Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 81
Filtrar
1.
Antimicrob Agents Chemother ; 68(3): e0123123, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38289082

RESUMO

Multidrug-resistant Enterobacteriaceae, a prominent family of gram-negative pathogenic bacteria, causes a wide range of severe diseases. Strains carrying the mobile colistin resistance (mcr-1) gene show resistance to polymyxin, the last line of defense against multidrug-resistant gram-negative bacteria. However, the transmission of mcr-1 is not well understood. In this study, genomes of mcr-1-positive strains were obtained from the NCBI database, revealing their widespread distribution in China. We also showed that ISApl1, a crucial factor in mcr-1 transmission, is capable of self-transposition. Moreover, the self-cyclization of ISApl1 is mediated by its own encoded transposase. The electrophoretic mobility shift assay experiment validated that the transposase can bind to the inverted repeats (IRs) on both ends, facilitating the cyclization of ISApl1. Through knockout or shortening of IRs at both ends of ISApl1, we demonstrated that the cyclization of ISApl1 is dependent on the sequences of the IRs at both ends. Simultaneously, altering the ATCG content of the bases at both ends of ISApl1 can impact the excision rate by modifying the binding ability between IRs and ISAPL1. Finally, we showed that heat-unstable nucleoid protein (HU) can inhibit ISApl1 transposition by binding to the IRs and preventing ISAPL1 binding and expression. In conclusion, the regulation of ISApl1-self-circling is predominantly controlled by the inverted repeat (IR) sequence and the HU protein. This molecular mechanism deepens our comprehension of mcr-1 dissemination.


Assuntos
Colistina , Proteínas de Escherichia coli , Colistina/farmacologia , Antibacterianos/farmacologia , Plasmídeos , Farmacorresistência Bacteriana/genética , Transposases/genética , Proteínas de Escherichia coli/genética
2.
Int J Med Microbiol ; 317: 151636, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39426162

RESUMO

Staphylococcus aureus, a facultative anaerobic gram-positive bacterial pathogen, has posed major threat to public health worldwide. Upon S. aureus infection, the host immune system is activated for clearance. However, intracellular S. aureus, which remains viable for an extended time, has evolved the ability to escape from immune response and extracellular antibiotics. One of possible strategies is the formation of persisters. Persistence is one of the major causes of S. aureus relapse infection but the underlying mechanisms remain obscure. Here, we identified two co-transcribed genes SA1833-SA1832 that are involved in persister formation in S. aureus. Dysfunction of SA1833 and/or SA1832 significantly reduces persister formation in the presence of ceftizoxime. Additionally, we found that the expression of SA1833 and SA1832 under the induction of oxidative stress and SOS response is strictly regulated by the LexA-RecA pathway. Interestingly, SA1833-SA1832 contributes to persister formation in an lrgA-dependent manner. Moreover, the mouse RAW264.7 macrophage infection model indicated that disrupting SA1833-SA1832 inhibits S. aureus from infecting macrophages and impairs its ability to survive in the intracellular environment.

3.
Int J Med Microbiol ; 315: 151624, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38838390

RESUMO

Staphylococcus aureus is a notorious pathogen responsible for various severe diseases. Due to the emergence of drug-resistant strains, the prevention and treatment of S. aureus infections have become increasingly challenging. Vancomycin is considered to be one of the last-resort drugs for treating most methicillin-resistant S. aureus (MRSA), so it is of great significance to further reveal the mechanism of vancomycin resistance. VraFG is one of the few important ABC (ATP-binding cassette) transporters in S. aureus that can form TCS (two-component systems)/ABC transporter modules. ABC transporters can couple the energy released from ATP hydrolysis to translocate solutes across the cell membrane. In this study, we obtained a strain with decreased vancomycin susceptibility after serial passaging and selection. Subsequently, whole-genome sequencing was performed on this laboratory-derived strain MWA2 and a novel single point mutation was discovered in vraF gene, leading to decreased sensitivity to vancomycin and daptomycin. Furthermore, the mutation reduces autolysis of S. aureus and downregulates the expression of lytM, isaA, and atlA. Additionally, we observed that the mutant has a less net negative surface charge than wild-type strain. We also noted an increase in the expression of the dlt operon and mprF gene, which are associated with cell surface charge and serve to hinder the binding of cationic peptides by promoting electrostatic repulsion. Moreover, this mutation has been shown to enhance hemolytic activity, expand subcutaneous abscesses, reflecting an increased virulence. This study confirms the impact of a point mutation of VraF on S. aureus antibiotic resistance and virulence, contributing to a broader understanding of ABC transporter function and providing new targets for treating S. aureus infections.


