Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 626(8001): 990-998, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38383782

RESUMO

Electrode-based electrical stimulation underpins several clinical bioelectronic devices, including deep-brain stimulators1,2 and cardiac pacemakers3. However, leadless multisite stimulation is constrained by the technical difficulties and spatial-access limitations of electrode arrays. Optogenetics offers optically controlled random access with high spatiotemporal capabilities, but clinical translation poses challenges4-6. Here we show tunable spatiotemporal photostimulation of cardiac systems using a non-genetic platform based on semiconductor-enabled biomodulation interfaces. Through spatiotemporal profiling of photoelectrochemical currents, we assess the magnitude, precision, accuracy and resolution of photostimulation in four leadless silicon-based monolithic photoelectrochemical devices. We demonstrate the optoelectronic capabilities of the devices through optical overdrive pacing of cultured cardiomyocytes (CMs) targeting several regions and spatial extents, isolated rat hearts in a Langendorff apparatus, in vivo rat hearts in an ischaemia model and an in vivo mouse heart model with transthoracic optical pacing. We also perform the first, to our knowledge, optical override pacing and multisite pacing of a pig heart in vivo. Our systems are readily adaptable for minimally invasive clinical procedures using our custom endoscopic delivery device, with which we demonstrate closed-thoracic operations and endoscopic optical stimulation. Our results indicate the clinical potential of the leadless, lightweight and multisite photostimulation platform as a pacemaker in cardiac resynchronization therapy (CRT), in which lead-placement complications are common.


Assuntos
Terapia de Ressincronização Cardíaca , Desenho de Equipamento , Marca-Passo Artificial , Silício , Animais , Camundongos , Ratos , Terapia de Ressincronização Cardíaca/métodos , Endoscopia , Coração , Procedimentos Cirúrgicos Minimamente Invasivos , Isquemia Miocárdica/cirurgia , Isquemia Miocárdica/terapia , Miócitos Cardíacos , Semicondutores , Suínos , Modelos Animais
2.
Angew Chem Int Ed Engl ; 63(21): e202402840, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38509835

RESUMO

The doped organic hole transport layer (HTL) is crucial for achieving high-efficiency perovskite solar cells (PSCs). However, the traditional doping strategy undergoes a time-consuming and environment-dependent oxidation process, which hinders the technology upgrades and commercialization of PSCs. Here, we reported a new strategy by introducing a cascade reaction in traditional doped Spiro-OMeTAD, which can simultaneously achieve rapid oxidation and overcome the erosion of perovskite by 4-tert-butylpyridine (tBP) in organic HTL. The ideal dopant iodobenzene diacetate was utilized as the initiator that can react with Spiro to generate Spiro⋅+ radicals quickly and efficiently without the participation of ambient air, with the byproduct of iodobenzene (DB). Then, the DB can coordinate with tBP through a halogen bond to form a tBP-DB complex, minimizing the sustained erosion from tBP to perovskite. Based on the above cascade reaction, the resulting Spiro-based PSCs have a champion PCE of 25.76 % (certificated of 25.38 %). This new oxidation process of HTL is less environment-dependent and produces PSCs with higher reproducibility. Moreover, the PTAA-based PSCs obtain a PCE of 23.76 %, demonstrating the excellent applicability of this doping strategy on organic HTL.

3.
Nat Commun ; 15(1): 5223, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38890289

RESUMO

The commercialization of perovskite solar cells is badly limited by stability, an issue determined mainly by perovskite. Herein, inspired by a natural creeper that can cover the walls through suckers, we adopt polyhexamethyleneguanidine hydrochloride as a molecular creeper on perovskite to inhibit its decomposition starting from the annealing process. The molecule possesses a long-line molecular structure where the guanidinium groups can serve as suckers that strongly anchor cations through multiple hydrogen bonds. These features make the molecular creeper can cover perovskite grains and inhibit perovskite decomposition by suppressing cations' escape. The resulting planar perovskite solar cells achieve an efficiency of 25.42% (certificated 25.36%). Moreover, the perovskite film and device exhibit enhanced stability even under harsh damp-heat conditions. The devices can maintain >96% of their initial efficiency after 1300 hours of operation under 1-sun illumination and 1000 hours of storage under 85% RH, respectively.

4.
iScience ; 26(5): 106715, 2023 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-37216128

RESUMO

Advances in bioelectronic implants have been offering valuable chances to interface and modulate neural systems. Potential mismatches between bioelectronics and targeted neural tissues require devices to exhibit "tissue-like" properties for better implant-bio integration. In particular, mechanical mismatches pose a significant challenge. In the past years, efforts were made in both materials synthesis and device design to achieve bioelectronics mechanically and biochemically mimicking biological tissues. In this perspective, we mainly summarized recent progress of developing "tissue-like" bioelectronics and categorized them into different strategies. We also discussed how these "tissue-like" bioelectronics were utilized for modulating in vivo nervous systems and neural organoids. We concluded the perspective by proposing further directions including personalized bioelectronics, novel materials design and the involvement of artificial intelligence and robotic techniques.

5.
Materials (Basel) ; 14(18)2021 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-34576576

RESUMO

Photocatalytic water splitting for hydrogen production via heterojunction provides a convenient approach to solve the world crises of energy supply. Herein, graphene quantum dots modified TiO2 hybrids (TiO2-GQDs) with a "caterpillar"-like structure exhibit stronger light absorption in the visible region and an enhanced hydrogen production capacity of about 3.5-fold compared to the pristine TiO2 caterpillar. These results inferred that the addition of GQDs drastically promotes the interfacial electron transfer from GQDs to TiO2 through C-O-Ti bonds via the bonding between oxygen vacancy sites in TiO2 and in-plane oxygen functional groups in GQDs. Using a "caterpillar"-like structure are expected to provide a new platform for the development of highly efficient solar-driven water splitting systems based on nanocomposite photocatalyst.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA