Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 44
Filtrar
1.
Pathobiology ; 90(1): 1-12, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-35609532

RESUMO

INTRODUCTION: Representative regions of interest (ROIs) analysis from the whole slide images (WSI) are currently being used to study immune markers by multiplex immunofluorescence (mIF) and single immunohistochemistry (IHC). However, the amount of area needed to be analyzed to be representative of the entire tumor in a WSI has not been defined. METHODS: We labeled tumor-associated immune cells by mIF and single IHC in separate cohorts of non-small cell lung cancer (NSCLC) samples and we analyzed them as whole tumor area as well as using different number of ROIs to know how much area will be need to represent the entire tumor area. RESULTS: For mIF using the InForm software and ROI of 0.33 mm2 each, we observed that the cell density data from five randomly selected ROIs is enough to achieve, in 90% of our samples, more than 0.9 of Spearman correlation coefficient and for single IHC using ScanScope tool box from Aperio and ROIs of 1 mm2 each, we found that the correlation value of more than 0.9 was achieved using 5 ROIs in a similar cohort. Additionally, we also observed that each cell phenotype in mIF influence differently the correlation between the areas analyzed by the ROIs and the WSI. Tumor tissue with high intratumor epithelial and immune cells phenotype, quality, and spatial distribution heterogeneity need more area analyzed to represent better the whole tumor area. CONCLUSION: We found that at minimum 1.65 mm2 area is enough to represent the entire tumor areas in most of our NSCLC samples using mIF.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Inclusão em Parafina , Imuno-Histoquímica , Imunofluorescência
2.
Br J Cancer ; 127(7): 1201-1213, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35768550

RESUMO

BACKGROUND: Ductal carcinoma in situ (DCIS) is treated to prevent subsequent ipsilateral invasive breast cancer (iIBC). However, many DCIS lesions will never become invasive. To prevent overtreatment, we need to distinguish harmless from potentially hazardous DCIS. We investigated whether the immune microenvironment (IME) in DCIS correlates with transition to iIBC. METHODS: Patients were derived from a Dutch population-based cohort of 10,090 women with pure DCIS with a median follow-up time of 12 years. Density, composition and proximity to the closest DCIS cell of CD20+ B-cells, CD3+CD8+ T-cells, CD3+CD8- T-cells, CD3+FOXP3+ regulatory T-cells, CD68+ cells, and CD8+Ki67+ T-cells was assessed with multiplex immunofluorescence (mIF) with digital whole-slide analysis and compared between primary DCIS lesions of 77 women with subsequent iIBC (cases) and 64 without (controls). RESULTS: Higher stromal density of analysed immune cell subsets was significantly associated with higher grade, ER negativity, HER-2 positivity, Ki67 ≥ 14%, periductal fibrosis and comedonecrosis (P < 0.05). Density, composition and proximity to the closest DCIS cell of all analysed immune cell subsets did not differ between cases and controls. CONCLUSION: IME features analysed by mIF in 141 patients from a well-annotated cohort of pure DCIS with long-term follow-up are no predictors of subsequent iIBC, but do correlate with other factors (grade, ER, HER2 status, Ki-67) known to be associated with invasive recurrences.


Assuntos
Neoplasias da Mama , Carcinoma Ductal de Mama , Carcinoma Intraductal não Infiltrante , Biomarcadores Tumorais/análise , Neoplasias da Mama/patologia , Linfócitos T CD8-Positivos/patologia , Carcinoma Ductal de Mama/patologia , Carcinoma Intraductal não Infiltrante/patologia , Feminino , Fatores de Transcrição Forkhead , Humanos , Antígeno Ki-67 , Microambiente Tumoral
3.
Mod Pathol ; 35(5): 601-608, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-34839351

RESUMO

Triple-negative breast cancer (TNBC) with high tumour-infiltrating lymphocytes (TILs) has been associated with a promising prognosis. To better understand the prognostic value of immune cell subtypes in TNBC, we characterised TILs and the interaction between tumour cells and immune cell subtypes. A total of 145 breast cancer tissues were stained by multiplex immunofluorescence (mIF), including panel 1 (PD-L1, PD-1, CD3, CD8, CD68 and CK) and panel 2 (Foxp3, Granzyme B, CD45RO, CD3, CD8 and CK). Phenotypes were analysed and quantified by pathologists using InForm software. We found that in the ER-negative (ER <1% and HER2-negative) group and the ER/PR-low positive (ER 1-9% and HER2-negative) group, 11.2% and 7.1% of patients were PD-L1+ by the tumour cell score, 29.0% and 28.6% were PD-L1+ by the modified immune cell score and 30.8% and 32.1% were PD-L1+ by the combined positive score. We combined ER-negative and ER/PR-low positive cases for the survival analysis since a 10% cut-off is often used in clinical practice for therapeutic purposes. The densities of PD-L1+ tumour cells (HR: 0.366, 95% CI: 0.138-0.970; p = 0.043) within the tumour compartment and CD3+ immune cells in the total area (tumour and stromal compartments combined) (HR: 0.213, 95% CI: 0.070-0.642; p = 0.006) were favourable prognostic biomarkers for overall survival (OS) in TNBC. The density of effector/memory cytotoxic T cells (CD3+CD8+CD45RO+) in the tumour compartment was an independent prognostic biomarker for OS (HR: 0.232, 95% CI: 0.086-0.628; p = 0.004) and DFS (HR: 0.183, 95% CI: 0.1301-0.744; p = 0.009) in TNBC. Interestingly, spatial data suggested that patients with a higher density of PD-L1+ tumour cells had shorter cell-cell distances from tumour cells to cytotoxic T cells (p < 0.01). In conclusion, we found that phenotyping tumour immune cells by mIF is highly informative in understanding the immune microenvironment in TNBC. PD-L1+ tumour cells, total T cells and effector/memory cytotoxic T cells are promising prognostic biomarkers in TNBC.


Assuntos
Memória Imunológica , Neoplasias de Mama Triplo Negativas , Antígeno B7-H1 , Biomarcadores Tumorais , Complexo CD3/imunologia , Linfócitos T CD8-Positivos/patologia , Humanos , Antígenos Comuns de Leucócito/imunologia , Linfócitos do Interstício Tumoral , Prognóstico , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Microambiente Tumoral
4.
J Immunol ; 202(4): 1176-1185, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30642978

RESUMO

Low-molecular mass protein 7 (LMP7) is a proteolytic subunit of the immunoproteasome that is involved in regulating inflammatory responses. However, the role of LMP7 in the pathogenesis of abdominal aortic aneurysm (AAA) remains unknown. In this study, ApoE knockout (KO) or LMP7/ApoE double KO (dKO) mice were infused with angiotensin II (Ang II, 1000 ng/kg per minute) for up to 28 d. We found that LMP7 expression was significantly upregulated in AAA tissues from ApoE KO mice and human patients. Moreover, Ang II infusion markedly increased the incidence and severity of AAA in ApoE KO mice, which was considerably reduced in LMP7/ApoE dKO mice. Histological alterations, including aortic wall thickening, collagen deposition, elastin fragmentation, and vascular smooth muscle cell apoptosis in AAA tissue of ApoE KO mice, were also significantly attenuated in LMP7/ApoE dKO mice. Interestingly, LMP7/ApoE dKO mice showed a marked reduction of infiltration of CD3+ T cells, especially CD4+ T cells in AAA tissues compared with ApoE KO mice. Moreover, ablation of LMP7 substantially inhibited the differentiation of CD4+ T cells into Th1 and Th17 cells by reducing the activation of multiple transcriptional factors. We also investigated the effects of an LMP7-specific inhibitor PR-957 (also known as ONX 0914) on AAA formation in ApoE KO mice. PR-957 treatment could reduce the AAA incidence and severity. In conclusion, our results provide, to our knowledge, novel evidence that ablation or pharmacological inhibition of LMP7 attenuates Ang II-induced AAA formation, and LMP7 might be a novel therapeutic target for treating AAA in humans.


Assuntos
Aneurisma da Aorta Abdominal/tratamento farmacológico , Aneurisma da Aorta Abdominal/prevenção & controle , Oligopeptídeos/farmacologia , Complexo de Endopeptidases do Proteassoma/metabolismo , Inibidores de Proteassoma/farmacologia , Animais , Aneurisma da Aorta Abdominal/metabolismo , Biocatálise , Inflamação/tratamento farmacológico , Inflamação/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Células Th1 , Células Th17
5.
Cancer Cell Int ; 20: 468, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33005101

RESUMO

PURPOSE: Increasing evidence has shown that the transcription factor SOX4 is closely associated with the development and progression of many malignant tumors. However, the effect of SOX4 on breast cancer is unclear. In this study, we purposed to investigate the role of SOX4 in the growth and metastasis in breast cancer and the underlying mechanism. Moreover, the effect of SOX4 on cancer cell resistance to chemotherapeutic agents was also evaluated in vitro and in vivo. METHODS: We used lentivirus technique to ectopically express SOX4 in MDA-MB-231 and SUM149 cells or knockdown SOX4 in BT474 cells, and examined the effect of these changes on various cellular functions. MTT assay was used to determine the cell viability as well as resistance to chemotherapeutic agents. The regulation of SOX4 on epithelial-mesenchymal transition (EMT)-related genes was analyzed using qRT-PCR. The binding of SOX4 to the CXCR7 gene was demonstrated using chromatin immunoprecipitation assay and dual-luciferase reporter activity assay. The effect of SOX4/CXCR7 axis on metastasis was examined using Transwell migration and Matrigel invasion assays. The expression of SOX4/CXCR7 in primary tumors and metastatic foci in lymph nodes was assessed using immunohistochemistry. Cellular morphology was investigated under phase contrast microscope and transmission electron microscopy. Moreover, the effect of SOX4 on tumor growth, metastasis, and resistance to chemotherapy was also studied in vivo by using bioluminescent imaging. RESULTS: SOX4 increased breast cancer cell viability, migration, and invasion in vitro and enhanced tumor growth and metastasis in vivo. It regulated EMT-related genes and bound to CXCR7 promoter to upregulate CXCR7 transcription. Both SOX4 and CXCR7 were highly expressed in human primary tumors and metastatic foci in lymph nodes. Treatment of breast cancer cells with the CXCR7 inhibitor CCX771 reversed the SOX4 effect on cell migration and invasion. Ectopic expression of SOX4 increased the susceptibility of cells to paclitaxel. CONCLUSIONS: SOX4 plays an important role in the growth and metastasis of breast cancer. SOX4/CXCR7 may serve as potential therapeutic targets for the treatment. Paclitaxel may be a good therapeutic option if the expression level of SOX4 is high.

6.
Med Sci Monit ; 25: 4137-4148, 2019 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-31158122

RESUMO

BACKGROUND Resveratrol has been shown to possess beneficial activities including antioxidant, anti-inflammatory, and cardioprotective effects through activating a nicotinamide adenine dinucleotide (NAD)-dependent histone deacetylase family member sirtuin-1 (SIRT1) protein. The current study was undertaken to investigate the role of sirtuin family members (SIRT1-SIRT7) on the anti-inflammation activities of resveratrol in endothelial cells. MATERIAL AND METHODS Primary human umbilical vein endothelial cells (HUVECs) were pretreated with resveratrol before tumor necrosis factor (TNF)-alpha (10-20 µg/L) stimulation. Cell viability was measured using the Cell Counting Kit-8 method. Total RNA was extracted after different treatments and the NimbleGen Human 12×135K Gene Expression Array was applied to screen and analyze SIRTs expression. Quantitative real-time polymerase chain reaction and western blot were applied to verify the results of the gene expression microarrays. Reactive oxygen species (ROS) production was examined using flow cytometry analysis. RESULTS Microarray analysis showed that the expressions of SIRT1, SIRT2, SIRT3, SIRT5, SIRT6, and SIRT7 showed the tendency to increase while SIRT4 showed the tendency to decrease. SIRT1, SIRT2, SIRT5, and SIRT7 gene expression could be upregulated by pretreatment with resveratrol compared with TNF-alpha alone while there were no obvious differences of SIRT3, SIRT4, and SIRT6 expressions observed in TNF-alpha alone treated cells and resveratrol-TNF-alpha co-treated cells. Interestingly, SIRT1, SIRT2, SIRT3, SIRT4, and SIRT5 siRNA could reverse the effect of resveratrol on ROS production; SIRT1 and SIRT5 siRNA could significantly increase CD40 expression inhibited by resveratrol in TNF-a treated cells. CONCLUSIONS Our results suggest that resveratrol inhibiting oxidative stress production is associated with SIRT1, SIRT2, SIRT3, SIRT4, and SIRT5 pathways; attenuating CD40 expression was only associated with SIRT1 and SIRT5 pathways in TNF-alpha-induced endothelial cells injury.


Assuntos
Resveratrol/farmacologia , Sirtuínas/metabolismo , Sirtuínas/farmacologia , Antioxidantes , Células Cultivadas , China , Expressão Gênica , Regulação da Expressão Gênica/genética , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Inflamação , Mitocôndrias/genética , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Estresse Oxidativo , RNA Interferente Pequeno/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Sirtuínas/genética , Fator de Necrose Tumoral alfa/metabolismo
7.
Blood ; 126(13): 1565-74, 2015 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-26254443

RESUMO

Mantle cell lymphoma (MCL) cells exhibit increased B-cell receptor and nuclear factor (NF)-κB activities. The bromodomain and extra-terminal (BET) protein bromodomain 4 is essential for the transcriptional activity of NF-κB. Here, we demonstrate that treatment with the BET protein bromodomain antagonist (BA) JQ1 attenuates MYC and cyclin-dependent kinase (CDK)4/6, inhibits the nuclear RelA levels and the expression of NF-κB target genes, including Bruton tyrosine kinase (BTK) in MCL cells. Although lowering the levels of the antiapoptotic B-cell lymphoma (BCL)2 family proteins, BA treatment induces the proapoptotic protein BIM and exerts dose-dependent lethality against cultured and primary MCL cells. Cotreatment with BA and the BTK inhibitor ibrutinib synergistically induces apoptosis of MCL cells. Compared with each agent alone, cotreatment with BA and ibrutinib markedly improved the median survival of mice engrafted with the MCL cells. BA treatment also induced apoptosis of the in vitro isolated, ibrutinib-resistant MCL cells, which overexpress CDK6, BCL2, Bcl-xL, XIAP, and AKT, but lack ibrutinib resistance-conferring BTK mutation. Cotreatment with BA and panobinostat (pan-histone deacetylase inhibitor) or palbociclib (CDK4/6 inhibitor) or ABT-199 (BCL2 antagonist) synergistically induced apoptosis of the ibrutinib-resistant MCL cells. These findings highlight and support further in vivo evaluation of the efficacy of the BA-based combinations with these agents against MCL, including ibrutinib-resistant MCL.


Assuntos
Antineoplásicos/uso terapêutico , Azepinas/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Inibidores Enzimáticos/uso terapêutico , Linfoma de Célula do Manto/tratamento farmacológico , Proteínas Nucleares/antagonistas & inibidores , Pirazóis/uso terapêutico , Pirimidinas/uso terapêutico , Fatores de Transcrição/antagonistas & inibidores , Triazóis/uso terapêutico , Adenina/análogos & derivados , Tirosina Quinase da Agamaglobulinemia , Animais , Antineoplásicos/farmacologia , Azepinas/farmacologia , Proteínas de Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Quinase 4 Dependente de Ciclina/antagonistas & inibidores , Quinase 4 Dependente de Ciclina/metabolismo , Quinase 6 Dependente de Ciclina/antagonistas & inibidores , Quinase 6 Dependente de Ciclina/metabolismo , Sinergismo Farmacológico , Inibidores Enzimáticos/farmacologia , Inibidores de Histona Desacetilases/farmacologia , Inibidores de Histona Desacetilases/uso terapêutico , Humanos , Linfoma de Célula do Manto/metabolismo , Linfoma de Célula do Manto/patologia , Camundongos Endogâmicos NOD , Camundongos SCID , NF-kappa B/metabolismo , Proteínas Nucleares/metabolismo , Piperidinas , Proteínas Tirosina Quinases/metabolismo , Proteínas Proto-Oncogênicas c-bcl-2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo , Proteínas Proto-Oncogênicas c-myc/metabolismo , Pirazóis/farmacologia , Pirimidinas/farmacologia , Fator de Transcrição RelA/metabolismo , Fatores de Transcrição/metabolismo , Triazóis/farmacologia
8.
Blood ; 125(19): 2968-73, 2015 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-25712988

RESUMO

Tyrosine kinase inhibitors (TKIs) are used as a frontline therapy for BCR-ABL(+) acute lymphoblastic leukemia (ALL). However, resistance to TKI therapy arises rapidly, and its underlying molecular mechanisms are poorly understood. In this study, we identified a novel cascade of events initiated by TKIs and traversing through mesenchymal stem cells (MSCs) to leukemic cells, leading to resistance. MSCs exposed to TKIs acquired a new functional status with the expression of genes encoding for chemo-attractants, adhesion molecules, and prosurvival growth factors, and this priming enabled leukemic cells to form clusters underneath the MSCs. This cluster formation was associated with the protection of ALL cells from therapy as leukemic cells switched from BCR-ABL signaling to IL-7R/Janus kinase signaling to survive in the MSC milieu. Our findings illustrate a novel perspective in the evolution of TKI resistance and provide insights for advancing the treatment of BCR-ABL(+) ALL.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Proteínas de Fusão bcr-abl/metabolismo , Células-Tronco Mesenquimais/patologia , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Inibidores de Proteínas Quinases/farmacologia , Animais , Biomarcadores Tumorais/genética , Biomarcadores Tumorais/metabolismo , Transformação Celular Neoplásica/efeitos dos fármacos , Proteínas de Fusão bcr-abl/genética , Perfilação da Expressão Gênica , Células-Tronco Mesenquimais/efeitos dos fármacos , Células-Tronco Mesenquimais/metabolismo , Camundongos , Análise de Sequência com Séries de Oligonucleotídeos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Transdução de Sinais/efeitos dos fármacos , Células Tumorais Cultivadas
9.
Exp Physiol ; 102(5): 598-606, 2017 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-28295786

RESUMO

NEW FINDINGS: What is the central question of this study? Airway angiogenesis occurs in asthma, and airway smooth muscle (ASM) cells have been reported to be capable of promoting airway angiogenesis. What is the potential mechanism by which ASM cells harvested from patients with asthma are capable of promoting airway angiogenesis? What is the main finding and its importance? Endogenous STAT3 mediated the pro-angiogenic ability of ASM cells by directly activating VEGF signalling. These findings contribute to the understanding of airway angiogenesis in pathology and could represent a possible therapeutic target for asthma. Airway angiogenesis indicates the specific vascular structure remodelling that occurs in asthma. Airway smooth muscle (ASM) cells have been reported to be capable of promoting airway angiogenesis; however, the potential mechanism is not yet fully defined. Herein, we investigated the role of signal transducer and activator of transcription 3 (STAT3) in the progress of airway angiogenesis. Western blot analysis showed that STAT3 activation was aberrantly upregulated in ASM tissues of patients with asthma and ASM cells that were exposed to cytokines to imitate the airway conditions in patients with asthma. Compared with the control group, both the inhibition of STAT3 activation and the silencing of endogenous STAT3 in ASM cells significantly reduced the proliferation, migration and tube-forming ability of human lung microvascular endothelial cells induced by the conditioned medium (CM) of ASM cells. The increased proliferation and migration of human aortic vascular smooth muscle cells were also repressed by inhibition of STAT3 in ASM cells. Besides, the increased activity of VEGF signalling was observed in ASM cells and the CM by RT-PCR and Western blotting assay, whereas this increased activity was reduced by STAT3 silencing. Further studies indicated that STAT3 regulated VEGF activation by directly interacting with the binding site on the 5' region of the VEGF gene. The increase in STAT3-induced pro-angiogenic activity of ASM cells was significantly decreased by administration of VEGF neutralizing antibody. In conclusion, we provided evidence that endogenous STAT3 mediates the pro-angiogenic ability of ASM cells by directly activating VEGF signalling, which could represent a possible therapeutic target for asthma.


Assuntos
Músculo Liso/metabolismo , Músculo Liso/fisiologia , Miócitos de Músculo Liso/metabolismo , Miócitos de Músculo Liso/fisiologia , Neovascularização Fisiológica/fisiologia , Fator de Transcrição STAT3/metabolismo , Fator A de Crescimento do Endotélio Vascular/metabolismo , Aorta/metabolismo , Aorta/fisiopatologia , Asma/metabolismo , Asma/fisiopatologia , Movimento Celular/fisiologia , Proliferação de Células/fisiologia , Células Cultivadas , Células Endoteliais/metabolismo , Células Endoteliais/fisiologia , Humanos , Pulmão/metabolismo , Pulmão/fisiopatologia , Transdução de Sinais/fisiologia , Regulação para Cima/fisiologia
10.
Mol Cell Biochem ; 432(1-2): 91-98, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28316062

RESUMO

Claudin-1 (CLDN-1) is one of main tight junction components that play an important role in epithelial-mesenchymal transition (EMT). However, the effects of CLDN-1 on the migration and EMT induced by TGF-ß1 in primary normal human bronchial epithelial (NHBE) and BEAS-2B cells have not been clear. The expression of CLDN-1 was quantified by Western blotting in NHBE and BEAS-2B cells. Cell migration and invasion were detected using transwell assays. The expression level of E-cadherin, N-cadherin, α-SMA, and Vimentin was evaluated by quantitative real-time PCR and Western blotting. Here we showed that the protein expression of CLDN-1 was increased exposed to TGF-ß1 in a dose- and time-dependent manner. Knockdown of CLDN-1 using small interfering CLDN-1 RNA (siCLDN-1) prevented the migration and invasion in NHBE and BEAS-2B cells. Moreover, depletion of CLDN-1 promoted the E-cadherin expression and decreased the mRNA and protein levels of N-cadherin, α-SMA, and Vimentin induced by TGF-ß1. Furthermore, CLDN-1 silencing resulted in the reduction of the Notch intracellular domain (NICD) and hairy enhancer of split-1 (Hes-1) in mRNA and protein level. Jagged-1, an activator of Notch signaling pathway, abrogated the protective function of siCLDN-1 in migration and EMT. In conclusion, CLDN-1 promoted the migration and EMT through the Notch signaling pathway.


Assuntos
Brônquios/metabolismo , Movimento Celular , Claudina-1/metabolismo , Células Epiteliais/metabolismo , Transição Epitelial-Mesenquimal , Receptores Notch/metabolismo , Transdução de Sinais , Brônquios/citologia , Linhagem Celular , Claudina-1/genética , Células Epiteliais/citologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA