Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 145(38): 20694-20715, 2023 Sep 27.
Artigo em Inglês | MEDLINE | ID: mdl-37706467

RESUMO

Halide perovskites have attracted a great amount of attention owing to their unique materials chemistry, excellent electronic properties, and low-cost manufacturing. Two-dimensional (2D) halide perovskites, originating from three-dimensional (3D) perovskite structures, are structurally more diverse and therefore create functional possibilities beyond 3D perovskites. The much less restrictive size constraints on the organic component of these hybrid materials particularly provide an exciting platform for designing unprecedented materials and functionalities at the molecular level. In this Perspective, we discuss the concept and recent development of a sub-class of 2D perovskites, namely, organic semiconductor-incorporated perovskites (OSiPs). OSiPs combine the electronic functionality of organic semiconductors with the soft and dynamic halide perovskite lattice, offering opportunities for tailoring the energy landscape, lattice and carrier dynamics, and electron/ion transport properties for various fundamental studies, as well as device applications. Specifically, we summarize recent advances in the design, synthesis, and structural analysis of OSiPs with various organic conjugated moieties as well as the application of OSiPs in photovoltaics, light-emitting devices, and transistors. Lastly, challenges and further opportunities for OSiPs in molecular design, integration of novel functionality, film quality, and stability issues are addressed.

2.
Angew Chem Int Ed Engl ; 62(33): e202305298, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37306341

RESUMO

Two-dimensional (2D) halide perovskites are an attractive class of hybrid perovskites that have additional optoelectronic tunability due to their accommodation of relatively large organic ligands. Nevertheless, contemporary ligand design depends on either expensive trial-and-error testing of whether a ligand can be integrated within the lattice or conservative heuristics that unduly limit the scope of ligand chemistries. Here, the structural determinants of stable ligand incorporation within Ruddlesden-Popper (RP) phase perovskites are established by molecular dynamics (MD) simulations of over ten-thousand RP-phase perovskites and training of machine learning classifiers capable of predicting structural stability based solely on generalizable ligand features. The simulation results show near-perfect predictions of positive and negative literature examples, predict trade-offs between several ligand features and stability, and ultimately predict an inexhaustibly large 2D-compatible ligand design-space.

3.
Angew Chem Int Ed Engl ; 61(33): e202207018, 2022 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-35695829

RESUMO

Localized high-concentration electrolytes (LHCEs) have attracted interest in alkali metal batteries due to the advantages of forming stable solid-electrolyte interphases (SEIs) on anodes and good chemical/electrochemical stability. Herein, a new degradation mechanism is revealed for ether-based LHCEs that questions their compatibility with alkali metal anodes (Li, Na, and K). Specifically, the ether solvent reacts with alkali metals to generate solvated electrons (es - ) that attack hydrofluoroether co-solvents to form a series of byproducts. The ether solvent essentially acts as a phase-transfer reagent that continuously transfers electrons from solid-phase metals into the solution phase, thus inhibiting the formation of stable SEI and leading to continuous alkali metal corrosion. Switching to an ester-based solvating solvent or intercalation anodes such as graphite or molybdenum disulfide has been shown to avoid such a degradation mechanism due to the absence of es - .

4.
J Am Chem Soc ; 143(3): 1610-1617, 2021 Jan 27.
Artigo em Inglês | MEDLINE | ID: mdl-33426881

RESUMO

A new Rh2(II,II) dimer has been synthesized and anchored onto a NiO photocathode. The dirhodium complex acts as both the sensitizer to inject holes into NiO and as catalyst for the production of hydrogen. The single-molecule design circumvents limitations of the conventional multicomponent approach with separate sensitizer and catalyst, thus simplifying the hydrogen production pathway and reducing energy losses associated with additional intermolecular charge transfer steps. The Rh2(II,II) complex absorbs strongly from the ultraviolet throughout the visible range and tails into the near-IR to ∼800 nm, permitting absorption of a significantly greater portion of the solar irradiance as compared to traditional dyes used in dye-sensitized solar cells and photoelectrosynthesis cells. The irradiation of the Rh2-NiO photoelectrode with 655 nm light (53 mW cm-2) results in a photocurrent that reaches 52 µA cm-2 at -0.2 V vs Ag/AgCl in the presence of p-toluenesulfonic acid (0.1 M), with Faradaic efficiencies of H2 production up to 85 ± 5% after 2.5 h without photoelectrode degradation. This work presents the first single-molecule photocatalyst, acting as both the light absorber and catalytic center on NiO, able to generate hydrogen from acidic solutions with red light when anchored to a p-type semiconductor, providing a promising new system for solar fuel production.

5.
J Am Chem Soc ; 143(21): 7891-7896, 2021 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-34003633

RESUMO

Perchlorate (ClO4-) is a pervasive, harmful, and inert anion on both Earth and Mars. Current technologies for ClO4- reduction entail either harsh conditions or multicomponent enzymatic processes. Herein, we report a heterogeneous (L)Mo-Pd/C catalyst directly prepared from Na2MoO4, a bidentate nitrogen ligand (L), and Pd/C to reduce aqueous ClO4- into Cl- with 1 atm of H2 at room temperature. A suite of instrument characterizations and probing reactions suggest that the MoVI precursor and L at the optimal 1:1 ratio are transformed in situ into oligomeric MoIV active sites at the carbon-water interface. For each Mo site, the initial turnover frequency (TOF0) for oxygen atom transfer from ClOx- substrates reached 165 h-1. The turnover number (TON) reached 3840 after a single batch reduction of 100 mM ClO4-. This study provides a water-compatible, efficient, and robust catalyst to degrade and utilize ClO4- for water purification and space exploration.

6.
Angew Chem Int Ed Engl ; 59(27): 10904-10908, 2020 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-32251545

RESUMO

Anthraquinone (AQ) redox mediators are introduced to metal-free organic dye sensitized photo-electrochemical cells (DSPECs) for the generation of H2 O2 . Instead of directly reducing O2 to produce H2 O2 , visible-light-driven AQ reduction occurs in the DSPEC and the following autooxidation with O2 allows H2 O2 accumulation and AQ regeneration. In an aqueous electrolyte, under 1 sun conditions, a water-soluble AQ salt is employed with the highest photocurrent of up to 0.4 mA cm-2 and near-quantitative faradaic efficiency for producing H2 O2 . In a non-aqueous electrolyte, under 1 sun illumination, an organic-soluble AQ is applied and the photocurrent reaches 1.8 mA cm-2 with faradaic efficiency up to 95 % for H2 O2 production. This AQ-relay DSPEC exhibits the highest photocurrent so far in non-aqueous electrolytes for H2 O2 production and excellent acid stability in aqueous electrolytes, thus providing a practical and efficient strategy for visible-light-driven H2 O2 production.

7.
J Am Chem Soc ; 141(22): 8727-8731, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31095391

RESUMO

When conjugate molecules are self-assembled on the surface of semiconductors, emergent properties resulting from the electronic coupling between the conjugate moieties are of importance in the interfacial electron-transfer dynamics for photoelectrochemical and optoelectronics devices. In this work, we investigate the self-assembly of triphenylamine-oligothiophene-perylenemonoimide (PMI) molecules, denoted as BH4, on metal oxide surfaces via UV-vis absorption, photoluminescence, and transient near-infrared absorption spectroscopies and molecular dynamics simulations, and we report the excimer formation due to the π-π interaction of the PMI units between the neighboring dye molecules. To our best knowledge, this is the first experimental observation of intermolecular excimer formation when conjugate donor-acceptor molecules form a self-assembled monolayer. In addition, a long-lived (4.3 µs) intermolecular charge separation is observed, and a new excimer-mediated intermolecular charger-transfer mechanism is proposed. This work demonstrates that, through the design of dye molecules, the excited complexes or aggregates can provide a pathway to slow down the recombination rate in photoelectrodes that utilize donor-acceptor dyad molecules.

8.
Chemistry ; 23(7): 1516-1520, 2017 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-28000968

RESUMO

A conformationally adaptive macrocycle is presented, namely zorb[4]arene, which exists in multiple conformations in the uncomplexed state. The binding cavity of zorb[4]arene is concealed, either due to a collapsed conformation or by self-inclusion. The zorb[4]arene with long alkyl chains manifests itself with surprisingly low melting point and thus exist as an oil at room temperature. Binding of a guest molecule induces the folding and conformational rigidity of zorb[4]arene and leads to well-defined three-dimensional structures, which can further self-assemble into nanosheets or nanotubes upon solvent evaporation, depending on guest molecules and the conformations they can induce.

9.
Chem Commun (Camb) ; 60(61): 7824-7842, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-38963168

RESUMO

Organic-inorganic hybrid perovskites have been intensively studied in past decades due to their outstanding performance in solar cells and other optoelectronic devices. Recently, the emergence of two-dimensional/three-dimensional (2D/3D) heterojunctions have enabled many solar cell devices with >25% power conversion efficiency, driven by advances in our understanding of the structural and photophysical properties of the heterojunctions and our ability to control these properties through organic cation configuration in 2D perovskites. In this feature article, we discuss a fundamental understanding of structural characteristics and the carrier dynamics in the 2D/3D heterojunctions and their impact factors. We further elaborate the design strategies for the molecular configuration of organic cations to achieve thorough management of these properties. Finally, recent advances in 2D/3D heterostructures in solar cells, light-emitting devices and photodetectors are highlighted, which translate fundamental understandings to device applications and also reveal the remaining challenges in ligand design for the next generation of stable devices. Future development prospects and related challenges are also provided, with wide perspectives and insightful thoughts.

10.
Precis Chem ; 1(7): 443-451, 2023 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-37771515

RESUMO

Photoinduced interfacial charge transfer plays a critical role in energy conversion involving van der Waals (vdW) heterostructures constructed of inorganic nanostructures and organic materials. However, the effect of molecular stacking configurations on charge transfer dynamics is less understood. In this study, we demonstrated the tunability of interfacial charge separation in a type-II heterojunction between monolayer (ML) WS2 and an organic semiconducting molecule [2-(3″',4'-dimethyl-[2,2':5',2':5″,2″'-quaterthiophen]-5-yl)ethan-1-ammonium halide (4Tm)] by rational design of relative stacking configurations. The assembly between ML-WS2 and the 4Tm molecule forms a face-to-face stacking when 4Tm molecules are in a self-aggregation state. In contrast, a face-to-edge stacking is observed when 4Tm molecule is incorporated into a 2D organic-inorganic hybrid perovskite lattice. The face-to-face stacking was proved to be more favorable for hole transfer from WS2 to 4Tm and led to interlayer excitons (IEs) emission. Transient absorption measurements show that the hole transfer occurs on a time scale of 150 fs. On the other hand, the face-to-edge stacking resulted in much slower hole transfer without formation of IEs. This inefficient hole transfer occurs on a similar time scale as A exciton recombination in WS2, leading to the formation of negative trions. These investigations offer important fundamental insights into the charge transfer processes at organic-inorganic interfaces.

11.
Sci Adv ; 9(23): eadg0032, 2023 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-37285424

RESUMO

Constructing two-dimensional (2D) perovskite atop of 3D with energy landscape management is still a challenge in perovskite photovoltaics. Here, we report a strategy through designing a series of π-conjugated organic cations to construct stable 2D perovskites and to realize delicate energy level tunability at 2D/3D heterojunctions. As a result, the hole transfer energy barriers can be reduced both at heterojunctions and within 2D structures, and the preferable work function shift reduces charge accumulation at interface. Leveraging these insights and also benefitted from the superior interface contact between conjugated cations and poly(triarylamine) (PTAA) hole transporting layer, a solar cell with power conversion efficiency of 24.6% has been achieved, which is the highest among PTAA-based n-i-p devices to the best of our knowledge. The devices exhibit greatly enhanced stability and reproducibility. This approach is generic to several hole transporting materials, offering opportunities to realize high efficiency without using the unstable Spiro-OMeTAD.

12.
Adv Mater ; 35(26): e2300647, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36942854

RESUMO

Perovskite solar cells (PSCs) have delivered a power conversion efficiency (PCE) of more than 25% and incorporating polymers as hole-transporting layers (HTLs) can further enhance the stability of devices toward the goal of commercialization. Among the various polymeric hole-transporting materials, poly(triaryl amine) (PTAA) is one of the promising HTL candidates with good stability; however, the hydrophobicity of PTAA causes problematic interfacial contact with the perovskite, limiting the device performance. Using molecular side-chain engineering, a uniform 2D perovskite interlayer with conjugated ligands, between 3D perovskites and PTAA is successfully constructed. Further, employing conjugated ligands as cohesive elements, perovskite/PTAA interfacial adhesion is significantly improved. As a result, the thin and lateral extended 2D/3D heterostructure enables as-fabricated PTAA-based PSCs to achieve a PCE of 23.7%, improved from the 18% of reference devices. Owing to the increased ion-migration energy barrier and conformal 2D coating, unencapsulated devices with the new ligands exhibit both superior thermal stability under 60 °C heating and moisture stability in ambient conditions.

13.
ACS Appl Mater Interfaces ; 12(39): 43705-43713, 2020 Sep 30.
Artigo em Inglês | MEDLINE | ID: mdl-32885658

RESUMO

Long-term thermal stability is one limiting factor that impedes the commercialization of the perovskite solar cell. Inspired by our prior results from machine learning, we discover that coating a thin layer of 4,4'-dibromotriphenylamine (DBTPA) on top of a CH3NH3PbI3 layer can improve the stability of resultant solar cells. The passivated devices kept 96% of the original power conversion efficiency for 1000 h at 85 °C in a N2 atmosphere without encapsulation. Near-ambient pressure X-ray photoelectron spectroscopy (XPS) was employed to investigate the evolution of the composition and evaluate thermal and moisture stability by in situ studies. A comparison between pristine MAPbI3 films and DBTPA-treated films shows that the DBTPA treatment suppresses the escape of iodide and methylamine up to 150 °C under 5 mbar humidity. Furthermore, we have used attenuated total reflection Fourier transform infrared and XPS to probe the interactions between DBTPA and MAPbI3 surfaces. The results prove that DBTPA coordinates with the perovskite by Lewis acid-base and cation-π interaction. Compared with the 19.9% efficiency of the pristine sample, the champion efficiency of the passivated sample reaches 20.6%. Our results reveal DBTPA as a new post-treating molecule that leads not only to the improvement of the photovoltaic efficiency but also thermal and moisture stability.

14.
Chem Sci ; 10(21): 5519-5527, 2019 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-31293736

RESUMO

Dye-sensitized photoelectrochemical cells (DSPECs) can be used to store solar energy in the form of chemical bonds. Hydrogen peroxide (H2O2) is a versatile energy carrier and can be produced by reduction of O2 on a dye-sensitized photocathode, in which the design of dye molecules is crucial for the conversion efficiency and electrode stability. Herein, using a hydrophobic donor-double-acceptor dye (denoted as BH4) sensitized NiO photocathode, hydrogen peroxide (H2O2) can be produced efficiently by reducing O2 with current density up to 600 µA cm-2 under 1 sun conditions (Xe lamp as sunlight simulator, λ > 400 nm). The DSPECs maintain currents greater than 200 µA cm-2 at low overpotential (0.42 V vs. RHE) for 18 h with no decrease in the rate of H2O2 production in aqueous electrolyte. Moreover, the BH4 sensitized NiO photocathode was for the first time applied in an aprotic electrolyte for oxygen reduction. In the absence of a proton source, the one-electron reduction of O2 generates stable, nucleophilic superoxide radicals that can then be synthetically utilized in the attack of an available electrophile, such as benzoyl chloride. The corresponding photocurrent generated by this photoelectrosynthesis is up to 1.8 mA cm-2. Transient absorption spectroscopy also proves that there is an effective electron transfer from reduced BH4 to O2 with a rate constant of 1.8 × 106 s-1. This work exhibits superior photocurrent in both aqueous and non-aqueous systems and reveals the oxygen/superoxide redox mediator mechanism in the aprotic chemical synthesis.

15.
Chem Commun (Camb) ; 51(83): 15276-9, 2015 Oct 25.
Artigo em Inglês | MEDLINE | ID: mdl-26335723

RESUMO

Three classes of hydrogen-bonded capsules with imperfect walls have been prepared and characterized. The defects reduce the symmetry of the capsules, leading to rich isomerism. The missing hydrogen bonds provide additional flexibility to the capsules and exert an influence on their guest binding properties in different assemblies.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA