RESUMO
A variety of quantum degrees of freedom, e.g., spins, valleys, and localized emitters, in atomically thin van der Waals materials have been proposed for quantum information applications, and they inevitably couple to phonons. Here, we directly measure the intrinsic optical phonon decoherence in monolayer and bulk MoS2 by observing the temporal evolution of the spectral interference of Stokes photons generated by pairs of laser pulses. We find that a prominent optical phonon mode E2g exhibits a room-temperature dephasing time of â¼7 ps in both the monolayer and bulk. This dephasing time extends to â¼20 ps in the bulk crystal at â¼15 K, which is longer than previously thought possible. First-principles calculations suggest that optical phonons decay via two types of three-phonon processes, in which a pair of acoustic phonons with opposite momentum are generated.
RESUMO
In van der Waals (vdW) heterostructures formed by stacking two monolayers of transition metal dichalcogenides, multiple exciton resonances with highly tunable properties are formed and subject to both vertical and lateral confinement. We investigate how a unique control knob, the twist angle between the two monolayers, can be used to control the exciton dynamics. We observe that the interlayer exciton lifetimes in MoSe_{2}/WSe_{2} twisted bilayers (TBLs) change by one order of magnitude when the twist angle is varied from 1° to 3.5°. Using a low-energy continuum model, we theoretically separate two leading mechanisms that influence interlayer exciton radiative lifetimes. The shift to indirect transitions in the momentum space with an increasing twist angle and the energy modulation from the moiré potential both have a significant impact on interlayer exciton lifetimes. We further predict distinct temperature dependence of interlayer exciton lifetimes in TBLs with different twist angles, which is partially validated by experiments. While many recent studies have highlighted how the twist angle in a vdW TBL can be used to engineer the ground states and quantum phases due to many-body interaction, our studies explore its role in controlling the dynamics of optically excited states, thus, expanding the conceptual applications of "twistronics".
RESUMO
Plasmonic cavities represent a promising platform for controlling light-matter interaction due to their exceptionally small mode volume and high density of photonic states. Using plasmonic cavities for enhancing light's coupling to individual two-level systems, such as single semiconductor quantum dots (QD), is particularly desirable for exploring cavity quantum electrodynamic (QED) effects and using them in quantum information applications. The lack of experimental progress in this area is in part due to the difficulty of precisely placing a QD within nanometers of the plasmonic cavity. Here, we study the simplest plasmonic cavity in the form of a spherical metallic nanoparticle (MNP). By controllably positioning a semiconductor QD in the close proximity of the MNP cavity via atomic force microscope (AFM) manipulation, the scattering spectrum of the MNP is dramatically modified due to Fano interference between the classical plasmonic resonance of the MNP and the quantized exciton resonance in the QD. Moreover, our experiment demonstrates that a single two-level system can render a spherical MNP strongly anisotropic. These findings represent an important step toward realizing quantum plasmonic devices.
RESUMO
Localized surface plasmon resonances (LSPRs) associated with metallic nanostructures offer unique possibilities for light concentration beyond the diffraction limit, which can lead to strong field confinement and enhancement in deep subwavelength regions. In recent years, many transformative plasmonic applications have emerged, taking advantage of the spectral and spatial tunability of LSPRs enabled by near-field coupling between constituent metallic nanostructures in a variety of plasmonic metastructures (dimers, metamolecules, metasurfaces, metamaterials, etc.). For example, the "hot spot" formed at the interstitial site (gap) between two coupled metallic nanostructures in a plasmonic dimer can be spectrally tuned via the gap size. Capitalizing on these capabilities, there have been significant advances in plasmon enhanced or enabled applications in light-based science and technology, including ultrahigh-sensitivity spectroscopies, light energy harvesting, photocatalysis, biomedical imaging and theranostics, optical sensing, nonlinear optics, ultrahigh-density data storage, as well as plasmonic metamaterials and metasurfaces exhibiting unusual linear and nonlinear optical properties. In this review, we present two complementary approaches for fabricating plasmonic metastructures. We discuss how meta-atoms can be assembled into unique plasmonic metastructures using a variety of nanomanipulation methods based on single- or multiple-probes in an atomic force microscope (AFM) or a scanning electron microscope (SEM), optical tweezers, and focused electron-beam nanomanipulation. We also provide a few examples of nanoparticle metamolecules with designed properties realized in such well-controlled plasmonic metastructures. For the spatial controllability on the mesoscopic and macroscopic scales, we show that controlled self-assembly is the method of choice to realize scalable two-dimensional, and three-dimensional plasmonic metastructures. In the section of applications, we discuss some key examples of plasmonic applications based on individual hot spots or ensembles of hot spots with high uniformity and improved controllability.
RESUMO
The smallness of natural molecules and atoms with respect to the wavelength of light imposes severe limits on the nature of their optical response. For example, the well-known argument of Landau and Lifshitz and its recent extensions that include chiral molecules show that the electric dipole response dominates over the magneto-electric (bianisotropic) and an even smaller magnetic dipole optical response for all natural materials. Here, we experimentally demonstrate that both these responses can be greatly enhanced in plasmonic nanoclusters. Using atomic force microscopy nanomanipulation technique, we assemble a plasmonic metamolecule that is designed for strong and simultaneous optical magnetic and magneto-electric excitation. Angle-dependent scattering spectroscopy is used to disentangle the two responses and to demonstrate that their constructive/destructive interplay causes strong directional scattering asymmetry. This asymmetry is used to extract both magneto-electric and magnetic dipole responses and to demonstrate their enhancement in comparison to ordinary atomistic materials.
RESUMO
Metamaterials made of nanoscale inclusions or artificial unit cells exhibit exotic optical properties that do not exist in natural materials. Promising applications, such as super-resolution imaging, cloaking, hyperbolic propagation, and ultrafast phase velocities have been demonstrated based on mostly micrometer-scale metamaterials and few nanoscale metamaterials. To date, most metamaterials are created using costly and tedious fabrication techniques with limited paths toward reliable large-scale fabrication. In this work, we demonstrate the one-step direct growth of self-assembled epitaxial metal-oxide nanocomposites as a drastically different approach to fabricating large-area nanostructured metamaterials. Using pulsed laser deposition, we fabricated nanocomposite films with vertically aligned gold (Au) nanopillars (â¼20 nm in diameter) embedded in various oxide matrices with high epitaxial quality. Strong, broad absorption features in the measured absorbance spectrum are clear signatures of plasmon resonances of Au nanopillars. By tuning their densities on selected substrates, anisotropic optical properties are demonstrated via angular dependent and polarization resolved reflectivity measurements and reproduced by full-wave simulations and effective medium theory. Our model predicts exotic properties, such as zero permittivity responses and topological transitions. Our studies suggest that these self-assembled metal-oxide nanostructures provide an exciting new material platform to control and enhance optical response at nanometer scales.
RESUMO
Metal-organic frameworks (MOFs) are a class of porous materials constructed from organic linkers and inorganic building blocks. Coordinative competition labilizes some MOFs under harsh chemical conditions because of their weak bonding. However, instability is not always a negative property of a material. In this study, we demonstrated the use of the acidic lability of MOFs for direct optical patterning. The controllable acid release from the photoacid generator at the exposed area causes bond cleavage between the linkers and metal ions/clusters, leading to solubility changes and pattern formation after development. This process avoids redundant steps and possible contamination in traditional photolithography, while maintaining the original properties of patterned MOFs. The preserved porosity and crystallinity promoted the development of MOFs for gas sensors and solid displays.
RESUMO
Recent advancements in neural probe technology have become pivotal in both neuroscience research and the clinical management of neurological disorders. State-of-the-art developments have led to the advent of multichannel, high-density bidirectional neural interfaces that are adept at both recording and modulating neuronal activity within the central nervous system. Despite this progress, extant bidirectional probes designed for simultaneous recording and stimulation are beset with limitations, including elicitation of inflammatory responses and insufficient charge injection capacity. In this paper, we delineate the design and application of an innovative ultraflexible bidirectional neural probe engineered from polyimide. This probe is distinguished by its ability to facilitate high-resolution recordings and precise stimulation control in deep brain regions. Electrodes enhanced with a PEDOT:PSS/IrOx composite exhibit a substantial increase in charge storage capacity, escalating from 0.14 ± 0.01 mC/cm2 to an impressive 24.75 ± 0.18 mC/cm2. This augmentation significantly bolsters the electrodes' charge transfer efficacy. In tandem, we observed a notable reduction in electrode impedance, from 3.47 ± 1.77 MΩ to a mere 41.88 ± 4.04 kΩ, while the phase angle exhibited a positive shift from -72.61 ± 1.84° to -34.17 ± 0.42°. To substantiate the electrodes' functional prowess, we conducted in vivo experiments, where the probes were surgically implanted into the bilateral motor cortex of mice. These experiments involved the synchronous recording and meticulous analysis of neural signal fluctuations during stimulation and an assessment of the probes' proficiency in modulating directional turning behaviors in the subjects. The empirical evidence corroborates that targeted stimulation within the bilateral motor cortex of mice can modulate the intensity of neural signals in the stimulated locale, enabling the directional control of the mice's turning behavior to the contralateral side of the stimulation site.
RESUMO
Taste, a pivotal sense modality, plays a fundamental role in discerning flavors and evaluating the potential harm of food, thereby contributing to human survival, physical and mental health. Patients with tongue cancer may experience a loss of taste following extensive surgical resection with flap reconstruction. Here, we designed a gustatory interface that enables the non-invasive detection of tongue electrical activities for a comprehensive operative assessment. Moreover, it decodes gustatory information from the reconstructed tongue without taste buds. Our gustatory interface facilitates the recording and analysis of electrical activities on the tongue, yielding an electrical mapping across the entire tongue surface, which delineates the safe margin for surgical management and assesses flap viability for postoperative structure monitoring and prompt intervention. Furthermore, the gustatory interface helps patients discern tastes with an accuracy of 97.8%. Our invention offers a promising approach to clinical assessment and management and holds potential for improving the quality of life for individuals with tongue cancer.
Assuntos
Paladar , Neoplasias da Língua , Língua , Humanos , Neoplasias da Língua/cirurgia , Neoplasias da Língua/patologia , Paladar/fisiologia , Masculino , Feminino , Pessoa de Meia-Idade , Idoso , Adulto , Qualidade de Vida , Retalhos Cirúrgicos , Procedimentos de Cirurgia Plástica/métodos , Papilas GustativasRESUMO
Implantable bioelectronic devices, designed for both monitoring and modulating living organisms, require functional and biological adaptability. Pure silk is innovatively employed, which is known for its excellent biocompatibility, to engineer water-triggered, geometrically reconfigurable membranes, on which functions can be integrated by Micro Electro Mechanical System (MEMS) techniques and specially functionalized silk. These devices can undergo programmed shape deformations within 10 min once triggered by water, and thus establishing stable bioelectronic interfaces with natively fitted geometries. As a testament to the applicability of this approach, a twining peripheral nerve electrode is designed, fabricated, and rigorously tested, demonstrating its efficacy in nerve modulation while ensuring biocompatibility for successful implantation.
Assuntos
Seda , Seda/química , Animais , Materiais Biocompatíveis/química , Eletrodos Implantados , Próteses e ImplantesRESUMO
In implantable electrophysiological recording systems, the headstage typically comprises neural probes that interface with brain tissue and integrated circuit chips for signal processing. While advancements in MEMS and CMOS technology have significantly improved these components, their interconnection still relies on conventional printed circuit boards and sophisticated adapters. This conventional approach adds considerable weight and volume to the package, especially for high channel count systems. To address this issue, we developed a through-polymer via (TPV) method inspired by the through-silicon via (TSV) technique in advanced three-dimensional packaging. This innovation enables the vertical integration of flexible probes, amplifier chips, and PCBs, realizing a flexible, lightweight, and integrated device (FLID). The total weight of the FLIDis only 25% that of its conventional counterparts relying on adapters, which significantly increased the activity levels of animals wearing the FLIDs to nearly match the levels of control animals without implants. Furthermore, by incorporating a platinum-iridium alloy as the top layer material for electrical contact, the FLID realizes exceptional electrical performance, enabling in vivo measurements of both local field potentials and individual neuron action potentials. These findings showcase the potential of FLIDs in scaling up implantable neural recording systems and mark a significant advancement in the field of neurotechnology.
RESUMO
Silk fibroin, recognized for its biocompatibility and modifiable properties, has significant potential in bioelectronics. Traditional silk bioelectronic devices, however, face rapid functional losses in aqueous or in vivo environments due to high water absorption of silk fibroin, which leads to expansion, structural damage, and conductive failure. In this study, we developed a novel approach by creating oriented crystallization (OC) silk fibroin through physical modification of the silk protein. This advancement enabled the fabrication of electronic interfaces for chronic biopotential recording. A pre-stretching treatment of the silk membrane allowed for tunable molecular orientation and crystallization, markedly enhancing its aqueous stability, biocompatibility, and electronic shielding capabilities. The OC devices demonstrated robust performance in sensitive detection and motion tracking of cutaneous electrical signals, long-term (over seven days) electromyographic signal acquisition in live mice with high signal-to-noise ratio (SNR >20), and accurate detection of high-frequency oscillations (HFO) in epileptic models (200-500 Hz). This work not only improves the structural and functional integrity of silk fibroin but also extends its application in durable bioelectronics and interfaces suited for long-term physiological environments.
RESUMO
The integration of optoelectronic devices with reservoir computing offers a novel and effective approach to in-sensor computing. This work presents a hybrid digital-physical solution that leverages the high-performance poly[(bithiophene)-alternate-(2,5-di(2-octyldodecyl)-3,6-di(thienyl)-pyrrolyl pyrrolidone)] (DPPT-TT) organic polymer-based photodiodes for the hardware implementation of reservoir computing system. The photodiodes demonstrate nonlinear photoelectric responses, fading memory, and cyclical stability, in relation to the temporal information on light stimuli. These attributes enable effective mapping, historical context sensitivity, and consistent performance, with time-encoded inputs, which are particularly essential for accurate and continuous processing of time series data. The optoelectronic reservoir computing system with pulse width modulation (PWM) coding demonstrates impressive performance in the prediction of chaotic sequences, achieving a normalized root-mean-square error as low as 0.095 with optimized parameters. The DPPT-TT-based photodiodes and time-based coding offer a hardware-efficient solution for reservoir computing, significantly advancing Internet of Things applications.
RESUMO
In this work, we propose a photonic quasicrystal waveguide, which contains a hollow core surrounded by coaxial dielectric quasiperiodic multilayer. Due to the self-similarity in the cladding structure, multiple omnidirectional photonic band gaps (PBGs) exist in the waveguide. The light waves with the frequencies within the omnidirectional PBGs are totally reflected, thereafter, the transport of multimodes is achieved in the quasiperiodic waveguide. Further, it is shown that the centre frequency and the width of the omnidirectional PBG can be tuned by the refractive indexes or the generations of the quasiperiodic sequence in the cladding multilayer. As a consequence, both the quality factor and the confinement performance of the waveguide can be significantly enhanced by decreasing the width of the omnidirectional PBGs. The investigations make it possible to design miniaturized multifunctional optical devices, such as on-chip narrowband waveguide-based filters and laser resonators.
RESUMO
In this work, we investigate the optical properties of a multilayer structure, where a SiO2 film is sandwiched by silver films with periodic array of sub-wavelength apertures. Due to the coupling of surface plasmons (SPs) between different layers, electric and magnetic resonances have been observed. By varying the thickness of the interlayer SiO2, we can modify relative phase of the SPs resonance and control the shifts of transmission peaks. Experimentally the multilayers are fabricated by magnetron sputtering and the array of apertures is milled by focused-ion-beam facility. The measured optical transmission spectra reasonably agree with our numerical calculation, which bases on three-dimensional finite-difference time-domain method. To understand the shifts of the peaks, we present a phenomenological explanation, considering the transmission peaks as energy levels, and the coupling of localized surface plasmons as perturbation. These results may have potential applications in designing plasmonic devices and tuning electromagnetic wave in nanophotonics.
RESUMO
Advancements in microscale electrode technology have revolutionized the field of neuroscience and clinical applications by offering high temporal and spatial resolution of recording and stimulation. Flexible neural probes, with their mechanical compliance to brain tissue, have been shown to be superior to rigid devices in terms of stability and longevity in chronic recordings. Shuttle devices are commonly used to assist flexible probe implantation; however, the protective membrane of the brain still makes penetration difficult. Hidden damage to brain vessels during implantation is a significant risk. Inspired by the anatomy of the mosquito mouthparts, we present a biomimetic neuroprobe system that integrates high-sensitivity sensors with a high-fidelity multichannel flexible electrode array. This customizable system achieves distributed and minimally invasive implantation across brain regions. Most importantly, the system's nonvisual monitoring capability provides an early warning detection for intracranial soft tissues, such as vessels, reducing the potential for injury during implantation. The neural probe system demonstrates exceptional sensitivity and adaptability to environmental stimuli, as well as outstanding performance in postoperative and chronic recordings. These findings suggest that our biomimetic neural-probe device offers promising potential for future applications in neuroscience and brain-machine interfaces. A mosquito mouthpart-like bionic neural probe consisting of a highly sensitive tactile sensor module, a flexible microelectrode array, and implanted modules that mimic the structure of mosquito mouthparts. The system enables distributed implantation of electrode arrays across multiple brain regions while making the implantation minimally invasive and avoiding additional dural removal. The tactile sensor array can monitor the implantation process to achieve early warning of vascular damage. The excellent postoperative short-term recording performance and long-term neural activity tracking ability demonstrate that the system is a promising tool in the field of brain-computer interfaces.
RESUMO
Penetrating flexible electrode arrays can simultaneously record thousands of individual neurons in the brains of live animals. However, it has been challenging to spatially map and longitudinally monitor the dynamics of large three-dimensional neural networks. Here we show that optimized ultraflexible electrode arrays distributed across multiple cortical regions in head-fixed mice and in freely moving rats allow for months-long stable electrophysiological recording of several thousand neurons at densities of about 1,000 neural units per cubic millimetre. The chronic recordings enhanced decoding accuracy during optogenetic stimulation and enabled the detection of strongly coupled neuron pairs at the million-pair and millisecond scales, and thus the inference of patterns of directional information flow. Longitudinal and volumetric measurements of neural couplings may facilitate the study of large-scale neural circuits.
Assuntos
Fenômenos Eletrofisiológicos , Roedores , Ratos , Camundongos , Animais , Eletrodos Implantados , Fenômenos Eletrofisiológicos/fisiologia , Encéfalo/fisiologia , Neurônios/fisiologiaRESUMO
The combination of optogenetics and electrophysiological recording enables high-precision bidirectional interactions between neural interfaces and neural circuits, which provides a promising approach for the study of progressive neurophysiological phenomena. Opto-electrophysiological neural probes with sufficient flexibility and biocompatibility are desirable to match the low mechanical stiffness of brain tissue for chronic reliable performance. However, lack of rigidity poses challenges for the accurate implantation of flexible neural probes with less invasiveness. Herein, we report a hybrid probe (Silk-Optrode) consisting of a silk protein optical fiber and multiple flexible microelectrode arrays. The Silk-Optrode can be accurately inserted into the brain and perform synchronized optogenetic stimulation and multichannel recording in freely behaving animals. Silk plays an important role due to its high transparency, excellent biocompatibility, and mechanical controllability. Through the hydration of the silk optical fiber, the Silk-Optrode probe enables itself to actively adapt to the environment after implantation and reduce its own mechanical stiffness to implant into the brain with high fidelity while maintaining mechanical compliance with the surrounding tissue. The probes with 128 recording channels can detect high-yield well-isolated single units while performing intracranial light stimulation with low optical losses, surpassing previous work of a similar type. Two months of post-surgery results suggested that as-reported Silk-Optrode probes exhibit better implant-neural interfaces with less immunoreactive glial responses and tissue lesions. A silk optical fiber-based Silk-Optrode probe consisting of a natural silk optical fiber and a flexible micro/nano electrode array is reported. The multifunctional soft probe can modify its own Young's modulus through hydration to achieve accurate implantation into the brain. The low optical loss and single-unit recording abilities allow simultaneous optogenetic stimulation and multichannel readout, which expands the applications in the operation and parsing of neural circuits in behavioral animals.
RESUMO
Implanted neural probes are among the most important techniques in both fundamental and clinical neuroscience. Despite great successes and promise, neural electrodes are technically limited by their scalability. A recent study by Obaid et al. demonstrated an innovative way to greatly scale up the channel count and density of neural electrode arrays.
Assuntos
Fenômenos Eletrofisiológicos , Neurociências , Humanos , Eletrodos , Eletrofisiologia/métodosRESUMO
The properties of van der Waals heterostructures are drastically altered by a tunable moiré superlattice arising from periodically varying atomic alignment between the layers. Exciton diffusion represents an important channel of energy transport in transition metal dichalcogenides (TMDs). While early studies performed on TMD heterobilayers suggested that carriers and excitons exhibit long diffusion, a rich variety of scenarios can exist. In a moiré crystal with a large supercell and deep potential, interlayer excitons may be completely localized. As the moiré period reduces at a larger twist angle, excitons can tunnel between supercells and diffuse over a longer lifetime. The diffusion should be the longest in commensurate heterostructures where the moiré superlattice is completely absent. Here, we experimentally demonstrate the rich phenomena of interlayer exciton diffusion in WSe2/MoSe2 heterostructures by comparing several samples prepared with chemical vapor deposition and mechanical stacking with accurately controlled twist angles.