Assuntos
Transportadores de Cassetes de Ligação de ATP , Antibacterianos , Proteínas de Bactérias , Infecções Estafilocócicas , Staphylococcus aureus , Vancomicina , Virulência/genética , Infecções Estafilocócicas/microbiologia , Antibacterianos/farmacologia , Vancomicina/farmacologia , Animais , Transportadores de Cassetes de Ligação de ATP/genética , Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Staphylococcus aureus/genética , Staphylococcus aureus/efeitos dos fármacos , Staphylococcus aureus/patogenicidade , Staphylococcus aureus/metabolismo , Testes de Sensibilidade Microbiana , Resistência a Vancomicina/genética , Sequenciamento Completo do Genoma , Daptomicina/farmacologia , Camundongos , Autólise , Humanos , Mutação Puntual , Mutação , Feminino
4.
Chaos ; 34(2)2024 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-38305051

RESUMO

Extensive real-data indicate that human motion exhibits novel patterns and has a significant impact on the epidemic spreading process. The research on the influence of human motion patterns on epidemic spreading dynamics still lacks a systematic study in network science. Based on an agent-based model, this paper simulates the spread of the disease in the gathered population by combining the susceptible-infected-susceptible epidemic process with human motion patterns, described by moving speed and gathering preference. Our simulation results show that the emergence of a hysteresis loop is observed in the system when the moving speed is slow, particularly when humans prefer to gather; that is, the epidemic prevalence of the systems depends on the fraction of initial seeds. Regardless of the gathering preference, the hysteresis loop disappears when the population moves fast. In addition, our study demonstrates that there is an optimal moving speed for the gathered population, at which the epidemic prevalence reaches its maximum value.


Assuntos
Epidemias , Humanos , Simulação por Computador , Prevalência
5.
BMC Genomics ; 23(1): 88, 2022 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-35100991

RESUMO

BACKGROUND: Mobile colistin resistance like gene (mcr-like gene) is a new type of polymyxin resistance gene that can be horizontally transferred in the Enterobacteriaceae. This has brought great challenges to the treatment of multidrug-resistant Escherichia coli and K. pneumoniae. RESULTS: K. pneumoniae 16BU137 and E. coli 17MR471 were isolated from the bus and subway handrails in Guangzhou, China. K. pneumoniae 19PDR22 and KP20191015 were isolated from patients with urinary tract infection and severe pneumonia in Anhui, China. Sequence analysis indicated that the mcr-1.1 gene was present on the chromosome of E. coli 17MR471, and the gene was in the gene cassette containing pap2 and two copies of ISApl1.The mcr-1.1 was found in the putative IncX4 type plasmid p16BU137_mcr-1.1 of K. pneumoniae 16BU137, but ISApl1 was not found in its flanking sequence. Mcr-8 variants were found in the putative IncFIB/ IncFII plasmid pKP20191015_mcr-8 of K. pneumoniae KP20191015 and flanked by ISEcl1 and ISKpn26. CONCLUSION: This study provides timely information on Enterobacteriaceae bacteria carrying mcr-like genes, and provides a reference for studying the spread of mcr-1 in China and globally.


Assuntos
Proteínas de Escherichia coli , Polimixinas , Antibacterianos/farmacologia , Farmacorresistência Bacteriana/genética , Enterobacteriaceae/genética , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Genômica , Humanos , Polimixinas/farmacologia
6.
BMC Microbiol ; 22(1): 262, 2022 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-36319965

RESUMO

BACKGROUND: It is well known that carbapenem-resistant Klebsiella pneumoniae (CRKP) has become a more problematic public health issue due to its widespread spread worldwide. In China, ST11-type CRKP is the most prevalent CRKP, but ST15-type CRKP, a recently prevalent high-risk clone, has emerged widely throughout China, posing a serious public health risk. Therefore, we conducted an epidemiological of an outbreak of ST15 CRKP of producing CTX-M-15, KPC-2 and SHV-106 in a tertiary hospital in Anhui, China, to Understanding the potential risks of the current STT15 CRKP outbreak. RESULTS: From July 2021 to December 2021, 13 ST15 CRKP isolates were identified by collecting non-repeated clinical multidrug-resistant isolates, with all capsular typing of serotype KL19. All ST15 CRKP isolates were resistant to cephalosporins, carbapenems and quinolones, but were sensitive to amikacin, tigecycline and polymyxin B. In addition, isolates carried blaSHV-106 (100%), blaKPC-2 (69%), blaCTX-M-15 (69%), blaTEM-1B (69%), blaOXA-1 (62%) and blaLAP-2 (8%), as well as iron chelators (iutA, ybt, fyuA, ent, fepA, irp1, irp2, 100%) were detected. In phenotyping experiments, all ST15 CRKP exhibited lower growth rates than NTUH-K2044, and all ST15 CRKP did not exhibit mucoviscositty characteristics. However, in the Galleria mellonella infection model, isolates 21081212, 21081241 and 21091216 were more lethal than the hypervirulent isolates NTUH-K2044. Sequencing results showed that the genetic environment surrounding the genes blaSHV-106, blaKPC-2, blaCTX-M-15, blaOXA-1 and blaTEM-1B were all identical in the ST15 CRKP isolates. Phylogenetic analysis showed that 13 ST15 CRKP isolates were divided into three subgroups, and when placed in global analysis, 10 of them were highly homologous to isolates from Jiangsu, two were highly homologous to isolates from Zhejiang, and one was homologous to an isolate from an unlabelled region. CONCLUSION: Our research shows that ST15 CRKP, which carries multiple ß-lactamases genes and siderophores-encoding genes, may be evolving to hypervirulence and may have spread widely in localised areas. Therefore, environmental surveillance and clinical infection control in hospitals should be strengthened to prevent further spread of ST15 CRKP.


Assuntos
Enterobacteriáceas Resistentes a Carbapenêmicos , Infecções por Klebsiella , Humanos , Klebsiella pneumoniae/genética , Infecções por Klebsiella/epidemiologia , Filogenia , Tipagem de Sequências Multilocus , Antibacterianos/uso terapêutico , Enterobacteriáceas Resistentes a Carbapenêmicos/genética , Carbapenêmicos , beta-Lactamases/genética , Centros de Atenção Terciária , China/epidemiologia , Testes de Sensibilidade Microbiana
7.
BMC Microbiol ; 22(1): 184, 2022 07 23.
Artigo em Inglês | MEDLINE | ID: mdl-35870901

RESUMO

BACKGROUND: Gastric microbial dysbiosis were reported to be associated with gastric cancer (GC). This study aimed to explore the variation, diversity, and composition patterns of gastric bacteria in stages of gastric carcinogenesis based on the published datasets. METHODS: We conducted a gastric microbial analysis using 10 public datasets based on 16S rRNA sequencing, including 1270 gastric biopsies of 109 health control, 183 superficial gastritis (SG), 135 atrophic gastritis (AG), 124 intestinal metaplasia (IM), 94 intraepithelial neoplasia (IN), 344 GC, and 281 adjacent normal tissues. And QIIME2-pipeline, DESeq2, NetMoss2, vegan, igraph, and RandomForest were used for the data processing and analysis. RESULTS: We identified three gastric microbial communities among all the gastric tissues. The first community (designate as GT-H) was featured by the high abundance of Helicobacter. The other two microbial communities, namely GT-F, and GT-P, were featured by the enrichment of phylum Firmicutes and Proteobacteria, respectively. The distribution of GC-associated bacteria, such as Fusobacterium, Peptostreptococcus, Streptococcus, and Veillonella were enriched in tumor tissues, and mainly distributed in GT-F type microbial communities. Compared with SG, AG, and IM, the bacterial diversity in GC was significantly reduced. And the strength of microbial interaction networks was initially increased in IM but gradually decreased from IN to GC. In addition, Randomforest models constructed in in GT-H and GT-F microbial communities showed excellent performance in distinguishing GC from SG and precancerous stages, with varied donated bacteria. CONCLUSIONS: This study identified three types of gastric microbiome with different patterns of composition which helps to clarify the potential key bacteria in the development of gastric carcinogenesis.


Assuntos
Gastrite Atrófica , Gastrite , Microbioma Gastrointestinal , Infecções por Helicobacter , Helicobacter pylori , Microbiota , Neoplasias Gástricas , Bactérias/genética , Carcinogênese/patologia , Mucosa Gástrica/microbiologia , Gastrite/complicações , Gastrite/microbiologia , Gastrite/patologia , Gastrite Atrófica/complicações , Gastrite Atrófica/patologia , Microbioma Gastrointestinal/genética , Infecções por Helicobacter/microbiologia , Helicobacter pylori/genética , Humanos , Metaplasia , RNA Ribossômico 16S/genética
8.
Nucleic Acids Res ; 48(18): 10527-10541, 2020 10 09.
Artigo em Inglês | MEDLINE | ID: mdl-32845304

RESUMO

YoeB-YefM, the widespread type II toxin-antitoxin (TA) module, binds to its own promoter to autoregulate its transcription: repress or induce transcription under normal or stress conditions, respectively. It remains unclear how YoeB-YefM regulates its transcription depending on the YoeB to YefM TA ratio. We find that YoeB-YefM complex from S.aureus exists as two distinct oligomeric assemblies: heterotetramer (YoeB-YefM2-YoeB) and heterohexamer (YoeB-YefM2-YefM2-YoeB) with low and high DNA-binding affinities, respectively. Structures of the heterotetramer alone and heterohexamer bound to promoter DNA reveals that YefM C-terminal domain undergoes disorder to order transition upon YoeB binding, which allosterically affects the conformation of N-terminal DNA-binding domain. At TA ratio of 1:2, unsaturated binding of YoeB to the C-terminal regions of YefM dimer forms an optimal heterohexamer for DNA binding, and two YefM dimers with N-terminal domains dock into the adjacent major grooves of DNA to specifically recognize the 5'-TTGTACAN6AGTACAA-3' palindromic sequence, resulting in transcriptional repression. In contrast, at TA ratio of 1:1, binding of two additional YoeB molecules onto the heterohexamer induces the completely ordered conformation of YefM and disassembles the heterohexamer into two heterotetramers, which are unable to bind the promoter DNA optimally due to steric clashes, hence derepresses TA operon transcription.


Assuntos
Proteínas de Bactérias/ultraestrutura , Endorribonucleases/ultraestrutura , Proteínas de Escherichia coli/genética , Staphylococcus aureus/ultraestrutura , Sistemas Toxina-Antitoxina/genética , Antitoxinas/genética , Antitoxinas/ultraestrutura , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Toxinas Bacterianas/química , Toxinas Bacterianas/genética , Proteínas de Ligação a DNA/genética , Endorribonucleases/química , Endorribonucleases/genética , Escherichia coli/genética , Proteínas de Escherichia coli/química , Proteínas de Escherichia coli/ultraestrutura , Óperon/genética , Regiões Promotoras Genéticas , Ligação Proteica/genética , Multimerização Proteica/genética , Staphylococcus aureus/química , Staphylococcus aureus/genética
9.
J Antimicrob Chemother ; 76(7): 1712-1723, 2021 06 18.
Artigo em Inglês | MEDLINE | ID: mdl-33948657

RESUMO

OBJECTIVES: Vancomycin-intermediate Staphylococcus aureus (VISA) is increasingly being reported. Previous studies have shown that vraC and vraP may be involved in vancomycin resistance, although the molecular mechanism remains elusive. METHODS: The vraC (SAV0577), vraP (SAV0578) and vraCP mutants were constructed in Mu50 by allelic replacement. Some common VISA phenotypes were assessed in mutants, such as, susceptibility to the cell wall-associated antibiotics, cell wall thickness, autolysis activity and growth rate. RT-qPCR was performed to reveal the differential genes associated with these phenotypes. The binding abilities of VraC and VraCP to the promoters of target genes were determined by electrophoretic mobility shift assay (EMSA). RESULTS: VraP forms a stable complex with VraC to preserve their own stability. The vraC, vraP and vraCP mutants exhibited increased susceptibility to the cell wall-associated antibiotics and thinner cell walls compared with the WT strain. Consistent with these phenotypes, RT-qPCR revealed downregulated transcription of glyS, sgtB, ddl and alr2, which are involved in cell wall biosynthesis. Moreover, the transcription of cell wall hydrolysis genes, including sceD, lytM and isaA, was significantly downregulated, supporting the finding that mutants exhibited reduced autolysis rates. EMSA confirmed that both VraC and VraCP can directly bind to the sceD, lytM and isaA promoter regions containing the consensus sequence (5'-TTGTAAN2AN3TGTAA-3'), which is crucial for the binding of VraCP with target genes. GFP-reporter assays further revealed VraC and VraCP can enhance promoter activity of sceD to positively regulate its expression. CONCLUSIONS: vraCP plays a significant role in cell wall metabolism and antibiotic resistance in Mu50.


Assuntos
Staphylococcus aureus , Vancomicina , Antibacterianos/farmacologia , Proteínas de Bactérias/genética , Parede Celular , Testes de Sensibilidade Microbiana , Staphylococcus aureus/genética , Vancomicina/farmacologia , Staphylococcus aureus Resistente à Vancomicina
10.
Int J Med Microbiol ; 311(2): 151473, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-33445057

RESUMO

With the treatment failure by vancomycin and poor clinical outcomes, the emergence and spread of vancomycin intermediate-resistant Staphylococcus aureus (VISA) has raised more concerns in recent years. While most VISA strains are isolated from methicillin-resistant S. aureus (MRSA), the mechanism underlying the generation of VISA from methicillin-susceptible S. aureus (MSSA) is still largely unknown. Here, we identified a total of 10 mutations in 9 genes through comparative genome analysis from laboratory-derived VISA strain. We verified the role of a novel mutation of WalK (I237T) and our results further indicated that the introduction of WalK (I237T) by allelic replacement can confer vancomycin resistance in MSSA with common VISA characteristics, including thickened cell walls, reduced autolysis, and attenuated virulence. Consistent with these phenotypes, real-time quantitative reverse transcription-PCR revealed the altered expression of several genes associated with cell wall metabolism and virulence control. In addition, electrophoretic mobility shift assay indicated that WalR can directly bind to the promoter regions of oatA, sle1, and mgt, fluorescence-based promoter activity and ß-galactosidase assays revealed WalK (I237T) can alter promoter activities of oatA, mgt, and sle1, thus regulating genes expression. These findings broaden our understanding of the regulatory network by WalKR system and decipher the molecular mechanisms of developmental VISA resistance in MSSA with point mutations.


Assuntos
Genes Bacterianos , Mutação , Staphylococcus aureus/genética , Resistência a Vancomicina/genética , Antibacterianos/farmacologia , Hibridização Genômica Comparativa , Meticilina/farmacologia , Testes de Sensibilidade Microbiana , Staphylococcus aureus/efeitos dos fármacos , Vancomicina/farmacologia
11.
Int J Med Microbiol ; 310(5): 151436, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32654771

RESUMO

Staphylococcus aureus is a gram-positive pathogenic bacterium and is capable of secreting numerous toxins interfering directly with the host to cause acute infections. Rbf, a transcriptional regulator of AraC/XylS family, has been reported to promote biofilm formation in polysaccharide intercellular adhesion (PIA) mediated manner to cause chronic infections. In this study, we revealed the new virulence-mediated role of Rbf that can negatively regulate the hemolytic activity. Furthermore, Rbf can specifically bind to the hla and psmα promoters to repress their expression, resulting in significantly decreased production of phenol-soluble modulins α (PSMα) and alpha-toxin. Accordingly, the rbf mutant strain exhibited the increased pathogenicity compared to the wild-type (WT) strain in a mouse subcutaneous abscess model, representing a type of acute infection by S. aureus. Collectively, our results provide a novel insight into the virulence regulation and acute infections mediated by Rbf in S. aureus.


Assuntos
Fator de Transcrição AraC/metabolismo , Regulação Bacteriana da Expressão Gênica , Staphylococcus aureus/genética , Fatores de Virulência/metabolismo , Animais , Fator de Transcrição AraC/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Toxinas Bacterianas/genética , Toxinas Bacterianas/metabolismo , Regulação para Baixo , Feminino , Proteínas Hemolisinas/genética , Proteínas Hemolisinas/metabolismo , Hemólise , Camundongos , Camundongos Endogâmicos BALB C , Mutação , Regiões Promotoras Genéticas , Staphylococcus aureus/metabolismo , Virulência , Fatores de Virulência/genética
12.
Int J Med Microbiol ; 310(2): 151400, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32001143

RESUMO

A plethora of toxin-antitoxin systems exist in bacteria and has multilateral roles in bacterial pathogenesis and virulence. Toxin-antitoxin systems have been involved in persister cell formation in Escherichia coli and Mycobacterium but have not been reported to be associated with Staphylococcus aureus persistence. Persistence is the ability of bacterial cells to tolerate unfavorable conditions and multiple stresses. There are less known and more unknown factors that either alleviate or aggravate bacterial persistence phenomenon. For the first time, we reported a new chromosomally encoded tripartite toxin-antitoxin system and its role in S. aureus persister cell formation. The toxin gene is bacteriostatic in action and counterbalanced by antitoxin RNA that could basepair with the toxin mRNA and formed a duplex. The transcriptional regulator positively regulates the toxin expression under certain stress conditions. The toxin ectopic induction increased S. aureus susceptibility to norfloxacin, ciprofloxacin, and ofloxacin. Whole-genome RNA sequencing revealed that MDR efflux pump norA is significantly down-regulated by toxin ectopic induction. The deletion of norA from S. aureus genome reduced resistance toward ciprofloxacin, norfloxacin, and ofloxacin, as well as resulted in a decrease in minimal inhibitory concentration while complementation of norA successfully restored the phenotypes. The persistence assay of the norA mutant revealed that deletion of norA increased persister cell survival in S. aureus. Altogether, we have provided insight into the first tripartite type-I TA system and revealed the role of MDR NorA in the persister cell formation of S. aureus.


Assuntos
Proteínas de Bactérias/genética , Farmacorresistência Bacteriana Múltipla/genética , Regulação Bacteriana da Expressão Gênica , Proteínas Associadas à Resistência a Múltiplos Medicamentos/genética , Staphylococcus aureus/genética , Staphylococcus aureus/fisiologia , Sistemas Toxina-Antitoxina/genética , Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Testes de Sensibilidade Microbiana , Proteínas Associadas à Resistência a Múltiplos Medicamentos/metabolismo , Staphylococcus aureus/efeitos dos fármacos , Sequenciamento Completo do Genoma
13.
Appl Environ Microbiol ; 86(15)2020 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-32444467

RESUMO

Biofilm formation is involved in numerous Staphylococcus aureus infections such as endocarditis, septic arthritis, osteomyelitis, and infections of indwelling medical devices. In these diseases, S. aureus forms biofilms as cell aggregates interspersed in host matrix material. Here, we have observed that the level of cell aggregation was significantly higher in the isogenic spoVG-deletion strain than in the wild-type strain. Reverse transcription-quantitative PCR data indicated that SpoVG could repress the expression of sasC, which codes for S. aureus surface protein C and is involved in cell aggregation and biofilm accumulation. Electromagnetic mobility shift assay demonstrated that SpoVG could specifically bind to the promoter region of sasC, indicating that SpoVG is a negative regulator and directly represses the expression of sasC In addition, deletion of the SasC aggregation domain in the spoVG-deletion strain indicated that high-level expression of sasC could be the underlying cause of significantly increased cell aggregation formation. Our previous study showed that SpoVG is involved in oxacillin resistance of methicillin-resistant S. aureus by regulating the expression of genes involved in cell wall synthesis and degradation. In this study, we also found that SpoVG was able to negatively modulate the S. aureus drug tolerance under conditions of a high concentration of oxacillin treatment. These findings can broaden our understanding of the regulation of biofilm formation and drug tolerance in S. aureusIMPORTANCE This study revealed that SpoVG can modulate cell aggregation by repressing sasC expression and extracellular DNA (eDNA) release. Furthermore, we have demonstrated the potential linkage between cell aggregation and antibiotic resistance. Our findings provide novel insights into the regulatory mechanisms of SpoVG involved in cell aggregation and in biofilm development and formation in Staphylococcus aureus.


