Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
J Cell Physiol ; 235(4): 3950-3972, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-31612502

RESUMO

Ion channels can regulate the plasma membrane potential (Vm ) and cell migration as a result of altered ion flux. However, the mechanism by which Vm regulates motility remains unclear. Here, we show that the Nav 1.5 sodium channel carries persistent inward Na+ current which depolarizes the resting Vm at the timescale of minutes. This Nav 1.5-dependent Vm depolarization increases Rac1 colocalization with phosphatidylserine, to which it is anchored at the leading edge of migrating cells, promoting Rac1 activation. A genetically encoded FRET biosensor of Rac1 activation shows that depolarization-induced Rac1 activation results in acquisition of a motile phenotype. By identifying Nav 1.5-mediated Vm depolarization as a regulator of Rac1 activation, we link ionic and electrical signaling at the plasma membrane to small GTPase-dependent cytoskeletal reorganization and cellular migration. We uncover a novel and unexpected mechanism for Rac1 activation, which fine tunes cell migration in response to ionic and/or electric field changes in the local microenvironment.


Assuntos
Neoplasias da Mama/genética , Microambiente Celular/genética , Canal de Sódio Disparado por Voltagem NAV1.5/genética , Proteínas rac1 de Ligação ao GTP/genética , Técnicas Biossensoriais , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Membrana Celular/genética , Membrana Celular/metabolismo , Movimento Celular/genética , Citoesqueleto/química , Citoesqueleto/genética , Feminino , GTP Fosfo-Hidrolases/química , GTP Fosfo-Hidrolases/genética , Humanos , Canais Iônicos/genética , Potenciais da Membrana/genética , Canal de Sódio Disparado por Voltagem NAV1.5/química , Transdução de Sinais/genética , Proteínas rac1 de Ligação ao GTP/química
2.
Br J Cancer ; 121(12): 1016-1026, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31673104

RESUMO

BACKGROUND: Phospholipases D1 and D2 (PLD1/2) are implicated in tumorigenesis through their generation of the signalling lipid phosphatidic acid and its downstream effects. Inhibition of PLD1 blocks prostate cell growth and colony formation. Here a role for PLD2 in prostate cancer (PCa), the major cancer of men in the western world, is examined. METHODS: PLD2 expression was analysed by immunohistochemistry and western blotting. The effects of PLD2 inhibition on PCa cell viability and cell motility were measured using MTS, colony forming and wound-healing assays. RESULTS: PLD2 protein is expressed about equally in luminal and basal prostate epithelial cells. In cells from different Gleason-scored PCa tissue PLD2 protein expression is generally higher than in non-tumorigenic cells and increases in PCa tissue scored Gleason 6-8. PLD2 protein is detected in the cytosol and nucleus and had a punctate appearance. In BPH tissue stromal cells as well as basal and luminal cells express PLD2. PLD2 protein co-expresses with chromogranin A in castrate-resistant PCa tissue. PLD2 inhibition reduces PCa cell viability, colony forming ability and directional cell movement. CONCLUSIONS: PLD2 expression correlates with increasing Gleason score to GS8. PLD2 inhibition has the potential to reduce PCa progression.


Assuntos
Carcinogênese/genética , Neoplasias/genética , Fosfolipase D/genética , Neoplasias de Próstata Resistentes à Castração/genética , Proliferação de Células/genética , Sobrevivência Celular/genética , Progressão da Doença , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Gradação de Tumores , Neoplasias/patologia , Neoplasias de Próstata Resistentes à Castração/patologia , Transdução de Sinais/genética
3.
Proc Natl Acad Sci U S A ; 108(44): 18132-7, 2011 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-22006306

RESUMO

Firing of action potentials in excitable cells accelerates ATP turnover. The voltage-gated potassium channel Kv2.1 regulates action potential frequency in central neurons, whereas the ubiquitous cellular energy sensor AMP-activated protein kinase (AMPK) is activated by ATP depletion and protects cells by switching off energy-consuming processes. We show that treatment of HEK293 cells expressing Kv2.1 with the AMPK activator A-769662 caused hyperpolarizing shifts in the current-voltage relationship for channel activation and inactivation. We identified two sites (S440 and S537) directly phosphorylated on Kv2.1 by AMPK and, using phosphospecific antibodies and quantitative mass spectrometry, show that phosphorylation of both sites increased in A-769662-treated cells. Effects of A-769662 were abolished in cells expressing Kv2.1 with S440A but not with S537A substitutions, suggesting that phosphorylation of S440 was responsible for these effects. Identical shifts in voltage gating were observed after introducing into cells, via the patch pipette, recombinant AMPK rendered active but phosphatase-resistant by thiophosphorylation. Ionomycin caused changes in Kv2.1 gating very similar to those caused by A-769662 but acted via a different mechanism involving Kv2.1 dephosphorylation. In cultured rat hippocampal neurons, A-769662 caused hyperpolarizing shifts in voltage gating similar to those in HEK293 cells, effects that were abolished by intracellular dialysis with Kv2.1 antibodies. When active thiophosphorylated AMPK was introduced into cultured neurons via the patch pipette, a progressive, time-dependent decrease in the frequency of evoked action potentials was observed. Our results suggest that activation of AMPK in neurons during conditions of metabolic stress exerts a protective role by reducing neuronal excitability and thus conserving energy.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Canais de Potássio Shab/metabolismo , Potenciais de Ação , Animais , Linhagem Celular , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Ativação Enzimática , Humanos , Ionomicina/farmacologia , Fosforilação , Ratos
4.
Front Cell Infect Microbiol ; 13: 1237594, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37600951

RESUMO

Toxoplasma gondii is a widespread single-celled intracellular eukaryotic apicomplexan protozoan parasite primarily associated with mammalian foetal impairment and miscarriage, including in humans. Is estimated that approximately one third of the human population worldwide is infected by this parasite. Here we used cutting-edge, label-free 3D quantitative optical diffraction holotomography to capture and evaluate the Toxoplasma lytic cycle (invasion, proliferation and egress) in real-time based on the refractive index distribution. In addition, we used this technology to analyse an engineered CRISPR-Cas9 Toxoplasma mutant to reveal differences in cellular physical properties when compared to the parental line. Collectively, these data support the use of holotomography as a powerful tool for the study of protozoan parasites and their interactions with their host cells.


Assuntos
Toxoplasma , Humanos , Animais , Toxoplasma/genética , Deleção de Genes , Eucariotos , Células Eucarióticas , Feto , Mamíferos
5.
Front Physiol ; 11: 568087, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33041864

RESUMO

Platelets are specialized anucleate cells that play a major role in hemostasis following vessel injury. More recently, platelets have also been implicated in innate immunity and inflammation by directly interacting with immune cells and releasing proinflammatory signals. It is likely therefore that in certain pathologies, such as chronic parasitic infections and myeloid malignancies, platelets can act as mediators for hemostatic and proinflammatory responses. Fortunately, murine platelet function ex vivo is highly analogous to human, providing a robust model for functional comparison. However, traditional methods of studying platelet phenotype, function and activation status often rely on using large numbers of whole isolated platelet populations, which severely limits the number and type of assays that can be performed with mouse blood. Here, using cutting edge 3D quantitative phase imaging, holotomography, that uses optical diffraction tomography (ODT), we were able to identify and quantify differences in single unlabeled, live platelets with minimal experimental interference. We analyzed platelets directly isolated from whole blood of mice with either a JAK2V617F-positive myeloproliferative neoplasm (MPN) or Leishmania donovani infection. Image analysis of the platelets indicates previously uncharacterized differences in platelet morphology, including altered cell volume and sphericity, as well as changes in biophysical parameters such as refractive index (RI) and dry mass. Together, these data indicate that, by using holotomography, we were able to identify clear disparities in activation status and potential functional ability in disease states compared to control at the level of single platelets.

6.
Int J Biochem Cell Biol ; 84: 89-95, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28111333

RESUMO

Label-free imaging uses inherent contrast mechanisms within cells to create image contrast without introducing dyes/labels, which may confound results. Quantitative phase imaging is label-free and offers higher content and contrast compared to traditional techniques. High-contrast images facilitate generation of individual cell metrics via more robust segmentation and tracking, enabling formation of a label-free dynamic phenotype describing cell-to-cell heterogeneity and temporal changes. Compared to population-level averages, individual cell-level dynamic phenotypes have greater power to differentiate between cellular responses to treatments, which has clinical relevance e.g. in the treatment of cancer. Furthermore, as the data is obtained label-free, the same cells can be used for further assays or expansion, of potential benefit for the fields of regenerative and personalised medicine.


Assuntos
Técnicas Citológicas/métodos , Microscopia de Contraste de Fase/métodos , Análise de Célula Única/métodos , Ciclo Celular , Linhagem da Célula , Movimento Celular , Rastreamento de Células , Humanos , Microscopia de Interferência/métodos , Fenótipo
7.
Sci Rep ; 6: 22032, 2016 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-26915695

RESUMO

Time-lapse imaging is a fundamental tool for studying cellular behaviours, however studies of primary cells in complex co-culture environments often requires fluorescent labelling and significant light exposure that can perturb their natural function over time. Here, we describe ptychographic phase imaging that permits prolonged label-free time-lapse imaging of microglia in the presence of neurons and astrocytes, which better resembles in vivo microenvironments. We demonstrate the use of ptychography as an assay to study the phenotypic behaviour of microglial cells in primary neuronal co-cultures through the addition of cyclosporine A, a potent immune-modulator.


Assuntos
Técnicas de Cocultura , Microglia , Neurônios , Imagem com Lapso de Tempo/métodos , Animais , Ratos
8.
J Diabetes Res ; 2015: 409432, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25950006

RESUMO

Type 2 diabetes (T2DM) confers increased risk of endothelial dysfunction, coronary heart disease, and vulnerability to vein graft failure after bypass grafting, despite glycaemic control. This study explored the concept that endothelial cells (EC) cultured from T2DM and nondiabetic (ND) patients are phenotypically and functionally distinct. Cultured human saphenous vein- (SV-) EC were compared between T2DM and ND patients in parallel. Proliferation, migration, and in vitro angiogenesis assays were performed; western blotting was used to quantify phosphorylation of Akt, ERK, and eNOS. The ability of diabetic stimuli (hyperglycaemia, TNF-α, and palmitate) to modulate angiogenic potential of ND-EC was also explored. T2DM-EC displayed reduced migration (~30%) and angiogenesis (~40%) compared with ND-EC and a modest, nonsignificant trend to reduced proliferation. Significant inhibition of Akt and eNOS, but not ERK phosphorylation, was observed in T2DM cells. Hyperglycaemia did not modify ND-EC function, but TNF-α and palmitate significantly reduced angiogenic capacity (by 27% and 43%, resp.), effects mimicked by Akt inhibition. Aberrancies of EC function may help to explain the increased risk of SV graft failure in T2DM patients. This study highlights the importance of other potentially contributing factors in addition to hyperglycaemia that may inflict injury and long-term dysfunction to the homeostatic capacity of the endothelium.


Assuntos
Diabetes Mellitus Tipo 2/patologia , Células Endoteliais/patologia , Endotélio Vascular/patologia , Veia Safena/patologia , Idoso , Idoso de 80 Anos ou mais , Movimento Celular , Proliferação de Células , Células Cultivadas , Diabetes Mellitus Tipo 2/metabolismo , Células Endoteliais/metabolismo , Endotélio Vascular/metabolismo , Feminino , Rejeição de Enxerto , Humanos , Sistema de Sinalização das MAP Quinases/fisiologia , Masculino , Pessoa de Meia-Idade , Óxido Nítrico Sintase Tipo III/metabolismo , Fenótipo , Fosforilação , Proteínas Proto-Oncogênicas c-akt/metabolismo , Veia Safena/metabolismo , Transdução de Sinais/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA