effective in reducing BLCA cell survival as single agents. Combinations of Cisplatin with talazoparib and niraparib effectively reduced the survival of BLCA cells, while veliparib was not effective even at high concentrations. In vivo, the combinations of cisplatin with niraparib, rucaparib, or talazoparib reduced BLCA xenograft growth significantly. CONCLUSIONS: We provide evidence that PARPi can be effective against BLCA as single agents or as combinatorial therapy with cisplatin.
Assuntos
Inibidores de Poli(ADP-Ribose) Polimerases , Neoplasias da Bexiga Urinária , Animais , Sobrevivência Celular , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Humanos , Masculino , Camundongos , Camundongos SCID , Recidiva Local de Neoplasia/tratamento farmacológico , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/uso terapêutico , Neoplasias da Bexiga Urinária/tratamento farmacológicoRESUMO
Bacteria can utilize copper (Cu) as a trace element to support cellular processes; however, excess Cu can intoxicate bacteria. Here, we characterize the cop operon in group B streptococcus (GBS) and establish its role in evasion of Cu intoxication and the response to Cu stress on virulence. Growth of a GBS mutant deficient in the copA Cu exporter was severely compromised under Cu stress conditions. GBS survival of Cu stress reflected a mechanism of CopY derepression of the CopA efflux system. However, neither mutant was attenuated for intracellular survival in macrophages. Analysis of global transcriptional responses to Cu by RNA sequencing (RNA-seq) revealed a stress signature encompassing homeostasis of multiple metals. Genes induced by Cu stress included putative metal transporters for manganese import, whereas a system for iron export was repressed. In addition, copA promoted the ability of GBS to colonize the blood, liver, and spleen of mice following disseminated infection. Together, these findings show that GBS copA mediates resistance to Cu intoxication via regulation by the Cu-sensing transcriptional repressor copY. Cu stress responses in GBS reflect a transcriptional signature that heightens virulence and represents an important part of the bacterium's ability to survive in different environments. IMPORTANCE Understanding how bacteria manage cellular levels of metal ions, such as copper, helps to explain how microbial cells can survive in different stressful environments. We show the opportunistic pathogen group B streptococcus (GBS) achieve homeostasis of intracellular copper through the activities of the genes that comprise the cop operon, and we describe how this helps GBS survive in stressful environments, including in the mammalian host during systemic disseminated infection.
Assuntos
Proteínas de Bactérias/metabolismo , Cobre/farmacologia , Regulação Bacteriana da Expressão Gênica/fisiologia , Streptococcus agalactiae/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Proteínas de Bactérias/genética , Transporte Biológico , Manganês , Óperon , Streptococcus agalactiae/genética , Streptococcus agalactiae/metabolismo , Estresse Fisiológico/efeitos dos fármacos , VirulênciaRESUMO
Streptococcus agalactiae, also known as group B Streptococcus, is an aetiological agent of urinary tract infection (UTI) in adults, including cystitis, pyelonephritis and asymptomatic bacteriuria (ABU). Whereas ABU-causing S. agalactiae (ABSA) have been shown to grow and achieve higher culture denstity in human urine compared to uropathogenic S. agalactiae (UPSA) other phenotypic distinctions between S. agalactiae isolated from different forms of UTI are not known. Here, we define the hemolytic activities and biofilm-formation of a collection of clinical isolates of UPSA, ABSA and recurrent S. agalactiae bacteriuria (rSAB) strains to explore these phenotypes in the context of clinical history of isolates. A total of 61 UPSA, 184 ABSA, and 47 rSAB isolates were analyzed for relative hemolytic activity by spot assay on blood agar, which was validated using a erythrocyte lysis suspension assay. Biofilm formation was determined by microtiter plate assay with Lysogeny and Todd-Hewitt broths supplemented with 1% glucose to induce biofilm formation. We also used multiplex PCR to analyze isolates for the presence of genes encoding adhesive pili, which contribute to biofilm formation. Comparing the hemolytic activities of 292 isolates showed, surprisingly, that ABSA strains were significantly more likely to be highly hemolytic compared to other strains. In contrast, there were no differences between the relative abilities of strains from the different clinical history groups to form biofilms. Taken together, these findings demonstrate a propensity of S. agalactiae causing ABU to be highly hemolytic but no link between clinical history of UTI strains and ability to form biofilm.
Assuntos
Bacteriúria , Infecções Urinárias , Biofilmes , Hemólise , Humanos , Streptococcus agalactiaeRESUMO
Urinary tract infections (UTI) frequently progress to chronicity in infected individuals but the mechanisms of pathogenesis underlying chronic UTI are not well understood. We examined the role of interleukin (IL)-17A in UTI because this cytokine promotes innate defense against uropathogenic Escherichia coli (UPEC). Analysis of UPEC persistence and pyelonephritis in mice deficient in IL-17A revealed that UPEC CFT073 caused infection at a rate higher than the multidrug resistant strain EC958. Il17a-/- mice exhibited pyelonephritis with kidney bacterial burdens higher than those of wild-type (WT) mice. Synthesis of IL-17A in the bladder reflected a combination of γδ-T and TH 17 cell responses. Analysis of circulating inflammatory mediators at 24h postinoculation identified predictors of progression to chronicity, including IL-6 and monocyte chemoattractant protein-1 (MCP-1). Histological analysis identified infiltrating populations of neutrophils, NK cells, and γδ T cells in the bladder, whereas neutrophils predominated in the kidney. Analysis of the contribution of flagella to chronicity using hyper-flagellated and fliC-deficient UPEC in WT and Il17a-/- mice revealed that, in a host that is deficient for the production of IL-17A, flagella contribute to bacterial persistence. These findings show a role for IL-17A in defense against chronic UTI and a contribution of flagella to the pathogenesis of infection.
Assuntos
Flagelos/metabolismo , Imunidade Inata , Interleucina-17/metabolismo , Subpopulações de Linfócitos T/imunologia , Infecções Urinárias/imunologia , Escherichia coli Uropatogênica/patogenicidade , Animais , Quimiocina CCL2/metabolismo , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/metabolismo , Feminino , Flagelos/genética , Flagelina/genética , Flagelina/metabolismo , Interações Hospedeiro-Patógeno , Interleucina-17/genética , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Bexiga Urinária/citologia , Bexiga Urinária/imunologia , Bexiga Urinária/microbiologia , Infecções Urinárias/genética , Infecções Urinárias/microbiologia , Escherichia coli Uropatogênica/genética , Escherichia coli Uropatogênica/fisiologiaRESUMO
Nitrate is available to microbes in many environments due to sustained use of inorganic fertilizers on agricultural soils and many bacterial and archaeal lineages have the capacity to express respiratory (Nar) and assimilatory (Nas) nitrate reductases to utilize this abundant respiratory substrate and nutrient for growth. Here, we show that in the denitrifying bacterium Paracoccus denitrificans, NarJ serves as a chaperone for both the anaerobic respiratory nitrate reductase (NarG) and the assimilatory nitrate reductase (NasC), the latter of which is active during both aerobic and anaerobic nitrate assimilation. Bioinformatic analysis suggests that the potential for this previously unrecognized role for NarJ in functional maturation of other cytoplasmic molybdenum-dependent nitrate reductases may be phylogenetically widespread as many bacteria contain both Nar and Nas systems.
Assuntos
Proteínas de Bactérias/metabolismo , Nitrato Redutase/metabolismo , Nitratos/metabolismo , Paracoccus denitrificans/enzimologia , Aerobiose , Anaerobiose , Proteínas de Bactérias/genética , Chaperonas Moleculares/metabolismo , Molibdênio/metabolismo , Nitrato Redutase/genética , Oxirredução , Paracoccus denitrificans/genéticaRESUMO
Group B streptococcus (GBS) causes pyelonephritis in adults but the mechanisms of infection by which GBS infects the kidneys in vivo are unknown. We investigated GBS infection of the kidneys in mice following experimental challenge via the hematogenous route (transient bacteremia model) or transurethral route (bladder infection and cystitis model). Adult female mice were examined for bacterial dissemination to the kidneys and other organ systems at 24-72â¯h and tissue samples were assessed for histopathological changes. Comparisons included analysis of different challenge inoculum doses ranging between 107-109â¯CFU and investigation of several GBS serotypes, including representative strains of serotype V (NEM316), III (BM110, 874391) and Ia (807). Mice with transient, low-level GBS bacteremia routinely developed acute pyelonephritis secondary to high-level kidney infection; infection progressed with high GBS burdens that were sustained in the tissue for days in contrast to bacterial clearance in other organs, including spleen, liver and heart. The histopathological changes of acute pyelonephritis due to GBS were characterized using hematoxylin and eosin, and stains for bacteria, neutrophils, macrophages, mast cells and T lymphocytes; this revealed recruitment of a mixed inflammatory cell population that infiltrated the renal medulla of infected mice in focal areas of discrete micro-abscesses. In contrast, bladder infection leading to cystitis in mice did not result in ascending spread of GBS to the kidneys. We conclude that transient bacteremia, rather than preceding infection of the lower urinary tract, is the predominant condition that leads to GBS kidney infection and subsequent development of acute pyelonephritis.
Assuntos
Pielonefrite/microbiologia , Infecções Estreptocócicas/sangue , Streptococcus agalactiae/patogenicidade , Animais , Bacteriemia , Feminino , Imunidade Celular , Rim/microbiologia , Rim/patologia , Camundongos , Modelos Animais , Pielonefrite/patologia , Bexiga Urinária/microbiologia , Infecções Urinárias/microbiologiaRESUMO
Uropathogenic Escherichia coli (UPEC) is the major cause of urinary tract infections (UTIs). The multidrug-resistant E. coli sequence type 131 (ST131) clone is a serious threat to human health, yet its effects on immune responses are not well understood. Here we screened a panel of ST131 isolates, finding that only strains expressing the toxin hemolysin A (HlyA) killed primary human macrophages and triggered maturation of the inflammasome-dependent cytokine IL-1ß. Using a representative strain, the requirement for the hlyA gene in these responses was confirmed. We also observed considerable heterogeneity in levels of cell death initiated by different HlyA+ve ST131 isolates, and this correlated with secreted HlyA levels. Investigation into the biological significance of this variation revealed that an ST131 strain producing low levels of HlyA initiated cell death that was partly dependent on the nod-like receptor family pyrin domain-containing 3 (NLRP3) inflammasome, with this response being associated with a host-protective role in a mouse UTI model. When the same ST131 strain was engineered to overexpress high HlyA levels, macrophage cell death occurred even when NLRP3 function was abrogated, and bladder colonization was significantly increased. Thus, variation in HlyA expression in UPEC affects mechanisms by which macrophages die, as well as host susceptibility vs. resistance to colonization.-Murthy, A. M. V., Sullivan, M. J., Nhu, N. T. K., Lo, A. W., Phan, M.-D., Peters, K. M., Boucher, D., Schroder, K., Beatson, S. A., Ulett, G. C., Schembri, M. A., Sweet, M. J. Variation in hemolysin A expression between uropathogenic Escherichia coli isolates determines NLRP3-dependent vs. -independent macrophage cell death and host colonization.
Assuntos
Morte Celular , Proteínas de Escherichia coli/metabolismo , Proteínas Hemolisinas/metabolismo , Interações Hospedeiro-Patógeno , Macrófagos/citologia , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Escherichia coli Uropatogênica/metabolismo , Animais , Infecções por Escherichia coli/microbiologia , Humanos , Camundongos , Infecções Urinárias/microbiologiaRESUMO
Group B streptococcus (GBS) is a Gram-positive bacterium associated with various diseases in humans and animals. Many studies have examined GBS physiology, virulence, and microbe-host interactions using diverse imaging approaches, including fluorescence microscopy. Strategies to label and visualize GBS using fluorescence biomarkers have been limited to antibody-based methods or nonspecific stains that bind DNA or protein; an effective plasmid-based system to label GBS with a fluorescence biomarker would represent a useful visualization tool. In this study, we developed and validated a green fluorescent protein (GFP)-variant-expressing plasmid, pGU2664, which can be applied as a marker to visualize GBS in experimental studies. The synthetic constitutively active CP25 promoter drives strong and stable expression of the GFPmut3 biomarker in GBS strains carrying pGU2664. GBS maintains GFPmut3 activity at different phases of growth. The application of fluorescence polarization enables easy discrimination of GBS GFPmut3 activity from the autofluorescence of culture media commonly used to grow GBS. Differential interference contrast microscopy, in combination with epifluorescence microscopy to detect GFPmut3 in GBS, enabled visualization of bacterial attachment to live human epithelial cells in real time. Plasmid pGU2664 was also used to visualize phenotypic differences in the adherence of wild-type GBS and an isogenic gene-deficient mutant strain lacking CovR (the control of virulence regulator) in adhesion assays. The system for GFPmut3 expression in GBS described in this study provides a new tool for the visualization of this organism in diverse research applications. We discuss the advantages and consider the limitations of this fluorescent biomarker system developed for GBS.IMPORTANCE Group B streptococcus (GBS) is a bacterium associated with various diseases in humans and animals. This study describes the development of a strategy to label and visualize GBS using a fluorescence biomarker, termed GFPmut3. We show that this biomarker can be successfully applied to track the growth of bacteria in liquid medium, and it enables the detailed visualization of GBS in the context of live human cells in real-time microscopic analysis. The system for GFPmut3 expression in GBS described in this study provides a new tool for the visualization of this organism in diverse research applications.
Assuntos
Proteínas de Fluorescência Verde/química , Infecções Estreptocócicas/microbiologia , Streptococcus agalactiae/genética , Animais , Antibacterianos/farmacologia , Regulação Bacteriana da Expressão Gênica , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Humanos , Microscopia de Fluorescência , Plasmídeos/genética , Plasmídeos/metabolismo , Regiões Promotoras Genéticas , Streptococcus agalactiae/química , Streptococcus agalactiae/efeitos dos fármacosRESUMO
Interleukin-17 (IL-17) is a pro-inflammatory cytokine involved in the control of many different disorders, including autoimmune, oncogenic, and diverse infectious diseases. In the context of infectious diseases, IL-17 protects the host against various classes of microorganisms but, intriguingly, can also exacerbate the severity of some infections. The regulation of IL-17 expression stems, in part, from the activity of Interleukin-23 (IL-23), which drives the maturation of different classes of IL-17-producing cells that can alter the course of infection. In this review, we analyze IL-17/IL-23 signalling in bacterial infection, and examine the interconnecting mechanisms that link immune regulation, host genetics, and microbial virulence in the context of bacterial pathogenesis. We consider the roles of IL-17 in both acute and chronic bacterial infections, with a focus on mouse models of human bacterial disease that involve infection of mucosal surfaces in the lungs, urogenital, and gastrointestinal tracts. Polymorphisms in IL-17-encoding genes in humans, which have been associated with heightened host susceptibility to some bacterial pathogens, are discussed. Finally, we examine the implications of IL-17 biology in infectious diseases for the development of novel therapeutic strategies targeted at preventing bacterial infection.
Assuntos
Bactérias/patogenicidade , Infecções Bacterianas/genética , Infecções Bacterianas/imunologia , Interleucina-17/genética , Animais , Bactérias/genética , Bactérias/metabolismo , Infecções Bacterianas/microbiologia , Infecções Bacterianas/fisiopatologia , Interações Hospedeiro-Patógeno , Humanos , Interleucina-17/imunologia , VirulênciaRESUMO
Transcriptional adaptation to nitrate-dependent anabolism by Paracoccus denitrificans PD1222 was studied. A total of 74 genes were induced in cells grown with nitrate as N-source compared with ammonium, including nasTSABGHC and ntrBC genes. The nasT and nasS genes were cotranscribed, although nasT was more strongly induced by nitrate than nasS The nasABGHC genes constituted a transcriptional unit, which is preceded by a non-coding region containing hairpin structures involved in transcription termination. The nasTS and nasABGHC transcripts were detected at similar levels with nitrate or glutamate as N-source, but nasABGHC transcript was undetectable in ammonium-grown cells. The nitrite reductase NasG subunit was detected by two-dimensional polyacrylamide gel electrophoresis in cytoplasmic fractions from nitrate-grown cells, but it was not observed when either ammonium or glutamate was used as the N-source. The nasT mutant lacked both nasABGHC transcript and nicotinamide adenine dinucleotide (NADH)-dependent nitrate reductase activity. On the contrary, the nasS mutant showed similar levels of the nasABGHC transcript to the wild-type strain and displayed NasG protein and NADH-nitrate reductase activity with all N-sources tested, except with ammonium. Ammonium repression of nasABGHC was dependent on the Ntr system. The ntrBC and ntrYX genes were expressed at low levels regardless of the nitrogen source supporting growth. Mutational analysis of the ntrBCYX genes indicated that while ntrBC genes are required for nitrate assimilation, ntrYX genes can only partially restore growth on nitrate in the absence of ntrBC genes. The existence of a regulation mechanism for nitrate assimilation in P. denitrificans, by which nitrate induction operates at both transcriptional and translational levels, is proposed.
Assuntos
Adaptação Fisiológica , Regulação Bacteriana da Expressão Gênica , Modelos Biológicos , Nitratos/metabolismo , Ciclo do Nitrogênio , Paracoccus denitrificans/fisiologia , Compostos de Amônio/metabolismo , Proteínas de Bactérias/agonistas , Proteínas de Bactérias/antagonistas & inibidores , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Metabolismo Energético , Perfilação da Expressão Gênica , Ácido Glutâmico/metabolismo , Mutagênese Sítio-Dirigida , Mutação , Nitrato Redutase (NADH)/antagonistas & inibidores , Nitrato Redutase (NADH)/química , Nitrato Redutase (NADH)/genética , Nitrato Redutase (NADH)/metabolismo , Paracoccus denitrificans/enzimologia , Paracoccus denitrificans/crescimento & desenvolvimento , Proteômica/métodos , RNA Bacteriano/metabolismo , RNA Mensageiro/metabolismo , Elementos Reguladores de Transcrição , Proteínas Repressoras/agonistas , Proteínas Repressoras/antagonistas & inibidores , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Transativadores/agonistas , Transativadores/antagonistas & inibidores , Transativadores/genética , Transativadores/metabolismoRESUMO
Background: Streptococcus agalactiae can cause urinary tract infection (UTI). The role of the S. agalactiae global virulence regulator, CovR, in UTI pathogenesis is unknown. Methods: We used murine and human bladder uroepithelial cell models of UTI and S. agalactiae mutants in covR and related factors, including ß-hemolysin/cytolysin (ß-h/c), surface-anchored adhesin HvgA, and capsule to study the role of CovR in UTI. Results: We found that covR-deficient serotype III S. agalactiae 874391 was significantly attenuated for colonization in mice and adhesion to uroepithelial cells. Mice infected with covR-deficient S. agalactiae produced less proinflammatory cytokines than those infected with wild-type 874391. Acute cytotoxicity in uroepithelial cells triggered by covR-deficient but not wild-type 874391 was associated with significant caspase 3 activation. Mechanistically, covR mutation significantly altered the expression of several genes in S. agalactiae 874391 that encode key virulence factors, including ß-h/c and HvgA, but not capsule. Subsequent mutational analyses revealed that HvgA and capsule, but not the ß-h/c, exerted significant effects on colonization of the murine urinary tract in vivo. Conclusions: S. agalactiae CovR promotes bladder infection and inflammation, as well as adhesion to and viability of uroepithelial cells. The pathogenesis of S. agalactiae UTI is complex, multifactorial, and influenced by virulence effects of CovR, HvgA, and capsule.
Assuntos
Proteínas de Bactérias/fisiologia , Streptococcus agalactiae/patogenicidade , Infecções Urinárias/microbiologia , Fatores de Virulência/fisiologia , Adesinas Bacterianas/fisiologia , Animais , Aderência Bacteriana , Cápsulas Bacterianas/fisiologia , Linhagem Celular , Citocinas/metabolismo , Citotoxicidade Imunológica , Feminino , Expressão Gênica , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase , Bexiga Urinária/metabolismo , Urotélio/microbiologiaRESUMO
Bacterial denitrification is a respiratory process that is a major source and sink of the potent greenhouse gas nitrous oxide. Many denitrifying bacteria can adjust to life in both oxic and anoxic environments through differential expression of their respiromes in response to environmental signals such as oxygen, nitrate and nitric oxide. We used steady-state oxic and anoxic chemostat cultures to demonstrate that the switch from aerobic to anaerobic metabolism is brought about by changes in the levels of expression of relatively few genes, but this is sufficient to adjust the configuration of the respirome to allow the organism to efficiently respire nitrate without the significant release of intermediates, such as nitrous oxide. The regulation of the denitrification respirome in strains deficient in the transcription factors FnrP, Nnr and NarR was explored and revealed that these have both inducer and repressor activities, possibly due to competitive binding at similar DNA binding sites. This may contribute to the fine tuning of expression of the denitrification respirome and so adds to the understanding of the regulation of nitrous oxide emission by denitrifying bacteria in response to different environmental signals.
Assuntos
Anaerobiose/fisiologia , Respiração Celular/fisiologia , Desnitrificação/fisiologia , Óxido Nítrico/metabolismo , Óxido Nitroso/metabolismo , Oxigênio/metabolismo , Paracoccus denitrificans/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Respiração Celular/genética , Desnitrificação/genética , Nitratos/metabolismo , Oxirredutases/genética , Paracoccus denitrificans/genética , Fatores de Transcrição/genéticaRESUMO
BACKGROUND: CD14, a coreceptor for several pattern recognition receptors and a widely used monocyte/macrophage marker, plays a key role in host responses to gram-negative bacteria. Despite the central role of CD14 in the inflammatory response to lipopolysaccharide and other microbial products and in the dissemination of bacteria in some infections, the signaling networks controlled by CD14 during urinary tract infection (UTI) are unknown. METHODS: We used uropathogenic Escherichia coli (UPEC) infection of wild-type (WT) C57BL/6 and Cd14(-/-) mice and RNA sequencing to define the CD14-dependent transcriptional signature and the role of CD14 in host defense against UTI in the bladder. RESULTS: UPEC induced the upregulation of Cd14 and the monocyte/macrophage-related genes Emr1/F4/80 and Csf1r/c-fms, which was associated with lower UPEC burdens in WT mice, compared with Cd14(-/-) mice. Exacerbation of infection in Cd14(-/-) mice was associated with the absence of a 491-gene transcriptional signature in the bladder that encompassed multiple host networks not previously associated with this receptor. CD14-dependent pathways included immune cell trafficking, differential cytokine production in macrophages, and interleukin 17 signaling. Depletion of monocytes/macrophages in the bladder by administration of liposomal clodronate led to higher UPEC burdens. CONCLUSIONS: This study identifies new host protective and signaling roles for CD14 in the bladder during UPEC UTI.
Assuntos
Receptores de Lipopolissacarídeos/metabolismo , Macrófagos/imunologia , Transdução de Sinais , Bexiga Urinária/imunologia , Infecções Urinárias/imunologia , Escherichia coli Uropatogênica/imunologia , Animais , Feminino , Deleção de Genes , Perfilação da Expressão Gênica , Receptores de Lipopolissacarídeos/genética , Camundongos Endogâmicos C57BL , Camundongos Knockout , Infecções Urinárias/microbiologiaRESUMO
Streptococcus agalactiae causes both symptomatic cystitis and asymptomatic bacteriuria (ABU); however, growth characteristics of S. agalactiae in human urine have not previously been reported. Here, we describe a phenotype of robust growth in human urine observed in ABU-causing S. agalactiae (ABSA) that was not seen among uropathogenic S. agalactiae (UPSA) strains isolated from patients with acute cystitis. In direct competition assays using pooled human urine inoculated with equal numbers of a prototype ABSA strain, designated ABSA 1014, and any one of several UPSA strains, measurement of the percentage of each strain recovered over time showed a markedly superior fitness of ABSA 1014 for urine growth. Comparative phenotype profiling of ABSA 1014 and UPSA strain 807, isolated from a patient with acute cystitis, using metabolic arrays of >2,500 substrates and conditions revealed unique and specific l-malic acid catabolism in ABSA 1014 that was absent in UPSA 807. Whole-genome sequencing also revealed divergence in malic enzyme-encoding genes between the strains predicted to impact the activity of the malate metabolic pathway. Comparative growth assays in urine comparing wild-type ABSA and gene-deficient mutants that were functionally inactivated for the malic enzyme metabolic pathway by targeted disruption of the maeE or maeK gene in ABSA demonstrated attenuated growth of the mutants in normal human urine as well as synthetic human urine containing malic acid. We conclude that some S. agalactiae strains can grow in human urine, and this relates in part to malic acid metabolism, which may affect the persistence or progression of S. agalactiae ABU.
Assuntos
Bacteriúria/microbiologia , Cistite/microbiologia , Malatos/metabolismo , Malatos/urina , Streptococcus agalactiae/metabolismo , Adulto , Animais , Infecções Assintomáticas , Feminino , Regulação Bacteriana da Expressão Gênica , Humanos , Masculino , Redes e Vias Metabólicas/genética , Camundongos , Camundongos Endogâmicos C57BL , Estudos Retrospectivos , Streptococcus agalactiae/genética , Streptococcus agalactiae/crescimento & desenvolvimento , Infecções Urinárias/microbiologiaRESUMO
Melioidosis, caused by the bacterium Burkholderia pseudomallei, is an often severe infection that regularly involves respiratory disease following inhalation exposure. Intranasal (i.n.) inoculation of mice represents an experimental approach used to study the contributions of bacterial capsular polysaccharide I (CPS I) to virulence during acute disease. We used aerosol delivery of B. pseudomallei to establish respiratory infection in mice and studied CPS I in the context of innate immune responses. CPS I improved B. pseudomallei survival in vivo and triggered multiple cytokine responses, neutrophil infiltration, and acute inflammatory histopathology in the spleen, liver, nasal-associated lymphoid tissue, and olfactory mucosa (OM). To further explore the role of the OM response to B. pseudomallei infection, we infected human olfactory ensheathing cells (OECs) in vitro and measured bacterial invasion and the cytokine responses induced following infection. Human OECs killed >90% of the B. pseudomallei in a CPS I-independent manner and exhibited an antibacterial cytokine response comprising granulocyte colony-stimulating factor, tumor necrosis factor alpha, and several regulatory cytokines. In-depth genome-wide transcriptomic profiling of the OEC response by RNA-Seq revealed a network of signaling pathways activated in OECs following infection involving a novel group of 378 genes that encode biological pathways controlling cellular movement, inflammation, immunological disease, and molecular transport. This represents the first antimicrobial program to be described in human OECs and establishes the extensive transcriptional defense network accessible in these cells. Collectively, these findings show a role for CPS I in B. pseudomallei survival in vivo following inhalation infection and the antibacterial signaling network that exists in human OM and OECs.
Assuntos
Cápsulas Bacterianas/imunologia , Burkholderia pseudomallei/imunologia , Interações Hospedeiro-Patógeno/imunologia , Melioidose/imunologia , Melioidose/microbiologia , Infecções Respiratórias/imunologia , Infecções Respiratórias/microbiologia , Animais , Cápsulas Bacterianas/genética , Carga Bacteriana , Burkholderia pseudomallei/genética , Células Cultivadas , Biologia Computacional/métodos , Citocinas/metabolismo , Citotoxicidade Imunológica , Modelos Animais de Doenças , Feminino , Perfilação da Expressão Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imunidade Inata , Melioidose/genética , Melioidose/metabolismo , Camundongos , Mutação , Infiltração de Neutrófilos , Neurônios Receptores Olfatórios/imunologia , Neurônios Receptores Olfatórios/metabolismo , Neurônios Receptores Olfatórios/microbiologia , Infecções Respiratórias/genética , Infecções Respiratórias/metabolismo , Transdução de Sinais , Virulência , Fatores de VirulênciaRESUMO
Urinary tract infections (UTIs) are among the most common bacterial infections in humans. Murine models of human UTI are vital experimental tools that have helped to elucidate UTI pathogenesis and advance knowledge of potential treatment and infection prevention strategies. Fundamentally, several variables are inherent in different murine models, and understanding the limitations of these variables provides an opportunity to understand how models may be best applied to research aimed at mimicking human disease. In this review, we discuss variables inherent in murine UTI model studies and how these affect model usage, data analysis and data interpretation. We examine recent studies that have elucidated UTI host-pathogen interactions from the perspective of gene expression, and review new studies of biofilm and UTI preventative approaches. We also consider potential standards for variables inherent in murine UTI models and discuss how these might expand the utility of models for mimicking human disease and uncovering new aspects of pathogenesis.