Assuntos
Proteínas de Bactérias/fisiologia , DNA Bacteriano/fisiologia , Proteínas de Ligação a DNA/fisiologia , Regulação Bacteriana da Expressão Gênica , Interações Microbianas , Proteínas de Bactérias/genética , Biofilmes , Proteínas de Ligação a DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Staphylococcus aureus/genética , Staphylococcus aureus/fisiologia
14.
Int J Med Microbiol ; 309(1): 39-53, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30392856

RESUMO

Staphylococcus aureus can produce numerous surface proteins involved in the adhesion and internalization of host cells, immune evasion, and inflammation initiation. Among these surface proteins, the microbial surface components recognizing adhesive matrix molecules contain many crucial cell wall-anchored virulence factors. The Sar-family regulatory protein Rot has been reported to regulate many important extracellular virulence factors at the transcriptional level, including Spa and clumping factor B. SpoVG, a global regulator in S. aureus, is known to control the expression of numerous genes. Here, we demonstrate that SpoVG can positively regulate the transcription of rot by directly binding to its promoter. SpoVG can also positively regulate the transcription of spa and clfB through direct-binding to their promoters and in a Rot-mediated manner. Furthermore, SpoVG can positively modulate the human fibrinogen-binding ability of S. aureus. In addition, phosphorylation of SpoVG by the serine/threonine kinase, Stk1, can positively regulate its binding to the promoters of rot, spa, and clfB. The human cell infection assay showed that the adhesion and internalization abilities were reduced in the spoVG mutant strain in comparison to those in the wild-type strain. Collectively, our data reveal a SpoVG-Rot regulatory cascade and novel molecular mechanisms in the virulence control in S. aureus.


Assuntos
Adesinas Bacterianas/metabolismo , Proteínas de Bactérias/metabolismo , Proteínas de Ligação a DNA/metabolismo , Proteínas Repressoras/metabolismo , Staphylococcus aureus/genética , Adesinas Bacterianas/genética , Proteínas de Bactérias/genética , Proteínas de Ligação a DNA/genética , Células HEK293 , Humanos , Mutação , Fosforilação , Regiões Promotoras Genéticas , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Repressoras/genética , Infecções Estafilocócicas/microbiologia , Células THP-1 , Transcrição Gênica , Virulência/genética , Fatores de Virulência/genética , Fatores de Virulência/metabolismo
15.
Int J Med Microbiol ; 309(2): 85-96, 2019 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-30606691

RESUMO

The two-component system response regulator ArlR and the global regulator MgrA in Staphylococcus aureus participated in numerous biological processes including biofilm formation inhibition. Previous studies have shown that these two regulators could function as a regulatory cascade. Rbf is a positive regulator of biofilm formation enhancing the production of PIA (polysaccharide intercellular adhesin). Here we have demonstrated that both ArlR and MgrA can directly bind to the promoter of rbf and repress its expression. ArlR and MgrA can also directly bind to the promoter of ica operon and enhance the expression of icaA and PIA production, revealing that the ArlR-MgrA regulatory cascade controls PIA-dependent biofilm formation. In addition, we have found that Rbf can directly bind to the aur promoter and repress the expression of aur, which encodes a protease initiating a protease cascade to inhibit protein-mediated biofilm formation. Moreover, our data indicate that the ArlR-MgrA regulatory cascade can promote the expression of aur by directly binding to its promoter and inhibit protein-mediated biofilm formation. These findings shed light on the molecular mechanisms of both PIA-dependent and protein-mediated biofilm formation modulated by the ArlR-MgrA regulatory cascade and the new role of Rbf in protein-mediated biofilm formation, and broaden our understanding of the biofilm formation regulation in S. aureus.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Genes Reguladores , Polissacarídeos Bacterianos/metabolismo , Staphylococcus aureus/crescimento & desenvolvimento , DNA Bacteriano/metabolismo , Regiões Promotoras Genéticas , Ligação Proteica , Staphylococcus aureus/genética
16.
Infect Immun ; 86(5)2018 05.
Artigo em Inglês | MEDLINE | ID: mdl-29440365

RESUMO

Toxin-antitoxin (TA) systems play diverse physiological roles, such as plasmid maintenance, growth control, and persister cell formation, but their involvement in bacterial pathogenicity remains largely unknown. Here, we have identified a novel type II toxin-antitoxin system, SavRS, and revealed the molecular mechanisms of its autoregulation and virulence control in Staphylococcus aureus Electrophoretic mobility shift assay and isothermal titration calorimetry data indicated that the antitoxin SavR acted as the primary repressor bound to its own promoter, while the toxin SavS formed a complex with SavR to enhance the ability to bind to the operator site. DNase I footprinting assay identified the SavRS-binding site containing a short and long palindrome in the promoter region. Further, mutation and DNase I footprinting assay demonstrated that the two palindromes were crucial for DNA binding and transcriptional repression. More interestingly, genetic deletion of the savRS system led to the increased hemolytic activity and pathogenicity in a mouse subcutaneous abscess model. We further identified two virulence genes, hla and efb, by real-time quantitative reverse transcription-PCR and demonstrated that SavR and SavRS could directly bind to their promoter regions to repress virulence gene expression.


Assuntos
Homeostase/genética , Homeostase/imunologia , Staphylococcus aureus/genética , Staphylococcus aureus/imunologia , Sistemas Toxina-Antitoxina/genética , Sistemas Toxina-Antitoxina/imunologia , Virulência/genética , Modelos Animais
17.
Appl Environ Microbiol ; 84(16)2018 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-29884758

RESUMO

Phenol-soluble modulins (PSMs) are amphipathic peptides that are produced by staphylococci and play important roles in Staphylococcus aureus biofilm formation and dissemination. Although the multiple functions of PSMs have been recognized, the regulatory mechanisms controlling the expression of psm operons remain largely unknown. In this study, we identified MgrA in a DNA pulldown assay and further demonstrated, by electrophoretic mobility shift assays and DNase I footprinting assays, that MgrA could bind specifically to the promoter regions of psm operons. We then constructed an isogenic mgrA deletion strain and compared biofilm formation and detachment in the wild-type and isogenic mgrA deletion strains. Our results indicated that biofilm formation and detachment were significantly increased in the mgrA mutant strain. Real-time quantitative reverse transcription-PCR data indicated that MgrA repressed the transcription of psm operons in cultures and biofilms, suggesting that MgrA is a negative regulator of psm expression. Furthermore, we analyzed biofilm formation by the psm mutant strains, and we found that PSMs promoted biofilm structuring and development in the mgrA mutant strain. These findings reveal that MgrA negatively regulates biofilm formation and detachment by repressing the expression of psm operons through direct binding to the psm promoter regions.IMPORTANCEStaphylococcus aureus is a human and animal pathogen that can cause biofilm-associated infections. PSMs have multiple functions in biofilm development and virulence in staphylococcal pathogenesis. This study has revealed that MgrA can negatively regulate psm expression by binding directly to the promoter regions of psm operons. Furthermore, our results show that MgrA can modulate biofilm structuring and development by repressing the production of PSMs in S. aureus Our findings provide novel insights into the regulatory mechanisms of S. aureus psm gene expression, biofilm development, and pathogenesis.


Assuntos
Proteínas de Bactérias/genética , Biofilmes/crescimento & desenvolvimento , Regulação Bacteriana da Expressão Gênica , Óperon , Staphylococcus aureus/genética , Ensaio de Desvio de Mobilidade Eletroforética , Staphylococcus aureus/patogenicidade , Transcrição Gênica , Virulência , Fatores de Virulência
18.
Int J Med Microbiol ; 307(4-5): 257-267, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-28416278

RESUMO

Staphylococcus aureus is an important pathogen that is capable of forming biofilms on biomaterial surfaces to cause biofilm-associated infections. Autoinducer 2 (AI-2), a universal language for interspecies communication, is involved in a variety of physiological activities, although its exact role in Gram-positive bacteria, especially in S. aureus, is not yet thoroughly characterized. Herein we demonstrate that inactivation of luxS, which encodes AI-2 synthase, resulted in increased biofilm formation and higher polysaccharide intercellular adhesion (PIA) production compared with the wild-type strain in S. aureus NCTC8325. The transcript level of rbf, a positive regulator of biofilm formation, was significantly increased in the luxS mutant. All of the parental phenotypes could be restored by genetic complementation and chemically synthesized 4,5-dihydroxy-2,3-pentanedione, the AI-2 precursor molecule, suggesting that AI-2 has a signaling function to regulate rbf transcription and biofilm formation in S. aureus. Phenotypic analysis revealed that the luxS rbf double mutant produced approximately the same amount of biofilms and PIA as the rbf mutant. In addition, real-time quantitative reverse transcription-PCR analysis showed that the icaA transcript level of the rbf mutant was similar to that of the luxS rbf double mutant. These findings demonstrate that the LuxS/AI-2 system regulates PIA-dependent biofilm formation via repression of rbf expression in S. aureus. Furthermore, we demonstrated that Rbf could bind to the sarX and rbf promoters to upregulate their expression.


Assuntos
Proteínas de Bactérias/metabolismo , Biofilmes , Regulação Bacteriana da Expressão Gênica , Homosserina/análogos & derivados , Lactonas/farmacologia , Percepção de Quorum/efeitos dos fármacos , Staphylococcus aureus/genética , Proteínas de Bactérias/genética , Liases de Carbono-Enxofre/genética , Homosserina/farmacologia , Pentanos/metabolismo , Polissacarídeos Bacterianos/genética , Polissacarídeos Bacterianos/metabolismo , Regiões Promotoras Genéticas , beta-Galactosidase/genética , beta-Galactosidase/metabolismo
19.
Appl Environ Microbiol ; 83(12)2017 06 15.
Artigo em Inglês | MEDLINE | ID: mdl-28411216

RESUMO

There has been an absence of an efficient method of gene knockdown in the important human pathogen Staphylococcus aureus like RNA interference in eukaryotes. The previously developed antisense RNA technology is mainly applied for forward genetic screening but is rather limited in specific gene knockdown because of the lack of rational antisense RNA design strategies. Here we report an efficient and specific system for gene knockdown in S. aureus based on the type II clustered regularly interspaced short palindromic repeat (CRISPR) system from Streptococcus pyogenes We can achieve gene silencing with the coexpression of dCas9, an RNA-guided DNA binding protein, and a small guide RNA complementary to the target gene. With this system, we have successfully silenced diverse sets of genes varying in size and expression level in different S. aureus strains. This system exhibited high-efficiency knockdown of both essential and nonessential genes, and its effect is inducible and reversible. In addition, the system can repress the expression of multiple genes simultaneously and silence an entire operon or part of it. This RNA-guided DNA targeting system thus provides a simple, rapid, and affordable method for selective gene knockdown in S. aureusIMPORTANCEStaphylococcus aureus is an important human and animal pathogen that can cause a diversity of infectious diseases. Molecular genetic study of S. aureus has provided an avenue for the understanding of its virulence, pathogenesis, and drug resistance, leading to the discovery of new therapies for the treatment of staphylococcal infections. However, methodologies developed for genetic manipulation of S. aureus usually involve either low efficiency or laborious procedures. Here we report an RNA-guided system for gene knockdown in S. aureus and show its high efficiency and simplicity for selective gene silencing in different strains of S. aureus This simple, rapid, and affordable system may serve as a promising tool for functional gene study in S. aureus, especially for the study of essential genes, thus facilitating the understanding of this pathogen and its interaction with its hosts.


Assuntos
Técnicas de Silenciamento de Genes/métodos , Staphylococcus aureus/genética , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Proteína 9 Associada à CRISPR , Endonucleases/genética , Endonucleases/metabolismo , Técnicas de Silenciamento de Genes/instrumentação , Inativação Gênica , Óperon , RNA Guia de Cinetoplastídeos/genética , RNA Guia de Cinetoplastídeos/metabolismo , Staphylococcus aureus/metabolismo
20.
Antimicrob Agents Chemother ; 60(6): 3455-61, 2016 06.
Artigo em Inglês | MEDLINE | ID: mdl-27001809

RESUMO

Increasing cases of infections caused by methicillin-resistant Staphylococcus aureus (MRSA) strains in healthy individuals have raised concerns worldwide. MRSA strains are resistant to almost the entire family of ß-lactam antibiotics due to the acquisition of an extra penicillin-binding protein, PBP2a. Studies have shown that spoVG is involved in oxacillin resistance, while the regulatory mechanism remains elusive. In this study, we have found that SpoVG plays a positive role in oxacillin resistance through promoting cell wall synthesis and inhibiting cell wall degradation in MRSA strain N315. Deletion of spoVG in strain N315 led to a significant decrease in oxacillin resistance and a dramatic increase in Triton X-100-induced autolytic activity simultaneously. Real-time quantitative reverse transcription-PCR revealed that the expression of 8 genes related to cell wall metabolism or oxacillin resistance was altered in the spoVG mutant. Electrophoretic mobility shift assay indicated that SpoVG can directly bind to the putative promoter regions of lytN (murein hydrolase), femA, and lytSR (the two-component system). These findings suggest a molecular mechanism in which SpoVG modulates oxacillin resistance by regulating cell wall metabolism in MRSA.


Assuntos
Antibacterianos/farmacologia , Proteínas de Bactérias/metabolismo , Parede Celular/metabolismo , Proteínas de Ligação a DNA/metabolismo , Staphylococcus aureus Resistente à Meticilina/efeitos dos fármacos , N-Acetil-Muramil-L-Alanina Amidase/genética , Oxacilina/farmacologia , Proteínas de Bactérias/genética , Bacteriólise/efeitos dos fármacos , Proteínas de Ligação a DNA/genética , Ensaio de Desvio de Mobilidade Eletroforética , Staphylococcus aureus Resistente à Meticilina/genética , Octoxinol/farmacologia , Regiões Promotoras Genéticas/genética , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA