RESUMO
Facultative heterochromatin marked by histone H3 lysine 27 trimethylation (H3K27me3) is an important regulatory layer involved in secondary metabolite (SM) gene silencing and crucial for fungal development in the genus Fusarium. While this histone mark is essential in some (e.g., the rice pathogen Fusarium fujikuroi), it appears dispensable in other fusaria. Here, we show that deletion of FpKMT6 is detrimental but not lethal in the plant pathogen Fusarium proliferatum, a member of the Fusarium fujikuroi species complex (FFSC). Loss of FpKmt6 results in aberrant growth, and expression of a large set of previously H3K27me3-silenced genes is accompanied by increased H3K27 acetylation (H3K27ac) and an altered H3K36me3 pattern. Next, H3K9me3 patterns are affected in Δfpkmt6, indicating crosstalk between both heterochromatic marks that became even more obvious in a strain deleted for FpKMT1 encoding the H3K9-specific histone methyltransferase. In Δfpkmt1, all H3K9me3 marks present in the wild-type strain are replaced by H3K27me3, a finding that may explain the subtle phenotype of the Δfpkmt1 strain which stands in marked contrast to other filamentous fungi. A large proportion of SM-encoding genes is allocated with H3K27me3 in the wild-type strain and loss of H3K27me3 results in elevated expression of 49% of them. Interestingly, genes involved in the biosynthesis of the phytohormones gibberellins (GA) are among the most upregulated genes in Δfpkmt6. Although several FFSC members harbor GA biosynthetic genes, its production is largely restricted to F. fujikuroi, possibly outlining the distinct lifestyles of these notorious plant pathogens. We show that H3K27me3 is involved in GA gene silencing in F. proliferatum and at least one additional FFSC member, and thus, may serve as a regulatory layer for gene silencing under non-favoring conditions.
Assuntos
Fusarium , Fusarium/genética , Histonas/genética , Histonas/metabolismo , Inativação GênicaRESUMO
BACKGROUND: Fusarium graminearum and Fusarium avenaceum are two of the most important causal agents of Fusarium head blight (FHB) of wheat. They can produce mycotoxins that accumulate in infected wheat heads, including deoxynivalenol (DON) and enniatins (ENNs), produced by F. graminearum and F. avenaceum, respectively. While the role of DON as a virulence factor in F. graminearum toward wheat is well known, ENNs in F. avenaceum has been poorly explored. Results obtained to-date indicate that ENNs may confer an advantage to F. avenaceum only on particular hosts. RESULTS: In this study, with the use of ENN-producing and ENN non-producing F. avenaceum strains, the role of ENNs on F. avenaceum virulence was investigated on the root, stem base and head of common wheat, and compared with the role of DON, using DON-producing and DON non-producing F. graminearum strains. The DON-producing F. graminearum strain showed a significantly higher ability to cause symptoms and colonise each of the tested tissues than the non-producing strain. On the other hand, the ability to produce ENNs increased initial symptoms of the disease and fungal biomass accumulation, measured by qPCR, only in wheat heads, and not in roots or stem bases. LC-MS/MS analysis was used to confirm the presence of ENNs and DON in the different strains, and results, both in vitro and in wheat heads, were consistent with the genetics of each strain. CONCLUSION: While the key role of DON on F. graminearum virulence towards three different wheat tissues was noticeable, ENNs seemed to have a role only in influencing F. avenaceum virulence on common wheat heads probably due to an initial delay in the appearance of symptoms.
Assuntos
Fusarium , Doenças das Plantas , Tricotecenos , Triticum , Triticum/microbiologia , Triticum/metabolismo , Fusarium/patogenicidade , Fusarium/genética , Fusarium/metabolismo , Tricotecenos/metabolismo , Virulência , Doenças das Plantas/microbiologia , Micotoxinas/metabolismo , DepsipeptídeosRESUMO
BACKGROUND: Mycotoxin surveys play an essential role in our food safety system. The obtained occurrence data form the basis for the assessment of the exposure of humans and animals to these toxic fungal secondary metabolites. Liquid chromatography coupled with tandem mass spectrometry (LC-MS/MS) has become the gold standard for mycotoxin determination because it enables selective and sensitive multi-toxin analysis. Simultaneous determination of several hundreds of secondary fungal metabolites is feasible using this technique. In this study, we combined a targeted dilute-and-shoot LC-MS/MS-based multi-analyte approach with multivariate statistics for the analysis of Austrian wheat from two different years and different geographical origins. RESULTS: We quantified 47 secondary fungal metabolites, including regulated emerging and masked mycotoxins. The resulting multi-mycotoxin occurrence data were further analyzed using both multivariate and univariate statistics. Principal component analysis (PCA) and analysis of variance (ANOVA) simultaneous component analysis (ASCA) were employed to identify regional and yearly trends within the dataset and to quantify the variance in metabolite occurrence attributed to the different effects. In addition, secondary fungal metabolites significantly impacted by these factors were selected via ANOVA. Of the 47 secondary metabolites identified, 39 were affected by the year, region or a combined effect. Moreover, our findings show that 43 of the secondary fungal metabolites were significantly influenced by the weather conditions. CONCLUSION: The results presented in this study underline the added value of combining targeted LC-MS/MS with multivariate statistics for monitoring a broad spectrum of secondary fungal metabolites in food crops. Through multivariate statistics, trends associated with the year or region can be readily studied. The approach presented could pave the way for a better understanding of the impact of climate change on plant pathogenic fungi and its implications for food safety. © 2024 The Author(s). Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Assuntos
Contaminação de Alimentos , Fungos , Micotoxinas , Espectrometria de Massas em Tandem , Triticum , Tempo (Meteorologia) , Triticum/química , Triticum/microbiologia , Triticum/metabolismo , Micotoxinas/análise , Micotoxinas/metabolismo , Espectrometria de Massas em Tandem/métodos , Áustria , Contaminação de Alimentos/análise , Fungos/metabolismo , Análise Multivariada , Cromatografia Líquida/métodosRESUMO
BACKGROUND: The evolution of the fungal communities associated with durum wheat was assessed using different diagnostic approaches. Durum wheat grain samples were collected in three different Italian cultivation macro-areas (north, center and south). Fungal isolation was realized by potato dextrose agar (PDA) and by deep-freezing blotter (DFB). Identification of Fusarium isolates obtained from PDA was achieved by partial tef1α sequencing (PDA + tef1α), while those obtained from DFB were identified from their morphological characteristics (DFB + mc). The fungal biomass of eight Fusarium species was quantified in grains by quantitative polymerase chain reaction (qPCR). Fungal secondary metabolites were analyzed in grains by liquid chromatography-tandem mass spectrometry (LC-MS/MS). Correlations between Fusarium detection techniques (PDA + tef1α; DFB + mc and qPCR) and mycotoxins in grains were assessed. RESULTS: Alternaria and Fusarium showed the highest incidence among the fungal genera developed from grains. Within the Fusarium community, PDA + tef1α highlighted that F. avenaceum and F. graminearum were the most represented members, while, DFB + mc detected a high presence of F. proliferatum. Alternaria and Fusarium mycotoxins, principally enniatins, were particularly present in the grain harvested in central Italy. Deoxynivalenol was mainly detected in northern-central Italy. CONCLUSIONS: The adoption of the different diagnostic techniques of Fusarium detection highlighted that, for some species, qPCR was the best method of predicting their mycotoxin contamination in grains. © 2023 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Assuntos
Fusarium , Micobioma , Micotoxinas , Cromatografia Líquida , Triticum/química , Contaminação de Alimentos/análise , Espectrometria de Massas em Tandem , Micotoxinas/metabolismo , Grão Comestível/química , ItáliaRESUMO
Co-culturing the bacterium Streptomyces rapamycinicus and the ascomycete Aspergillus nidulans has previously been shown to trigger the production of orsellinic acid (ORS) and its derivates in the fungal cells. Based on these studies it was assumed that direct physical contact is a prerequisite for the metabolic reaction that involves a fungal amino acid starvation response and activating chromatin modifications at the biosynthetic gene cluster (BGC). Here we show that not physical contact, but a guanidine containing macrolide, named polaramycin B, triggers the response. The substance is produced constitutively by the bacterium and above a certain concentration, provokes the production of ORS. In addition, several other secondary metabolites were induced by polaramycin B. Our genome-wide transcriptome analysis showed that polaramycin B treatment causes downregulation of fungal genes necessary for membrane stability, general metabolism and growth. A compensatory genetic response can be observed in the fungus that included upregulation of BGCs and genes necessary for ribosome biogenesis, translation and membrane stability. Our work discovered a novel chemical communication, in which the antifungal bacterial metabolite polaramycin B leads to the production of antibacterial defence chemicals and to the upregulation of genes necessary to compensate for the cellular damage caused by polaramycin B.
Assuntos
Aspergillus nidulans , Streptomyces , Aminoácidos/metabolismo , Antibacterianos/farmacologia , Antifúngicos/metabolismo , Aspergillus nidulans/genética , Aspergillus nidulans/metabolismo , Cromatina/metabolismo , Eletrólitos , Guanidinas , Macrolídeos/metabolismo , Família Multigênica , Resorcinóis , Metabolismo Secundário/genética , Streptomyces/genética , Streptomyces/metabolismoRESUMO
Depending on the prevailing environmental, developmental and nutritional conditions, fungi activate biosynthetic gene clusters (BGCs) to produce condition-specific secondary metabolites (SMs). For activation, global chromatin-based de-repression must be integrated with pathway-specific induction signals. Here we describe a new global regulator needed to activate starvation-induced SMs. In our transcriptome dataset, we found locus AN7572 strongly transcribed solely under conditions of starvation-induced SM production. The predicted AN7572 protein is most similar to the stress and nutritional regulator Rim15 of Saccharomyces cerevisiae, and to STK-12 of Neurospora crassa. Based on this similarity and on stress and nutritional response phenotypes of A. nidulans knock-out and overexpression strains, AN7572 is designated rimO. In relation to SM production, we found that RimO is required for the activation of starvation-induced BGCs, including the sterigmatocystin (ST) gene cluster. Here, RimO regulates the pathway-specific transcription factor AflR both at the transcriptional and post-translational level. At the transcriptional level, RimO mediates aflR induction following carbon starvation and at the post-translational level, RimO is required for nuclear accumulation of the AflR protein. Genome-wide transcriptional profiling showed that cells lacking rimO fail to adapt to carbon starvation that, in the wild type, leads to down-regulation of genes involved in basic metabolism, membrane biogenesis and growth. Consistently, strains overexpressing rimO are more resistant to oxidative and osmotic stress, largely insensitive to glucose repression and strongly overproduce several SMs. Our data indicate that RimO is a positive regulator within the SM and stress response network, but this requires nutrient depletion that triggers both, rimO gene transcription and activation of the RimO protein.
Assuntos
Aspergillus nidulans , Aspergillus nidulans/metabolismo , Carbono/metabolismo , Proteínas Fúngicas/genética , Proteínas Fúngicas/metabolismo , Regulação Fúngica da Expressão Gênica/genética , EsterigmatocistinaRESUMO
Even though biological hazards in the work environments related to waste management were the subject of many scientific works, the knowledge of the topic is not extensive. This study aimed to conduct a comprehensive assessment of microbiological and toxicological hazards at the workstations in a waste sorting plant and develop guidelines for selecting filtering respiratory protective devices that would consider specific workplace conditions. The research included the assessment of quantity (culture method), diversity (high-throughput sequencing), and metabolites (endotoxin - gas chromatography-mass spectrometry; secondary metabolites - liquid chromatography tandem-mass spectrometry) of microorganisms occurring in the air and settled dust. Moreover, cytotoxicity of settled dust against a human epithelial lung cell line was determined with an MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide) assay. The research was performed in a waste sorting plant (Poland; 240,000 tons waste/year) at six workstations: two feeders, two pre-sorting cabins, secondary raw material press and organic fraction waste feeder for composting. The total dust concentration at tested workstations varied from 0.128 mg m-3 to 5.443 mg m-3. The number of microorganisms was between 9.23 × 104 CFU m-3 and 1.38 × 105 CFU m-3 for bacteria and between 1.43 × 105 CFU m-3 and 1.65 × 105 CFU m-3 for fungi, which suggests high microbial contamination of the sorting facility. The numbers of microorganisms in the air correlated very strongly (R2 from 0.70 to 0.94) with those observed in settled dust. Microorganisms representing Group 2 biological agents (acc. to Directive, 2000/54/EC), including Corynebacterium spp., Pseudomonas aeruginosa, Staphylococcus aureus, and others potentially hazardous to human health, were identified. The endotoxins concentration in settled dust ranged from 0.013 nmol LPS mg-1 to 0.048 nmol LPS mg-1. Seventeen (air) and 91 (settled dust) secondary metabolites characteristic, e.g., for moulds, bacteria, lichens, and plants were identified. All dust samples were cytotoxic (IC50 values of 8.66 and 56.15 mg ml-1 after 72 h). A flowchart of respiratory protective devices selection for biological hazards at the workstations in the waste sorting plant was proposed based on the completed tests to help determine the right type and use duration of the equipment.
Assuntos
Poluentes Ocupacionais do Ar , Exposição Ocupacional , Microbiologia do Ar , Poluentes Ocupacionais do Ar/análise , Bactérias , Poeira/análise , Fungos , HumanosRESUMO
BACKGROUND: Fusarium poae is one of the most common Fusarium head blight (FHB) causal agents in wheat. This species can biosynthesize a wide range of mycotoxins, in particular nivalenol (NIV). In FHB epidemiology, infection timing is important for disease occurrence, kernel development, symptom appearance and mycotoxin accumulation in grain. The present study explored, both in a controlled environment and in a 2-year field plot experiment in Central Italy, the influence of five infection timings (from beginning of flowering to medium milk growth stage) on F. poae colonization and mycotoxin accumulation in bread wheat spikes (spring cv. A416 and winter cv. Ambrogio). RESULTS: Both climate chamber and field experiments showed that early infection timings (from beginning of flowering to full flowering) especially favoured F. poae colonization and accumulation of its mycotoxins (particularly NIV) in grain. By contrast, later infection timings (watery ripe and medium milk) reduced F. poae development and mycotoxin levels. The time window of host susceptibility in the field was shorter than that observed under controlled conditions. Symptom expression in kernels also differed among infection timings. In general, F. poae biomass was higher in the chaff than in the grain. CONCLUSION: These results enhance knowledge of a common member of the FHB complex worldwide, and could be useful in forecasting the risk of F. poae infection and mycotoxin contamination. © 2022 The Authors. Journal of The Science of Food and Agriculture published by John Wiley & Sons Ltd on behalf of Society of Chemical Industry.
Assuntos
Fusarium , Micotoxinas , Pão , Grão Comestível/química , Micotoxinas/análise , Doenças das Plantas , Tricotecenos , Triticum/metabolismoRESUMO
Infrared (IR) spectroscopy is increasingly being used to analyze food crops for quality and safety purposes in a rapid, nondestructive, and eco-friendly manner. The lack of sensitivity and the overlapping absorption characteristics of major sample matrix components, however, often prevent the direct determination of food contaminants at trace levels. By measuring fungal-induced matrix changes with near IR and mid IR spectroscopy as well as hyperspectral imaging, the indirect determination of mycotoxins in food crops has been realized. Recent studies underline that such IR spectroscopic platforms have great potential for the rapid analysis of mycotoxins along the food and feed supply chain. However, there are no published reports on the validation of IR methods according to official regulations, and those publications that demonstrate their applicability in a routine analytical set-up are scarce. Therefore, the purpose of this review is to discuss the current state-of-the-art and the potential of IR spectroscopic methods for the rapid determination of mycotoxins in food crops. The study critically reflects on the applicability and limitations of IR spectroscopy in routine analysis and provides guidance to non-spectroscopists from the food and feed sector considering implementation of IR spectroscopy for rapid mycotoxin screening. Finally, an outlook on trends, possible fields of applications, and different ways of implementation in the food and feed safety area are discussed.
Assuntos
Micotoxinas , Micotoxinas/análise , Contaminação de Alimentos/análise , Produtos AgrícolasRESUMO
Fusarium fujikuroi and Fusarium graminearum are agronomically important plant pathogens, both infecting important staple food plants and thus leading to huge economic losses worldwide. F.fujikuroi belongs to the Fusarium fujikuroi species complex (FFSC) and causes bakanae disease on rice, whereas F.graminearum, a member of the Fusarium graminearum species complex (FGSC), is the causal agent of Fusarium Head Blight (FHB) disease on wheat, barley and maize. In recent years, the importance of chromatin regulation became evident in the plant-pathogen interaction. Several processes, including posttranslational modifications of histones, have been described as regulators of virulence and the biosynthesis of secondary metabolites. In this study, we have functionally characterised methylation of lysine 20 histone 4 (H4K20me) in both Fusarium species. We identified the respective genes solely responsible for H4K20 mono-, di- and trimethylation in F.fujikuroi (FfKMT5) and F.graminearum (FgKMT5). We show that loss of Kmt5 affects colony growth in F.graminearum while this is not the case for F.fujikuroi. Similarly, FgKmt5 is required for full virulence in F.graminearum as Δfgkmt5 is hypovirulent on wheat, whereas the F.fujikuroi Δffkmt5 strain did not deviate from the wild type during rice infection. Lack of Kmt5 had distinct effects on the secondary metabolism in both plant pathogens with the most pronounced effects on fusarin biosynthesis in F.fujikuroi and zearalenone biosynthesis in F.graminearum. Next to this, loss of Kmt5 resulted in an increased tolerance towards oxidative and osmotic stress in both species.
Assuntos
Fusarium , Fusarium/genética , Metiltransferases , Doenças das Plantas/genética , Metabolismo Secundário/genética , Triticum/genéticaRESUMO
Monitoring of food contaminants and residues has undergone a significant improvement in recent years and is now performed in an intensive manner. Achievements in the area of chromatography-mass spectrometry coupling techniques enabled the development of quantitative multi-target approaches covering several hundred analytes. Although the majority of methods are focusing on the analysis of one specific group of substances, such as pesticides, mycotoxins, or veterinary drugs, current trends are going towards the simultaneous determination of multiclass compounds from several families of contaminants and residues. This work provides an overview of relevant multiclass concepts based on LC-MS/MS and LC-HRMS instruments. Merits and shortcomings will be critically discussed based on current performance characteristics of the EU legislation system. In addition, the discussion of a recently developed multiclass approach covering >1000 substances is presented as a case study to illustrate the current developments in this area.
Assuntos
Cromatografia Líquida/métodos , Contaminação de Alimentos/análise , Espectrometria de Massas/métodos , Limite de Detecção , Micotoxinas/análise , Praguicidas/análise , Drogas Veterinárias/análiseRESUMO
In winter and summer of 2016 and 2017, airborne fungi and house dust were collected in indoors of the village Gunja, which had been flooded, and the control village Gornji Stupnik (Croatia) in order to explore variations of fungal indoor levels, particularly Aspergilli section Nidulantes series Versicolores, as well as fungal metabolites in dust. Levels of airborne Aspergilli (Versicolores) were three times as high in winter and summer in Gunja than in the control village, while dustborne isolates were equally present in both locations. Sequencing of the calmodulin gene region revealed that among Aspergilli (Versicolores), A. jensenii and A. creber were dominant and together with A. puulaauensis, A. tennesseensis and A. venenatus produced sterigmatocystin and 5-methoxysterigmatocystin (HPLC coupled with mass spectrometry); A. amoenus, A. fructus, A. griseoaurantiacus, A. pepii, and A. protuberus produced sterigmatocystin but not 5-methoxysterigmatocystin; A. sydowii did not produce any of these toxins. A total of 75 metabolites related to Penicillium (29), Aspergillus (22), Fusarium (10), Alternaria (5), Stachybotrys (2), and other fungi (7) were detected in dust by liquid chromatography-tandem mass spectrometry. The majority of metabolites including sterigmatocystin and 5-methoxysterigmatocystin exhibited a higher prevalence in winter in Gunja.
Assuntos
Microbiologia do Ar , Poluição do Ar em Ambientes Fechados , Monitoramento Ambiental , Inundações/estatística & dados numéricos , Alternaria , Aspergillus , Cromatografia Líquida , Croácia , Poeira , Fungos , Habitação , Espectrometria de Massas , Penicillium , Estações do Ano , Stachybotrys , Esterigmatocistina/análogos & derivados , ÁguaRESUMO
This paper describes the validation of an LC-MS/MS-based method for the quantification of > 500 secondary microbial metabolites. Analytical performance parameters have been determined for seven food matrices using seven individual samples per matrix for spiking. Apparent recoveries ranged from 70 to 120% for 53-83% of all investigated analytes (depending on the matrix). This number increased to 84-94% if the recovery of extraction was considered. The comparison of the fraction of analytes for which the precision criterion of RSD ≤ 20% under repeatability conditions (for 7 replicates derived from different individual samples) and intermediate precision conditions (for 7 technical replicates from one sample), respectively, was met (85-97% vs. 93-94%) highlights the contribution of relative matrix effects to the method uncertainty. Statistical testing of apparent recoveries between pairs of matrices exhibited a significant difference for more than half of the analytes, while recoveries of the extraction showed a much better agreement. Apparent recoveries and matrix effects were found to be constant over 2-3 orders of magnitude of analyte concentrations in figs and maize, whereas the LOQs differed less than by a factor of 2 for 90% of the investigated compounds. Based on these findings, this paper discusses the applicability and practicability of current guidelines for multi-analyte method validation. Investigation of (apparent) recoveries near the LOQ seems to be insufficiently relevant to justify the enormous time-effort for manual inspection of the peaks of hundreds of analytes. Instead, more emphasis should be put on the investigation of relative matrix effects in the validation procedure. Graphical abstract.
Assuntos
Produtos Agrícolas/química , Análise de Alimentos/métodos , Micotoxinas/análise , Espectrometria de Massas em Tandem/métodos , Cromatografia Líquida/métodos , Limite de Detecção , Espectrometria de Massas por Ionização por Electrospray/métodos , Zea mays/químicaRESUMO
Programmable transcriptional regulation is a powerful tool to study gene functions. Current methods to selectively regulate target genes are mainly based on promoter exchange or on overexpressing transcriptional activators. To expand the discovery toolbox, we designed a dCas9-based RNA-guided synthetic transcription activation system for Aspergillus nidulans that uses enzymatically disabled "dead" Cas9 fused to three consecutive activation domains (VPR-dCas9). The dCas9-encoding gene is under the control of an estrogen-responsive promoter to allow induction timing and to avoid possible negative effects by strong constitutive expression of the highly active VPR domains. Especially in silent genomic regions, facultative heterochromatin and strictly positioned nucleosomes can constitute a relevant obstacle to the transcriptional machinery. To avoid this negative impact and to facilitate optimal positioning of RNA-guided VPR-dCas9 to targeted promoters, we have created a genome-wide nucleosome map from actively growing cells and stationary cultures to identify the cognate nucleosome-free regions (NFRs). Based on these maps, different single-guide RNAs (sgRNAs) were designed and tested for their targeting and activation potential. Our results demonstrate that the system can be used to regulate several genes in parallel and, depending on the VPR-dCas9 positioning, expression can be pushed to very high levels. We have used the system to turn on individual genes within two different biosynthetic gene clusters (BGCs) which are silent under normal growth conditions. This method also opens opportunities to stepwise activate individual genes in a cluster to decipher the correlated biosynthetic pathway. Graphical abstract KEYPOINTS: ⢠An inducible RNA-guided transcriptional regulator based on VPR-dCas9 was established in Aspergillus nidulans. ⢠Genome-wide nucleosome positioning maps were created that facilitate sgRNA positioning. ⢠The system was successfully applied to activate genes within two silent biosynthetic gene clusters.
Assuntos
Sistemas CRISPR-Cas , Nucleossomos , Genes Fúngicos , Nucleossomos/genética , RNA Guia de Cinetoplastídeos , Ativação TranscricionalRESUMO
Deoxynivalenol (DON), one of the most abundant mycotoxins in cereal products, was recently detected with other mycotoxins and the emetic bacterial toxin cereulide (CER) in maize porridge. Within a cereal-based diet, co-exposure to these toxins is likely, hence raising the question of combinatory toxicological effects. While the toxicological evaluation of DON has quite progressed, consequences of chronic, low-dose CER exposure are still insufficiently explored. Information about the combinatory toxicological effects of these toxins is lacking. In the present study, we investigated how CER (0.1-100 ng/mL) and DON (0.01-10 µg/mL) alone and in a constant ratio of 1:100 (CER:DON) affect the cytotoxicity and immune response of differentiated human intestinal Caco-2 cells. While DON alone reduced cell viability only in the highest concentration (10 µg/mL), CER caused severe cytotoxicity upon prolonged incubation (starting from 10 ng/mL after 24 h and 48 h, 2.5 ng/mL and higher after 72 h). After 72 h, synergistic effects were observed at 2.5 ng/mL CER and 0.25 µg/mL DON. Different endpoints of inflammation were investigated in interleukin-1ß-stimulated Caco-2 cells. Notably, DON-induced interleukin-8 transcription and secretion were diminished by the presence of 10 and 25 ng/mL CER after short-term (5 h) incubation, indicating immunosuppressive properties. We hypothesise that habitual consumption of cereal-based foods co-contaminated with CER and DON may cause synergistic cytotoxic effects and an altered immune response in the human intestine. Therefore, further research concerning effects of co-occurring bacterial toxins and mycotoxins on the impairment of intestinal barrier integrity, intestinal inflammation and the promotion of malnutrition is needed.
Assuntos
Células CACO-2 , Depsipeptídeos/farmacologia , Micotoxinas/farmacologia , Tricotecenos/farmacologia , Sobrevivência Celular , Dieta , Eméticos , Contaminação de Alimentos , Humanos , Inflamação , Interleucina-1beta , Interleucina-8 , Mucosa Intestinal , IntestinosRESUMO
The exquisitely cytotoxic macrolides, satratoxins G and H, have been reisolated from a solvent extract of a rice culture inoculated with Stachybotrys chartarum to be used as high-purity reference compounds for analytical analyses. Extensive chromatographic separation realized the compounds that were fully recharacterized in two solvents by 1D- and 2D-NMR spectroscopy, revealing some discrepancies in the nuclear magnetic resonance (NMR) data as compared with the previously reported values found in the literature. Detailed spectra are provided in order to aid future identification and dereplication.
Assuntos
Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Espectroscopia de Prótons por Ressonância Magnética/métodos , Tricotecenos/química , Oryza/microbiologia , Stachybotrys/metabolismoRESUMO
Fusarium head blight (FHB) is a devastating disease for cereals. FHB is managed by fungicides at anthesis, but their efficacy is variable. Conventional fungicides accumulate in the soil and are dangerous for animal and human health. This study assayed the antifungal ability of chitosan hydrochloride against Fusarium graminearum. Chitosan reduced F. graminearum growth and downregulated the transcript of the major genes involved in the cell growth, respiration, virulence, and trichothecenes biosynthesis. Chitosan promoted the germination rate, the root and coleoptile development, and the nitrogen balance index in two durum wheat genotypes, Marco Aurelio (FHB-susceptible) and DBC480 (FHB-resistant). Chitosan reduced FHB severity when applied on spikes or on the flag leaves. FHB severity in DBC480 was of 6% at 21 dpi after chitosan treatments compared to F. graminearum inoculated control (20%). The elicitor-like property of chitosan was confirmed by the up-regulation of TaPAL, TaPR1 and TaPR2 (around 3-fold). Chitosan decreased the fungal spread and mycotoxins accumulation. This study demonstrated that the non-toxic chitosan is a powerful molecule with the potential to replace the conventional fungicides. The combination of a moderately resistant genotype (DBC480) with a sustainable compound (chitosan) will open new frontiers for the reduction of conventional compounds in agriculture.
Assuntos
Quitosana/farmacologia , Fusarium/efeitos dos fármacos , Doenças das Plantas/microbiologia , Triticum/genética , Proliferação de Células/efeitos dos fármacos , Quitosana/química , Resistência à Doença/genética , Fusarium/genética , Fusarium/patogenicidade , Genótipo , Germinação/efeitos dos fármacos , Doenças das Plantas/genética , Tricotecenos/metabolismo , Triticum/crescimento & desenvolvimento , Triticum/microbiologiaRESUMO
Ready-to-eat foods (RTEs) are foods consumed without any further processing. They are widely consumed as choice meals especially by school-aged children and the fast-paced working class in most low- and middle-income countries (LMICs), where they contribute substantially to the dietary intake. Depending on the type of processing and packaging material, RTEs could be industrially or traditionally processed. Typically, RTE vendors are of low literacy level, as such, they lack knowledge about good hygiene and food handling practices. In addition, RTEs are often vended in outdoor environments such that they are exposed to several contaminants of microbial origin. Depending on the quantity and type of food contaminant, consumption of contaminated RTEs may result in foodborne diseases and several other adverse health effects in humans. This could constitute major hurdles to growth and development in LMICs. Therefore, this review focuses on providing comprehensive and recent occurrence and impact data on the frequently encountered contaminants of microbial origin published in LMICs within the last decade (2009 to 2018). We have also suggested viable food safety solutions for preventing and controlling the food contamination and promoting consumer health.
Assuntos
Fast Foods/microbiologia , Microbiologia de Alimentos/métodos , Países em Desenvolvimento , Contaminação de Alimentos/análise , Manipulação de Alimentos/métodos , Microbiologia de Alimentos/normas , Inocuidade dos Alimentos/métodos , Doenças Transmitidas por Alimentos/microbiologia , HumanosRESUMO
BACKGROUND: Filamentous fungi have evolved to succeed in nature by efficient growth and degradation of substrates, but also due to the production of secondary metabolites including mycotoxins. For Trichoderma reesei, as a biotechnological workhorse for homologous and heterologous protein production, secondary metabolite secretion is of particular importance for industrial application. Recent studies revealed an interconnected regulation of enzyme gene expression and carbon metabolism with secondary metabolism. RESULTS: Here, we investigated gene regulation by YPR2, one out of two transcription factors located within the SOR cluster of T. reesei, which is involved in biosynthesis of sorbicillinoids. Transcriptome analysis showed that YPR2 exerts its major function in constant darkness upon growth on cellulose. Targets (direct and indirect) of YPR2 overlap with induction specific genes as well as with targets of the carbon catabolite repressor CRE1 and a considerable proportion is regulated by photoreceptors as well. Functional category analysis revealed both effects on carbon metabolism and secondary metabolism. Further, we found indications for an involvement of YPR2 in regulation of siderophores. In agreement with transcriptome data, mass spectrometric analyses revealed a broad alteration in metabolite patterns in ∆ypr2. Additionally, YPR2 positively influenced alamethicin levels along with transcript levels of the alamethicin synthase tex1 and is essential for production of orsellinic acid in darkness. CONCLUSIONS: YPR2 is an important regulator balancing secondary metabolism with carbon metabolism in darkness and depending on the carbon source. The function of YPR2 reaches beyond the SOR cluster in which ypr2 is located and happens downstream of carbon catabolite repression mediated by CRE1.
Assuntos
Carbono/metabolismo , Proteínas Fúngicas/genética , Fatores de Transcrição/metabolismo , Trichoderma/metabolismo , Alameticina/metabolismo , Proteínas Fúngicas/metabolismo , Perfilação da Expressão Gênica/métodos , Regulação Fúngica da Expressão Gênica , Espectrometria de Massas , Proteínas Repressoras/genética , Metabolismo Secundário , Trichoderma/genéticaRESUMO
Light dependent processes are involved in the regulation of growth, development and enzyme production in Trichoderma reesei. The photoreceptors BLR1, BLR2 and ENV1 exert crucial functions in these processes. We analyzed the involvement of the transcription factor SUB1 in sexual development as well as secondary metabolism and its position in the light signaling cascade. SUB1 influences growth and in contrast to its homologue in N. crassa, SUB1 is not essential for fruiting body formation and male fertility in T. reesei, but required for female fertility. Accordingly, SUB1 is involved in the regulation of the pheromone system of T. reesei. Female sterility of mutants lacking env1 is rescued in triple mutants of blr1, blr2 and env1, but not in double mutants of these genes. Confrontation of strains lacking sub1 results in growth arrest prior to contact of the potential mating partners. This effect is at least in part due to altered secondary metabolite production. Additionally, together with BLR1 and BLR2, SUB1 is essential for spore pigmentation and transcription of pks4, and secondary metabolism is regulated by SUB1 in a light- and nutrient dependent manner. Our results hence indicate rewiring of several pathways targeted by SUB1 in T. reesei.