Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Ecotoxicol Environ Saf ; 208: 111677, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396009

RESUMO

CH3NH3PbI3 is one of the most widely studied and most promising photoelectric conversion materials for large-scale application. However, once it is discharged into the aquatic environment, it will release a variety of lethal substances to the aquatic organisms. Herein, two typical aquatic pollution indicators, Scenedesmus obliquus (a typical phytoplankton) and Daphnia magna (a typical zooplankton), were used to assess the acute effects of CH3NH3PbI3 perovskite on aquatic organisms. The results showed that, when the initial CH3NH3PbI3 perovskite level (CPL) was 40 mg L-1 or higher, the growth of S. obliquus would be remarkably inhibited with significant decreases of chlorophyll content and protein content. And when the CPL was over 5 mg L-1, the survival of D. magna would be notably threatened. Specifically, the 72 h EC-50 of CH3NH3PbI3 perovskite to S. obliquus was calculated as 37.21 mg L-1, and the 24 h LC-50 of this perovskite to D. magna adults and neonates were calculated as 37.53 mg L-1 and 18.55 mg L-1, respectively. Moreover, remarkably solution pH declination and large amounts of lead bio-accumulation was observed in the both acute experiments, which could be the main reasons causing the above acute effects. Considering the strong acute effects of these CH3NH3PbI3 perovskite materials and their attractive application prospect, more attentions should be paid on their harmness to the environment.


Assuntos
Compostos de Cálcio/toxicidade , Daphnia/efeitos dos fármacos , Chumbo/toxicidade , Metilaminas/toxicidade , Óxidos/toxicidade , Scenedesmus/efeitos dos fármacos , Titânio/toxicidade , Poluentes Químicos da Água/toxicidade , Animais , Organismos Aquáticos/efeitos dos fármacos , Compostos de Cálcio/química , Humanos , Chumbo/química , Metilaminas/química , Óxidos/química , Propriedades de Superfície , Titânio/química , Testes de Toxicidade Aguda , Poluentes Químicos da Água/química
2.
Int J Mol Sci ; 22(7)2021 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-33810508

RESUMO

Bacterial communities associated with roots influence the health and nutrition of the host plant. However, the microbiome discrepancy are not well understood under different healthy conditions. Here, we tested the hypothesis that rhizosphere soil microbial diversity and function varies along a degeneration gradient of poplar, with a focus on plant growth promoting bacteria (PGPB) and antibiotic resistance genes. Comprehensive metagenomic analysis including taxonomic investigation, functional detection, and ARG (antibiotics resistance genes) annotation revealed that available potassium (AK) was correlated with microbial diversity and function. We proposed several microbes, Bradyrhizobium, Sphingomonas, Mesorhizobium, Nocardioides, Variovorax, Gemmatimonadetes, Rhizobacter, Pedosphaera, Candidatus Solibacter, Acidobacterium, and Phenylobacterium, as candidates to reflect the soil fertility and the plant health. The highest abundance of multidrug resistance genes and the four mainly microbial resistance mechanisms (antibiotic efflux, antibiotic target protection, antibiotic target alteration, and antibiotic target replacement) in healthy poplar rhizosphere, corroborated the relationship between soil fertility and microbial activity. This result suggested that healthy rhizosphere soil harbored microbes with a higher capacity and had more complex microbial interaction network to promote plant growing and reduce intracellular levels of antibiotics. Our findings suggested a correlation between the plant degeneration gradient and bacterial communities, and provided insight into the role of high-turnover microbial communities as well as potential PGPB as real-time indicators of forestry soil quality, and demonstrated the inner interaction contributed by the bacterial communities.


Assuntos
Farmacorresistência Bacteriana/genética , Consórcios Microbianos , Populus/genética , Populus/microbiologia , Rizosfera , Antibacterianos/farmacologia , Bactérias/genética , Metagenoma , Metagenômica , Raízes de Plantas/microbiologia , Solo , Microbiologia do Solo , Árvores/genética
3.
Hepatology ; 69(2): 573-586, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-29356025

RESUMO

Though kinase inhibitors have been heavily investigated in the clinic to combat advanced hepatocellular carcinoma (HCC), clinical outcomes have been disappointing overall, which may be due to the absence of kinase-addicted subsets in HCC patients. Recently, strategies that simultaneously inhibit multiple kinases are increasingly appreciated in HCC treatment, yet they are challenged by the dynamic nature of the kinase networks. This study aims to identify clustered kinases that may cooperate to drive the malignant growth of HCC. We show that anaplastic lymphoma kinase, fibroblast growth factor receptor 2, and ephrin type-A receptor 5 are the essential kinases that assemble into a functional cluster to sustain the viability of HCC cells through downstream protein kinase B-dependent, extracellular signal-regulated kinase-dependent, and p38-dependent signaling pathways. Their coactivation is associated with poor prognosis for overall survival in about 13% of HCC patients. Moreover, their activities are tightly regulated by heat shock protein 90 (Hsp90). Thereby Combined kinase inhibition or targeting of heat shock protein 90 led to significant therapeutic responses both in vitro and in vivo. Conclusion: Our findings established a paradigm that highlights the cooperation of anaplastic lymphoma kinase, fibroblast growth factor receptor 2, and ephrin type-A receptor 5 kinases in governing the growth advantage of HCC cells, which might offer a conceptual "combined therapeutic target" for diagnosis and subsequent intervention in a subgroup of HCC patients.


Assuntos
Antineoplásicos/uso terapêutico , Carcinoma Hepatocelular/enzimologia , Neoplasias Hepáticas Experimentais/enzimologia , Terapia de Alvo Molecular , Fosfotransferases/antagonistas & inibidores , Animais , Antineoplásicos/farmacologia , Protocolos de Quimioterapia Combinada Antineoplásica , Carcinoma Hepatocelular/tratamento farmacológico , Dasatinibe/farmacologia , Dasatinibe/uso terapêutico , Feminino , Proteínas de Choque Térmico HSP90/metabolismo , Células Hep G2 , Humanos , Neoplasias Hepáticas Experimentais/tratamento farmacológico , Camundongos Endogâmicos BALB C , Camundongos Nus , Fosfotransferases/metabolismo , Pirimidinas/farmacologia , Pirimidinas/uso terapêutico , Sulfonas/farmacologia , Sulfonas/uso terapêutico , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Int Microbiol ; 23(3): 405-413, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31898031

RESUMO

This study investigated the performance and microbial communities of denitrifying biofilms on polyurethane foam coupled with various solid carbon sources of acid- and alkali-pretreated rice straw and rice husk. Results showed that acid and alkali-pretreated rice straw both had higher TOC release rates (0.041-0.685 mg g-1 day-1) than those of rice husk (0.019-0.160 mg g-1 day-1) over a month, while acid pretreatment of rice husk and rice straw had a much higher organics release rate than that of alkali pretreatment and non-pretreatment, respectively. Acid-pretreated rice straw achieved the most efficient TN removal performance (82.06 ± 3.65%) with the lower occurrences of NH4+-N during denitrification than that of alkali-pretreated rice straw (80.05 ± 4.12%) over more than a month operation. However, alkali pretreatment of rice husk demonstrated much more significantly efficient TN removal efficiency (80.39 ± 2.1%) than did acid pretreatment (69.59 ± 13.43%). MiSeq sequencing analysis showed that the four biofilm samples attached on polyurethane foam with the addition of pretreated rice straw or rice husk had a range of 13-15 differentially abundant phylum and 81-123 differentially abundant genera in comparison with biofilm without extra solid carbon sources, and a higher TN removal efficiency demonstrated more types of differentially abundant genera.


Assuntos
Desnitrificação , Microbiota/genética , Purificação da Água/métodos , Bactérias/genética , Bactérias/crescimento & desenvolvimento , Bactérias/isolamento & purificação , Bactérias/metabolismo , Biofilmes/crescimento & desenvolvimento , Carbono/metabolismo , DNA Bacteriano , Recuperação e Remediação Ambiental , Metagenômica , Nitratos/metabolismo , Poliuretanos , RNA Ribossômico 16S/genética
5.
Acta Pharmacol Sin ; 41(5): 731-732, 2020 05.
Artigo em Inglês | MEDLINE | ID: mdl-32081977

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

6.
Antonie Van Leeuwenhoek ; 113(11): 1689-1698, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-32955707

RESUMO

A novel Gram-negative, aerobic, motile and short rod-shaped bacterium with exopolysaccharides production, designated as LZ-4T, was isolated from cultivable phycosphere microbiota of harmful algal blooms-causing marine dinoflagellate Alexandrium catenella LZT09 which produces paralytic shellfish poisoning toxins. Strain LZ-4T was able to use thiosulfate (optimum concentration 10 mM) as energy source for bacterial growth. Phylogenetic analysis based on 16S rRNA gene sequences showed that strain LZ-4T belonged to the genus Limnobacter, showing high 16S rRNA gene sequences similarities with L. thiooxidans DSM 13612T (99.4%), L. humi NBRC 11650T (98.2%) and L. litoralis NBRC 105857T (97.2%), respectively. The average nucleotide identity (ANI) and digital DNA-DNA hybridization (dDDH) values between LZ-4T and L. thiooxidans DSM 13612T were 78.9 and 21.9%, respectively. Both values were far lower than the thresholds (95-96% for ANI and 70% for dDDH) generally accepted for new species delineation. The respiratory quinone of strain LZ-4T was Q-8. The dominant cellular fatty acids were determined as summed feature 3 (C16:1 ω6c/ω7c), summed feature 8 (C18:1 ω6c/ω7c) and C16:0. Polar lipids profile consisted of diphosphatidylglycerol, phosphatidylethanolamine, phosphatidylglycerol, two unidentified aminolipids and three unidentified polar lipids. The genomic DNA G+C content of strain LZ-4T was 52.5 mol%. Based on polyphasic characterization, strain LZ-4T represents a novel species of the genus Limnobacter, for which the name Limnobacter alexandrii sp. nov. is proposed. The type strain is LZ-4T (=CCTCC AB 2019004T =KCTC 72281T).


Assuntos
Burkholderiaceae/classificação , Burkholderiaceae/isolamento & purificação , Dinoflagellida/microbiologia , Processos Heterotróficos , Microbiota , Tiossulfatos/metabolismo , Técnicas de Tipagem Bacteriana , Burkholderiaceae/genética , Burkholderiaceae/metabolismo , DNA Bacteriano/genética , Dinoflagellida/genética , Dinoflagellida/patogenicidade , Ácidos Graxos/análise , Oxirredução , Fosfolipídeos/análise , Filogenia , RNA Ribossômico 16S/genética , Análise de Sequência de DNA
7.
Opt Express ; 27(7): 10050-10057, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31045151

RESUMO

Laser-induced plasma evolution in fused silica through multipulse laser ablation was studied using pump-probe technology. Filament splitting was observed in the early stage of plasma evolution (before ~300 fs). This phenomenon can be attributed to competition between laser divergent propagation induced by a pre-pulse-induced crater and the nonlinear self-focusing effect. This effect was validated through simulation results. With the increasing pulse number, the appearance of filament peak electron density was postponed. Furthermore, a second peak in the filament and peak position separation were observed because of an optical path difference between the lasers propagating from the crater center and edge. The experimental results revealed the influence of a prepulse-induced structure on the energy distribution of subsequent pulses, which are essential for understanding the mechanism of laser-material interactions, particularly in ultrafast multiple-pulse laser ablation.

8.
Acta Pharmacol Sin ; 40(8): 1076-1084, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30765842

RESUMO

Urinary bladder cancer (UBC) is characterized by frequent recurrence and metastasis despite the standard chemotherapy with gemcitabine and cisplatin combination. Histone modifiers are often dysregulated in cancer development, thus they can serve as an excellent drug targets for cancer therapy. Here, we investigated whether G9a, one of the histone H3 methyltransferases, was associated with UBC development. We first analyzed clinical data from public databases and found that G9a was significantly overexpressed in UBC patients. The TCGA Provisional dataset showed that the average expression level of G9a in primary UBC samples (n = 408) was 1.6-fold as much as that in normal bladder samples (n = 19; P < 0.001). Then we used small interfering RNA to knockdown G9a in human UBC T24 and J82 cell lines in vitro, and observed that the cell viability was significantly decreased and cell apoptosis induced. Next, we choosed UNC0642, a small molecule inhibitor targeting G9a, with low cytotoxicity, and excellent in vivo pharmacokinetic properties, to test its anticancer effects against UBC cells in vitro and in vivo. Treatment with UNC0642 dose-dependently decreased the viability of T24, J82, and 5637 cells with the IC50 values of 9.85 ± 0.41, 13.15 ± 1.72, and 9.57 ± 0.37 µM, respectively. Furthermore, treatment with UNC0642 (1-20 µM) dose-dependently decreased the levels of histone H3K9me2, the downstream target of G9a, and increased apoptosis in T24 and J82 cells. In nude mice bearing J82 engrafts, administration of UNC0642 (5 mg/kg, every other day, i.p., for 6 times) exerted significant suppressive effect on tumor growth without loss of mouse body weight. Moreover, administration of UNC0642 significantly reduced Ki67 expression and increased the level of cleaved Caspase 3 and BIM protein in J82 xenografts evidenced by immunohistochemistry and western blot analysis, respectively. Taken together, our data demonstrated that G9a may be a promising therapeutic target for UBC, and an epigenetics-based therapy by UNC0642 is suggested.


Assuntos
Antineoplásicos/uso terapêutico , Apoptose/efeitos dos fármacos , Inibidores Enzimáticos/uso terapêutico , Histona-Lisina N-Metiltransferase/antagonistas & inibidores , Quinazolinas/uso terapêutico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Apoptose/fisiologia , Proliferação de Células/fisiologia , Sobrevivência Celular/efeitos dos fármacos , Inibidores Enzimáticos/farmacologia , Regulação Neoplásica da Expressão Gênica/fisiologia , Técnicas de Silenciamento de Genes , Antígenos de Histocompatibilidade/genética , Histona-Lisina N-Metiltransferase/genética , Humanos , Masculino , Camundongos Nus , Quinazolinas/farmacologia , Bexiga Urinária/patologia , Neoplasias da Bexiga Urinária/patologia
9.
Acta Pharmacol Sin ; 39(12): 1885-1893, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-29769742

RESUMO

Modified citrus pectin (MCP) is a carbohydrate enriched complex, which has been implicated in cancer treatment and prevention. However, the effects of MCP on urinary bladder cancer (UBC) are unknown. In this study, MCP was first tested in T24 and J82 human UBC cells and showed the inhibition of cell viability by the sulforhodamine B (SRB) assay. The MCP-treated UBC cells exhibited G2/M phase arrest with the decrease of Cyclin B1 and phosphorylated Cdc2. Caspase-3 was also activated, leading to the cleavage of Caspase-3 and PARP. We further explored the possible molecular mechanisms upon MCP treatment in UBC cells. Reduction of galectin-3 was observed and followed with the inactivation of Akt signaling pathway. Of note, galectin-3 knockdown by RNA interference recapitulated the MCP-mediated anti-proliferation, cell cycle arrest and apoptosis. Moreover, oral administration of MCP to the T24 xenograft-bearing nude mice inhibited the tumor growth significantly (P < 0.05). Quantification analysis of immunohistochemistry staining for Ki67 and cleaved Caspase-3 confirmed the decrease of proliferation index (P < 0.05) and the increase of apoptosis index (P < 0.01) in 700 mg/kg MCP-fed UBC xenografts. Using the information from TCGA database, we revealed that the overexpression of galectin-3 was associated with high tumor grade with lymph node metastasis, poor overall survival in UBC patients. Considering the remarkable inhibitory effects of MCP on UBC cell proliferation and survival in vitro and in vivo mainly through galectin-3, which is upregulated in UBCs, MCP may become an attractive agent, as a natural dietary fiber, for prevention and therapy of UBCs.


Assuntos
Antineoplásicos/uso terapêutico , Regulação para Baixo , Galectina 3/genética , Pectinas/uso terapêutico , Neoplasias da Bexiga Urinária/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Apoptose/efeitos dos fármacos , Proteínas Sanguíneas , Caspase 3/metabolismo , Linhagem Celular Tumoral , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Galectinas , Humanos , Masculino , Camundongos Nus , Pectinas/farmacologia , Neoplasias da Bexiga Urinária/genética
10.
Acta Pharmacol Sin ; 38(4): 551-560, 2017 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-28112184

RESUMO

Histone deacetylases (HDACs), especially HDAC1, 2, 3 and 4, are abundantly expressed and over-activated in prostate cancer that is correlated with the poor prognosis. Thus, inhibition of HDAC activity has emerged as a potential alternative option for prostate cancer therapy. Chromopeptide A is a depsipeptide isolated from the marine sediment-derived bacterium Chromobacterium sp. HS-13-94; it has a chemical structure highly similar to FK228, a class I HDAC inhibitor that is approved by FDA for treating T-cell lymphoma. In this study, we determined whether chromopeptide A, like FK228, acted as a class I HDAC inhibitor, and whether chromopeptide A could inhibit the growth and migration of human prostate cancer in vitro and in vivo. HDAC enzyme selectivity and kinetic analysis revealed that chromopeptide A selectively inhibited the enzymatic activities of HDAC1, 2, 3 and 8 in a substrate non-competitive manner with comparable IC50 values for each HDAC member as FK228 in vitro. Importantly, chromopeptide A dose-dependently suppressed the proliferation of human prostate cancer cell lines PC3, DU145 and LNCaP with IC50 values of 2.43±0.02, 2.08±0.16, and 1.75±0.06 nmol/L, respectively, accompanied by dose-dependent inhibition of HDAC enzymatic activity in PC3 and DU145 cells. Chromopeptide A (0.2-50 nmol/L) caused G2/M phase arrest and induced apoptosis in the prostate cancer cell lines. Moreover, chromopeptide A dose-dependently inhibited the migration of PC3 cells. In mice bearing PC3 prostate cancer xenografts, intravenous injection of chromopeptide A (1.6, 3.2 mg/kg, once a week for 18 d) significantly suppressed the tumor growth, which was associated with increased expression levels of Ac-H3 and p21 in tumor tissues. Our results identify chromopeptide A as a novel class I HDAC inhibitor and provide therapeutic strategies that may be implemented in prostate cancer.


Assuntos
Antineoplásicos/uso terapêutico , Inibidores de Histona Desacetilases/uso terapêutico , Peptídeos Cíclicos/uso terapêutico , Neoplasias da Próstata/tratamento farmacológico , Animais , Apoptose/efeitos dos fármacos , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Pontos de Checagem da Fase G2 do Ciclo Celular/efeitos dos fármacos , Xenoenxertos , Humanos , Masculino , Camundongos Endogâmicos BALB C , Camundongos Nus , Transplante de Neoplasias , Neoplasias da Próstata/patologia
11.
Biodegradation ; 28(4): 231-244, 2017 08.
Artigo em Inglês | MEDLINE | ID: mdl-28455641

RESUMO

Understanding the dynamics of performance and bacterial community of biofilm under oligotrophic stress is necessary for the process optimization and risk management in biofilm systems for raw water pretreatment. In this study, biofilm obtained from a pilot-scale biofilm reactor was inoculated into a pilot-scale experimental tank for the treatment of oligotrophic raw water. Results showed that the removal of NH4+-N was impaired in biofilm systems when influent NH4+-N was less than 0.35 mg L-1 or NH4+-N loading rate of less than 7.51 mg L-1 day-1. The dominant bacteria detected in biofilm of different carrier were obvious distinct from phylum to genus level under oligotrophic stress. The dominant bacteria in elastic stereo media carrier changed from Proteobacteria (51.1%) to Firmicutes (32.7%), while Proteobacteria was always dominant in suspended ball carrier after long-term operation under oligotrophic conditions. Oligotrophic stress largely decreased the functional bacteria for the removal of nitrogen and organics including many genera in Proteobacteria and Nitrospirae, but increased several genera with spore forming organisms or potential bacterial pathogens in ESM carrier mainly including Bacillus, Mycobacterium, Pseudomonas, etc.


Assuntos
Bactérias/metabolismo , Biofilmes , Estresse Fisiológico , Purificação da Água/métodos , Biodegradação Ambiental , Biodiversidade , Análise da Demanda Biológica de Oxigênio , Filogenia , Análise de Componente Principal , Poluentes Químicos da Água/isolamento & purificação
12.
Nano Lett ; 16(7): 4417-23, 2016 07 13.
Artigo em Inglês | MEDLINE | ID: mdl-27228321

RESUMO

Surface trap states in copper indium gallium selenide semiconductor nanocrystals (NCs), which serve as undesirable channels for nonradiative carrier recombination, remain a great challenge impeding the development of solar and optoelectronics devices based on these NCs. In order to design efficient passivation techniques to minimize these trap states, a precise knowledge about the charge carrier dynamics on the NCs surface is essential. However, selective mapping of surface traps requires capabilities beyond the reach of conventional laser spectroscopy and static electron microscopy; it can only be accessed by using a one-of-a-kind, second-generation four-dimensional scanning ultrafast electron microscope (4D S-UEM) with subpicosecond temporal and nanometer spatial resolutions. Here, we precisely map the collective surface charge carrier dynamics of copper indium gallium selenide NCs as a function of the surface trap states before and after surface passivation in real space and time using S-UEM. The time-resolved snapshots clearly demonstrate that the density of the trap states is significantly reduced after zinc sulfide (ZnS) shelling. Furthermore, the removal of trap states and elongation of carrier lifetime are confirmed by the increased photocurrent of the self-biased photodetector fabricated using the shelled NCs.

13.
Small ; 12(17): 2313-20, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26938476

RESUMO

Managing trap states and understanding their role in ultrafast charge-carrier dynamics, particularly at surface and interfaces, remains a major bottleneck preventing further advancements and commercial exploitation of nanowire (NW)-based devices. A key challenge is to selectively map such ultrafast dynamical processes on the surfaces of NWs, a capability so far out of reach of time-resolved laser techniques. Selective mapping of surface dynamics in real space and time can only be achieved by applying four-dimensional scanning ultrafast electron microscopy (4D S-UEM). Charge carrier dynamics are spatially and temporally visualized on the surface of InGaN NW arrays before and after surface passivation with octadecylthiol (ODT). The time-resolved secondary electron images clearly demonstrate that carrier recombination on the NW surface is significantly slowed down after ODT treatment. This observation is fully supported by enhancement of the performance of the light emitting device. Direct observation of surface dynamics provides a profound understanding of the photophysical mechanisms on materials' surfaces and enables the formulation of effective surface trap state management strategies for the next generation of high-performance NW-based optoelectronic devices.

14.
Small ; 12(17): 2312, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-27124006

RESUMO

Selective mapping of surface charge carrier dynamics of InGaN nanowires before and after surface passivation with octadecylthiol (ODT) is reported by O. F. Mohammed and co-workers on page 2313, using scanning ultrafast electron microscopy. In a typical experiment, the 343 nm output of the laser beam is used to excite the microscope tip to generate pulsed electrons for probing, and the 515 nm output is used as a clocking excitation pulse to initiate dynamics. Time-resolved images demonstrate clearly that carrier recombination is significantly slowed after ODT treatment, which supports the efficient removal of surface trap states.

15.
Acta Pharmacol Sin ; 37(12): 1587-1596, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27616574

RESUMO

AIM: Inhibition of heat shock protein (Hsp90) has been proven to be effective in overriding primary and acquired resistance of kinase inhibitors. In this study, we investigated the role of FS-108, a newly developed Hsp90 inhibitor, to overcome gefitinib resistance in EGFR mutant non-small cell lung cancer cells. METHODS: Cell proliferation was assessed using the SRB assay. Cell cycle distribution and apoptosis were analyzed by flow cytometry. Protein expression was examined by Western blotting. The in vivo effectiveness of FS-108 was determined in an NCI-H1975 subcutaneous xenograft model. RESULTS: FS-108 triggered obvious growth inhibition in gefitinib-resistant HCC827/GR6, NCI-H1650 and NCI-H1975 cells through inducing G2/M phase arrest and apoptosis. FS-108 treatment resulted in a remarkable degradation of key client proteins involved in gefitinib resistance and further abrogated their downstream signaling pathways. Interestingly, FS-108 alone exerted an identical or superior effect on circumventing gefitinib resistance compared to combined kinase inhibition. Finally, the ability of FS-108 to overcome gefitinib resistance in vivo was validated in an NCI-H1975 xenograft model. CONCLUSION: FS-108 is a powerful agent that impacts the survival of gefitinib-resistant cells in vitro and in vivo through targeting Hsp90.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Receptores ErbB/genética , Proteínas de Choque Térmico HSP90/antagonistas & inibidores , Isoxazóis/farmacologia , Neoplasias Pulmonares/tratamento farmacológico , Oxazóis/farmacologia , Quinazolinas/farmacologia , Resorcinóis/farmacologia , Animais , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Linhagem Celular Tumoral , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Gefitinibe , Xenoenxertos , Humanos , Isoxazóis/uso terapêutico , Neoplasias Pulmonares/metabolismo , Camundongos Endogâmicos BALB C , Camundongos Nus , Mutação , Transplante de Neoplasias , Oxazóis/uso terapêutico , Resorcinóis/uso terapêutico
16.
Chemistry ; 20(33): 10475-83, 2014 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-25044047

RESUMO

Protoporphyrin IX-zinc oxide (PP-ZnO) nanohybrids have been synthesized for applications in photocatalytic devices. High-resolution transmission electron microscopy (HRTEM), X-ray diffraction (XRD), and steady-state infrared, absorption, and emission spectroscopies have been used to analyze the structural details and optical properties of these nanohybrids. Time-resolved fluorescence and transient absorption techniques have been applied to study the ultrafast dynamic events that are key to photocatalytic activities. The photocatalytic efficiency under visible-light irradiation in the presence of naturally abundant iron(III) and copper(II) ions has been found to be significantly retarded in the former case, but enhanced in the latter case. More importantly, femtosecond (fs) transient absorption data have clearly demonstrated that the residence of photoexcited electrons from the sensitizer PP in the centrally located iron moiety hinders ground-state bleach recovery of the sensitizer, affecting the overall photocatalytic rate of the nanohybrid. The presence of copper(II) ions, on the other hand, offers additional stability against photobleaching and eventually enhances the efficiency of photocatalysis. In addition, we have also explored the role of UV light in the efficiency of photocatalysis and have rationalized our observations from femtosecond- to picosecond-resolved studies.


Assuntos
Metais/química , Nanoestruturas/química , Porfirinas/química , Óxido de Zinco/química , Catálise , Luz , Azul de Metileno/química , Fotólise , Espectroscopia de Infravermelho com Transformada de Fourier , Análise Espectral , Difração de Raios X
17.
Sci Total Environ ; 944: 173905, 2024 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-38871330

RESUMO

Iodo-phenolic disinfection byproducts (DBPs) widely occur in disinfected water, posing potential risks to human health and the ecosystem as they possess higher toxicity than the bromo- and chloro-analogs. Herein, we elucidated the catalytic hydrodehalogenation (HDH) activity and selectivity of polyiodinated phenolic DBPs on supported noble metal catalysts at ambient conditions. Both 2,4,6-triiodophenol and 4-chloro-2,6-diiodophenol can be efficiently eliminated on Pd/TiO2 and Rh/TiO2 within 20 min, with Pd/TiO2 exhibiting higher turnover frequency. The HDH reactions proceeded in both stepwise and concerted pathways on Pd/TiO2, while they were dominantly stepwise on Rh/TiO2. Experimental results and theoretical calculations revealed that the HDH selectivity depends on the position and the bond energy of halo-substitutions. For the HDH of 2,4,6-triiodophenol, the para-substituted iodine was more favorable to be dehalogenated than the ortho-substituted ones due to the steric hindrance of the hydroxyl group. For the HDH of 4-chloro-2,6-diiodophenol, the ortho-substituted iodine was removed before the para-substituted chlorine as CI bond had higher reactivity than CCl bond. Significant catalyst deactivation was observed for the HDH of 4-chloro-2,6-diiodophenol on Pd/TiO2 due to iodine poisoning, resulting in 4-chlorophenol as the dominant product. In contrast, Rh/TiO2 can completely hydrodehalogenate 4-chloro-2,6-diiodophenol into cyclohexanone with little iodine poisoning. Our results suggest that HDH is an efficient process for abating iodo-phenolic DBPs. Rh/TiO2 is a more promising HDH catalyst for iodinated DBP removal than Pd/TiO2 with excellent resistance to iodine poisoning.

18.
ACS Nano ; 18(13): 9535-9542, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38522086

RESUMO

Writing spatial information on ultrafast all-optical switching is essential for constructing ultrafast processing units in photonic applications, such as optical communication and computing networks. However, most methods ignore the fabrication and imaging of controllable switching area, limiting its spatial information and the further design in ultrafast devices. Here, we propose a method to spatially write in ultrafast all-optical switching based on MAPbI3 perovskite with nanocone structure and visualize the switching effect in arbitrary designed area. Due to the light confinement effect of nanocone fabrication using a fs laser, the light is strongly absorbed by perovskite and reach saturable absorption. It leads to ultrafast broadband transmittance change with 25 fs switching time and 10% modulation depth in nanocone perovskite area. Our preparation method offers high efficiency, performance, and flexibility for the spatial writing of ultrafast all-optical switching, which is promising for developing ultrafast all-optical networks and the next generation of communication technology.

19.
J Med Chem ; 67(12): 10035-10056, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38885173

RESUMO

Triple-negative breast cancer (TNBC) represents a highly aggressive and heterogeneous malignancy. Currently, effective therapies for TNBC are very limited and remain a significant unmet clinical need. Targeting the transcription-regulating cyclin-dependent kinase 9 (CDK9) has emerged as a promising avenue for therapeutic treatment of TNBC. Herein, we report the design, synthesis, optimization, and evaluation of a new series of aminopyrazolotriazine compounds as orally bioavailable, potent, and CDK9/2 selectivity-improved inhibitors, enabling efficacious inhibition of TNBC cell growth, as well as notable antitumor effect in TNBC models. The compound C35 demonstrated low-nanomolar potency with substantially improved CDK9/2 selectivity, downregulated the CDK9-downstream targets (e.g., MCL-1), and induced apoptosis in TNBC cell lines. Moreover, with the desired oral bioavailability, oral administration of C35 could significantly suppress the tumor progression in two TNBC mouse models. This study demonstrates that target transcriptional regulation is an effective strategy and holds promising potential as a targeted therapy for the treatment of TNBC.


Assuntos
Antineoplásicos , Quinase 9 Dependente de Ciclina , Inibidores de Proteínas Quinases , Neoplasias de Mama Triplo Negativas , Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Quinase 9 Dependente de Ciclina/metabolismo , Neoplasias de Mama Triplo Negativas/tratamento farmacológico , Neoplasias de Mama Triplo Negativas/patologia , Humanos , Animais , Feminino , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Antineoplásicos/farmacocinética , Antineoplásicos/química , Antineoplásicos/síntese química , Administração Oral , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico , Inibidores de Proteínas Quinases/farmacocinética , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/síntese química , Camundongos , Linhagem Celular Tumoral , Relação Estrutura-Atividade , Disponibilidade Biológica , Proliferação de Células/efeitos dos fármacos , Apoptose/efeitos dos fármacos , Descoberta de Drogas , Transcrição Gênica/efeitos dos fármacos , Camundongos Nus , Ensaios Antitumorais Modelo de Xenoenxerto
20.
Cancer Res ; 83(10): 1611-1627, 2023 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-36939397

RESUMO

Cancer stem-like cells (CSC) play pivotal roles in both chemoresistance and recurrence of many cancer types, including urothelial bladder cancer (UBC). In addition to intrinsic signaling pathways, extracellular cues from the tumor microenvironment (TME) are indispensable for the maintenance of CSCs. To better understand the mechanisms involved in TME-mediated generation and support of UBC CSCs, we focused on the role of cancer-associated fibroblasts (CAF) in this study. Overexpression of miR-146a-5p in CAFs promoted CAF-to-UBC cell interactions, cancer stemness, and chemoresistance to treatment with gemcitabine and cisplatin. Mechanistically, miR-146-5p upregulated SVEP1 in CAFs by enhancing the recruitment of transcriptional factor YY1. Meanwhile, by targeting the 3'UTR of mRNAs of ARID1A and PRKAA2 (also known as AMPKα2) in UBC cells, CAF-secreted miR-146a-5p promoted cancer stemness and chemoresistance. Downregulation of ARID1A resulted in the inhibition of SOCS1 and subsequent STAT3 activation, and downregulated PRKAA2 led to the activation of mTOR signaling. Elevated levels of exosomal miR-146a-5p in the serum of patients with UBC were correlated with both tumor stage and relapse risk. These findings altogether indicate that CAF-derived miR-146a-5p can promote stemness and enhance chemoresistance in UBC. Exosomal miR-146a-5p may be a biomarker of UBC recurrence and a potential therapeutic target. SIGNIFICANCE: The tumor-stromal cross-talk mediated by cancer-associated fibroblast-derived miR-146a-5p fosters cancer stem cell niche formation and cancer stemness to drive chemoresistance in urothelial bladder cancer.


Assuntos
Fibroblastos Associados a Câncer , MicroRNAs , Neoplasias da Bexiga Urinária , Humanos , MicroRNAs/genética , MicroRNAs/metabolismo , Fibroblastos Associados a Câncer/metabolismo , Resistencia a Medicamentos Antineoplásicos/genética , Linhagem Celular Tumoral , Recidiva Local de Neoplasia , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Proliferação de Células , Microambiente Tumoral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA